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Abstract— Providing high end-to-end (E2E) performance is
critical for cellular service providers to best serve their customers.
Detecting and localizing E2E performance degradation is crucial
for cellular service providers, content providers, device manu-
factures, and application developers to jointly troubleshoot root
causes. To the best of our knowledge, detection and localization
of E2E performance degradation at cellular service providers has
not been previously studied. In this paper, we propose a holistic
approach to detecting and localizing E2E performance degrada-
tion at cellular service providers across the four dimensions of
user locations, content providers, device types, and application
types. First, we use training data to build models that can
capture the normal performance of every E2E-instance, which
means flows corresponding to a specific location, content provider,
device type, and application type. Second, we use our models to
detect performance degradation for each E2E-instance on an
hourly basis. Third, after each E2E-instance has been labeled
as non-degrading or degrading, we use association rule mining
techniques to localize the source of performance degradation.
Our system detected performance degradation instances over a
period of one week. In 80% of the detected degraded instances,
content providers, device types, and application types were the
only factors of performance degradation.

I. INTRODUCTION

A. Background and Motivation

Internet access through cellular data services has become

an essential part of people’s everyday life such as usage of

emailing, web browsing, video streaming, and online shop-

ping. Nowadays cellular network customers using data services

expect seamless service with high performance, i.e., the end-

to-end (E2E) performance. To best serve their customers

it is critical for cellular service providers to provide high

E2E performance and maintain their competitive edge. In the

context of cellular data services, E2E performance means the

performance that customers experience for a specific location,

content provider, device type, and application type. A user

location means the Radio Network Controller (RNC) that

the user’s device connects to. A content provider means the

Internet domain that is serving the user. A device type means

a specific brand and model of the user’s device, such as Apple

iPhone 5. An application type means the categorical type of

the application that the user is running on their cellular device,

such as emailing or Web browsing.

In this work, we present a system for detecting and lo-

calizing E2E performance degradation (such as slow web-

page loading and unsmooth video playing) at cellular service
providers across four administrative domains: cellular service

providers, content providers, device manufacturers, and ap-

plication developers. For detection, we want to detect E2E

performance degradation before cellular network operators

receive complaint calls. For localization, we want to find the

problematic domain that is causing performance degradation

such as user location, content provider, device type, and/or

application type. For example, if all users connecting to an

RNC are experiencing performance degradation, regardless of

content providers, device types, and application types, then

probably the RNC is causing the performance degradation.

For another example, if all users of iPhone 5 are experiencing

performance degradation for their email application, regardless

of user locations and content providers, then probably iPhone

5 is having issues with email applications.

Detection and localization of E2E performance degradation

is crucial for all administrative domains to jointly troubleshoot

root causes. When users experience E2E performance degra-

dation, they have no clue whom they should “blame”. For

example, when a user at New York experiences performance

degradation for yahoo email on his iPhone 5, he does not know

whether it is the cellular provider, or yahoo, or iPhone 5, or

his email client app, that is causing the problem. When user

experience such E2E performance degradations, they blankly

ascribe the fault to their cellular service providers and issue

complaints to the cellular network customer service centers,

which may result in both reputation damage and financial

losses for the cellular service providers. When cellular service

providers receive such calls, they have to go through lengthy,

manual, labor intensive process to localize the issue, and the

actual issue may not be the cellular service provider problem,

it may be due to the user device itself (such as device OS,

application software) or due to the content provider (such as

application servers, datacenter network). For example, the E2E

performance degradation maybe caused by a content provider

upgrading its service, a device type having updated its OS with

incompatibility issues, and an app having been patched with

buggy code. The localization findings allow cellular service

providers to quickly mitigate service problems, effectively

communicate with customers complaining about service prob-

lems, and engage content providers, device manufactures, or

application developers and operators to jointly troubleshoot for

root causes.

There are several key challenges in detecting and localizing

E2E performance degradation at cellular service providers.



First, there are a wide range of elements (such as mo-

bile devices, cell towers, radio resource controller, routers,

switches, fibers, media gateways, firewalls, multicast servers,

name servers, and content servers) at various layers (such as

physical layer, link layer, transport layer and application layer)

that may cause the E2E performance degradation. Second, it

is practically infeasible to gain the complete visibility of E2E

performance issues because content providers, devices, and

applications belong to different administrative domains. For

example, issues on mobile devices and content servers are

not visible to cellular service providers. Third, the expected

E2E performance varies significantly depending on which

application type, content provider, mobile device, geographic

location, time of day, and day of a week [6], [7], [15].

B. Proposed Approach

To the best of our knowledge, the detection and localization

of E2E performance degradation at cellular service providers

has not been previously studied. In this paper, we propose a

holistic approach to detecting and localizing E2E performance

degradation at cellular service providers across the four admin-

istrative domains of user locations, content providers, device

types, and application types. Our approach consists of three

steps: modeling, detection, and localization.

First, we build models using training data to capture the

normal performance of individual E2E instance, which means

the flows corresponding to a particular user location, content

provider, device type, and application type. Each E2E instance

has 24 ∗ 7 models where each model corresponds to a specific

hour of a day and a specific day of a week.

Second, we use our models to detect performance degrada-

tion for each E2E instance on an hourly basis. For each E2E

instance, if the actual performance in the testing phase is too

much worse than the expected performance obtained through

our models, we label it as degrading.

Third, after marking each E2E instance non-degrading or

degrading, we use association rule mining techniques to local-

ize the source of performance degradation. For example, rule

iPhone 5, Email → degrading shows that at a particular

time instant, for all locations and content provides, the cellular

users of iPhone 5 are experiencing significant degradation in

performance when they use the email application.

C. Technical Challenges and Solutions

To implement our approach, we face three key techni-

cal challenges. The first challenge is to tradeoff between

model accuracy and model complexity and to deal with

data sparsity. We represent E2E performance in a four di-

mensional matrix that is called E2E matrix and is denoted

EI = [1..L, 1..P, 1..D, 1..A], where the four dimensions are

L user locations, P content providers, D device types, and

A application types. An element EI [l, p, d, a] in this matrix

represents the E2E instances corresponding to user locations

l, content provider p, device type d, and application a. On one

extreme end, we build only one model for all E2E instances

in the E2E matrix, which gives us the least accuracy and

the least complexity; on the other extreme end, we build

one model for each individual E2E instance, which in theory

gives us the most accuracy and the most complexity. To

address this challenge, in this paper, we first build a baseline

model for all E2E instances, identify the E2E instance groups

that have significantly different performance, and then model

these groups separately, leaving the rest E2E instances still

being modeled by the baseline model. Within each group,

the performance of some E2E instances may be relatively

different from that of others in the group; thus, we apply this

grouping strategy recursively among identified groups. The

second challenge is to localize E2E performance degradation

issues. To address this challenge, we use association rule

mining to summarize the E2E matrix using some simple rules

such as iPhone 5, Email→ degrading. The third challenge

is to quantitatively evaluate the effectiveness of our approach

because we are short of ground truth data. For detection,

we do not have pre-labeled testing data because labeling

such prohibitive amount of data is practically infeasible. For

localization, the customer tickets that we have access to mostly

document hard failures such as an RNC is down. When such

hard failures happen, typically there is no flow for the affected

E2E instances; therefore, our localization scheme will not find

such failures. To address this challenge, first, we performed

manual inspection for some E2E performance degradation

cases; second, we injected some synthetic performance degra-

dation cases into the test data and use those injected cases to

serve as the ground truth.

II. RELATED WORK

To the best of our knowledge, the detection and localization

of E2E performance degradations at cellular service providers

has not been previously studied. Effort related to ours can

be categorized into detecting and troubleshooting network or

service issues and cellular service E2E performance measure-

ments.

Detecting and Troubleshooting Network or Service Is-

sues: SCORE [11], Shrink [8], and [10] focus on diagnosing

network failures through the inference of underlying lower-

layer failures using a Shared Risk Link Group (SRLG) model.

Pinpoint focuses on diagnosing the root causes of service

failures at the application server end, i.e., the content provider

end using the terminology in this paper [2]. Sherlock [1] and

NetMedic [9] both focus on diagnosing the root causes of

service failures within the elements (such as DNS servers,

firewall configurations, and application servers) of an enter-

prise network and both use dependency graphs. Sherlock and

NetMedic conduct diagnosis at the granularity of machines

and processes, respectively. In [12], Mahimkar et al. focused

on characterizing and troubleshooting performance issues in

one of the largest IPTV networks in North America. In [13],

Mahimkar et al. designed and implemented a tool for detecting

the impact of network upgrades on performance. Our work is

different from these efforts in terms of both the problem being

solved and the solution being used. From the problem perspec-

tive, our problem is on monitoring, detecting, and localizing
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Fig. 3. Data Collection Architecture

E2E performance degradations for cellular data service users

along the four dimensions of user locations, content providers,

device types, and application types at cellular service providers

without the full visibility of the E2E service path. From

the solution perspective, our approach consists of passive

cellular traffic monitoring, data centric modeling, model based

performance degradation detection, and association rule based

root cause localization, whereas these efforts uses variations

of dependency graphs.

Cellular service E2E performance Measurements: There

is work on measuring the impact on cellular service E2E

performance by factors such as resource usage by mobile

applications [14], content providers [4], and cellular technolo-

gies [7]. In [14], Qian et al. designed and implemented a

tool for discovering inefficient resource usage for smartphone

applications using cross-layer interaction among various layers

including radio resource channel state, transport layer, appli-

cation layer, and the user interaction layer. In [4], Finamore et

al. performed a measurement study that compares YouTube

traffic generated by mobile devices with that generated by

PCs, and correlated user behavior with system performance. In

[7], Huang et al. studied the interactions among applications,

network transport protocols, and radio layers for the 4G LTE

technology and their impact on performance using both active

and passive measurements, and showed that E2E performance

(such as TCP loss ratio) in cellular services varies across

different content providers, device types, applications, connec-

tion types, and wireless carriers. Comparing these efforts with

ours, we go one step further to localize the causes of E2E

performance degradation.

III. MONITORING E2E PERFORMANCE DYNAMICS AND

DATA ANALYSIS

A. Data Collection

In this study, we utilize anonymized flow level data collected

from the core network of a major cellular service provider in

the United States. Figure 3 illustrate the architectural overview

of the core of the mobile network, which consists of two main

types of nodes: the Serving GPRS Support Node (SGSN) and

the Gateway GPRS Support Node (GGSN). The GGSN is the

root node in the hierarchy of the cellular data network. GGSN

is responsible for sending and receiving Internet traffic to and

from the cellular network. SGSN is an intermediate node that

connects the lower level nodes to the GGSN through the Gn

interface. Typically, a single SGSN is connected to multiple

Radio Network Controllers (RNCs) and each RNC serves a

geographical region through cell towers.

The data was collected at the Gn interface which connects

the SGSNs to the GGSNs. As our goal in this work is to

detect and localize the E2E performance degradation in the

cellular service, we collect TCP flow level information for each

TCP connection which has been aggregated by user equipment

(UE) or handheld device type, the particular RNC, SGSN,

and GGSN. Each aggregated record in addition contains the

timestamp of the (1hr) bin, the application type (e.g. web

browsing, streaming video, etc) and content provider (e.g.
www.something.com) For each TCP flow, we collect infor-

mation including standard coordinated universal time (UTC),

ID of the serving RNC that describes the user access point,

the device type, the application type, and the content provider

being accessed. In this paper, we focus on two most important

E2E performance metrics in a cellular service: TCP loss ratio

and Round Trip Time (RTT). For each flow, we calculate its

TCP loss ratio using the following formula:
(

observed # bytes in the flow

actual # bytes in the flow
− 1

)

The actual number of bytes in a flow means the total number

of bytes in the flow, excluding retransmissions. We detect

retransmitted packets by tracking packet sequence numbers.

In this formula, the observed number of bytes is equal to

the actual number of bytes in the flow plus the number of

retransmitted bytes. For each flow, we calculate its RTT using

two RTT measurements. The E2E RTT of a flow is equal to

the sum of cellular network side RTT and internet side RTT.

Note that all user/device identifiers (such as IMSI and IMEI)

are completely anonymized to protect user privacy.

B. Data Analysis

To understand the characterization of TCP Loss Ratio and

RTT across the four dimensions ( namely user location, con-

tent provider, device type, and application type), we examine

one week of data collected from one northeast region in the

United States. We now analyze the dynamics in TCP loss ratio

and RTT for each of the 4 dimensions. The insights that we

gain in such analysis will be useful in our modeling of E2E

performance.

Figure 1 and 2 shows the normalized hourly TCP loss

ratios and RTT values for the 4 dimensions. Figure 1(a) and

2(a) shows the performance of all user locations, where the

grey lines represent the individual ratios and the black line

represents the average. The aggregate hourly TCP loss ratio of

a user location is calculated based on the sum of the observed

number of bytes transmitted for all downlink flows divided by

the sum of the actual number of bytes in all downlink flows

using the following formula:
(
∑

f∈{downlink flows} observed# bytesin f
∑

f∈{downlink flows} actual# bytesin f
− 1

)

From this figure, we first observe that the aggregate perfor-

mance of all user locations follow a similar diurnal pattern.
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Fig. 1. Normalized TCP Loss Ratio
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Fig. 2. Normalized Round Trip Time (RTT)

This observation concurs with the daily and weekly diurnal

pattern discovered in prior studies [15]. Second, we observe

that the aggregate hourly TCP loss ratios for all user locations

demonstrate moderate deviation from their average. Whereas,

the performance of various content providers, device types

and applications vary significantly. From these plots, we first

observe that the TCP loss ratios and RTT values of these

three dimensions follow a similar diurnal pattern as those

of user locations. Second, we observe that the performance

of these dimensions demonstrate significant deviation from

their average, as compared to those ratios of user locations.

Third, we observe that a few content providers, device types

and applications constantly perform significantly worse than

others.

IV. MODELING E2E PERFORMANCE DYNAMICS

Our approach is to first build baseline E2E performance

models and then detect and localize E2E performance anoma-

lies based on these models. To build models, we first compute

a two dimensional aggregate E2E performance matrix that

captures the average performance along the dimensions of

user locations, content providers, device types, and application

types over each hour in a week. We choose a week as

the duration because people have weekly diurnal patterns in

their use of cellular services [15]. Next we describe our E2E

performance modeling approach.

A. Aggregate E2E Performance Matrix

Given TCP flow data for a certain time period of W weeks

at a certain region as the training data, let L denote the total

number of user locations, C denote the total number of content

providers, D denote the total number of device types, and A

denote the total number of application types. For each user

location, we first calculate the average performance (packet

loss rate or RTT) across all content providers, all device types,

and all application types, for each hour in the W weeks of

24 ∗ 7 ∗ W hours; and then, for each location and for each

hour in a week of 24 ∗ 7 hours, we calculate the median of

the W values; thus, for each hour in a week of 24 ∗ 7 hours,

we obtain a vector of L median values. Similarly, for each

content provider, we first calculate the average performance

across all user locations, all device types, and all application

types, for each hour in the W weeks of 24 ∗ 7 ∗W hours; and

then, for each content provider and for each hour in a week

of 24 ∗ 7 hours, we calculate the median of the W values;

thus, for each hour in a week of 24 ∗ 7 hours, we obtain a

vector of C median values. We apply such calculation for

device types and application types as well. In the end, we

obtain a two-dimensional aggregate E2E performance matrix

EA = [1..24 ∗ 7, {L,C,D,A}], which has 24 ∗ 7 rows and

four columns with indices denoted L,C,D, and A. In this

matrix, elements EA[i,L], EA[i,C], EA[i,D], EA[i,A] are

four vectors of L, C, D, and A median values, respectively,

as we calculated above. This matrix EA will be the input to

the robust regression algorithm described below.

B. Coarse Grained E2E Modeling

Taking the aggregate E2E performance matrix as input, we

build a single baseline model for all E2E instances, based on

which we can remove extreme outlier data points. Note that

these extreme outlier data points are not the E2E anomalies

that we are looking for because such data points are mostly

errors and noises introduced in our data collection process.

We use robust regression for this baseline modeling because

it can minimize the impact of extreme outlier data points on

the produced model.

Robust regression uses the standard regression model y =
EAβ + ǫ, where y is the response vector of size 24 ∗ 7, β is

the coefficient vector of size 4, and ǫ is the residual vector

of size 24 ∗ 7. It computes a robust estimate of β such that
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Fig. 4. Real and predicted performance curves

the impact of extreme outlier data points on the produced

model is minimized. To compute the coefficient β, we use

the well known iteratively re-weighted least squares (IRLS)

algorithm [5]. This algorithm first obtains the residual errors

based on the standard least square method. Second, it uses a

weighting function over the residuals to mark outliers. Third,

it ignores outliers and re-estimates regression coefficients. It

repeats the above process until the difference of values of

estimated coefficients obtained in two successive iterations

approaches a minimum threshold. Mathematically, the robust

estimates of β after n+ 1 iterations can be represented as:

βn+1 = argmin

p
∑

i=1

wn
i |yi − EAi

β|2 (1)

Here wn
i is the weight assigned to the ith observation at the

nth iteration. The weight assignment is done through a weight

function w(ri), where ri is the scaled residual calculated

using the method proposed in [3]. We choose the weighting

functions that minimize the overall error by assigning less

weights to outlying points. We used our training datasets

to evaluate the performance of some well known weighting

functions [5]. We calculate the Root Mean Squared Error

(RMSE) of the regression models developed using six different

weighting functions. Table I gives a comparison of RMSE

values obtained through Ordinary Least Square (OLS) method

and the IRLS method. It is clear that the Talwar weighting

function has the least RMSE value. This is because Talwar

weighting function assigns a weight of 1 or 0 to each data

instance. Equation 2 describes the weighting criteria, which is

based on the scaled residual values ri.

w(ri) =

{

1 if abs(ri) < 1
0 otherwise

(2)

Using Talwar in IRLS, a data instances with anomalous

residual value will get a weight of 0, which means that

all data instances that have zero weights will not affect the

regression coefficients in the next iteration. Therefore, the

baseline developed for the initial training set will not be

affected by these outliers.

C. Fine Grained E2E Modeling

We have defined aggregate E2E performance matrix, now

we define E2E matrix. An E2E matrix denoted EI =

[1..L, 1..P, 1..D, 1..A] is a four dimensional matrix where the

four dimensions are L user locations, P content providers, D

device types, and A application types. An element EI [l, p, d, a]
in this matrix represents the E2E instances (or say flows)

corresponding to user locations l, content provider c, device

type d, and application type a.

Describing the performance of all E2E instances in the E2E

matrix using only one model is not accurate enough because

the performance of some E2E instances is significantly dif-

ferent from that of other E2E instances. For example, Figure

4(a) and (b) show the observed and predicted performance

curves for two different cells of the individual E2E matrix EI .

We obtain the predicted performance curve using the single

model in the above coarse grained E2E performance modeling.

From Figure 4(a), we observe that for E2E matrix cell 1, the

predicted performance curve are fairly consistent with the real

one but from Figure 4(b), we observe that for E2E matrix

cell 2, the predicted performance curve significantly deviate

from the real one. Our approach to addressing this issue is to

partition E2E instances into groups such that each group has

distinct performance. The more groups that we partition, the

more accurate models we can obtain, but at the same time, the

number of models and the complexity will increase. On one

extreme end, we have only one model for all E2E instances,

which gives us the least accuracy and the least complexity; on

the other extreme end, we have one model for each individual

E2E matrix cell, which gives us the most accuracy and the

most complexity. Our strategy to tradeoff between model

accuracy and model complexity is to identify the E2E instance

groups that have significantly different performance and then

model these groups separately, leaving the rest E2E instances

still being modeled by a single E2E model. Within each group,

the performance of some E2E instances may be relatively

different from that of others; thus, we apply this grouping

strategy recursively among identified groups.

In this work, we first identify E2E instances that perform

quite differently from the baseline model; then group such

deviating E2E instances using association rule mining; within

each group, we apply this strategy recursively. Next, we

present the details of these three steps: deviating E2E instance

identification, deviating E2E instance grouping, and recursive

E2E instance grouping.

1) Deviating E2E Instance Identification: To identify the

E2E instances that have deviating performance, we compare

the real performance of each E2E instance with its predicted

performance based on the baseline model for each hour in the

24 ∗ 7 hours of a week. To take the standard performance de-

viation across W weeks into consideration, we compute a two

dimensional matrix denoted ĒA that captures such deviation.

Here ĒA differs from EA only in that each value in ĒA is

the standard deviation of the W values whereas each value

in EA is the median of the W values. In ĒA, the elements

ĒA[i,L], ĒA[i,P], ĒA[i,D], ĒA[i,A] are four vectors of L,

P , D, and A standard deviation values, respectively. We feed

ĒA to the same robust regression algorithm and obtain the
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standard deviation σ. For each E2E instance and each hour

of the 24 ∗ 7 hours of a week, if the real performance is too

much out of the range of [predicted performance - σ, predicted

performance + σ], we label this E2E instance as deviating for

this hour. In this work, we use [predicted performance - 2 ∗σ,

predicted performance + 2∗σ] as the guideline for quantifying

“too much”. For each E2E instance, if for a large percentage

of the 24∗7 hours of a week, this E2E instance has a deviating

performance, we label this E2E instance as deviating. In this

work, we use 50% as the guideline for quantifying “large

percentage”.

2) Deviating E2E Instance Grouping: Now each instance

of the E2E matrix EI has been labeled “not deviating” or

“deviating”. Visually, we mark non-deviating rules as white

and deviating rules as black. The next step is to group such

deviating E2E instances together based on their performance.

In this work, we model the E2E matrix EI as a transactional

database and use the association rule mining technique to

perform grouping. An instance EI [l, p, d, a] with color c is

modeled as a transaction with five items 〈l, p, d, a, c〉. Given

this transaction database as the input, we use the class based

Apriori association rule mining algorithm to produce rules

with only the color being the consequence. In association rule

mining, a rule is of the form antecedent → consequence

where antecedent and consequence are disjoint sets of

some items. The meaning of the rule is that most people who

buy antecedent also buy consequence. The quality of a rule

is measured by two metrics: support and confidence. The sup-

port of a rule is the percentage of the transactions that contain

all the items in both the antecedent and the consequence of

the rule among all transactions in the database. The confidence

of a rule is the percentage of the transactions that contain all

the items in both the antecedent and the consequence of

the rule among the transactions that contains all the items in

antecedent. We are only interested in rules with the color

black as the consequence and therefore ignore all rules with

color white. Each rule represents a group. For example, a rule

NewYork, Google, iPhone→ black

represent a group of all E2E instances whose user location

is New York, content provider is Google, and device type

is iPhone. This rule means that most E2E instances corre-

sponding to user location New York, content provider Google,

and device type iPhone, regardless of application types, have

deviating performance from the baseline model. Here New
York is just a metaphor for a specific RNC. For simplicity, we

use

NewYork, Google, iPhone, ∗

to denote this group where wild card ∗ denote all application

types. The size of this group is A, which is the number of

all application types. The size of each group is exactly the

support of the corresponding rule. Note that some of the E2E

instances in a group may be white. The percentage of the

black E2E instances in a group is exactly the confidence of

the corresponding rule. To tradeoff between model accuracy

and model complexity, we want to find groups with a large

support and a high confidence. In this work, we set the support

threshold to be 0.1% and the confidence threshold to be

80%. We pay attention to only the rules whose support and

confidence are above these thresholds and ignore the other

rules. For simplicity, in the rest of this paper, we use the terms

“rule” and “group” interchangeably.

After we filter out rules whos support or confidence is below

the corresponding threshold, we still have too many groups

to model each individually. We do not choose to reduce the

number of rules by simply increasing support or confidence

thresholds because a rule with larger support and/or confidence

does not necessarily have a larger impact on the baseline

model. Instead, we choose to select the groups that have

the most impact on the baseline model. Next, we present an

exclusion method and an inclusion method to quantify the

impact of a group on the baseline model.

In the exclusion method, first, for the set of all E2E

instances, denoted EA, we use the simple regression algorithm

to build the baseline model. Second, for each group of E2E

instances R, we use the simple regression algorithm to build a

model for EA−R. Third, we calculate the absolute difference

of the RMSEs of the two models for EA − R and EA. The

result is used to quantify the impact of group R. Note that

here we use the simple regression algorithm, instead of the

robust regression algorithm, because robust regression ignores

outliers that have large effect on the RMSE.

In the inclusion method, let Σ denote the union of all

groups; first, for EA − Σ, we use the simple regression

algorithm to build the baseline model. Second, for each group

of E2E instances R, we use the simple regression algorithm

to build a model for (EA − Σ) ∪ R. Third, we calculate

the absolute difference of the RMSEs of the two models for

EA−Σ and (EA−Σ)∪R. The result is used to quantify the

impact of group R.

After we quantify the impact of each group on the baseline

model, we can rank all groups based on their quantified impact.



Note that groups may overlap. For example, the following two

groups overlap:

NewYork, Google, ∗, ∗

∗, Google, iPhone, ∗

For any two groups R1 and R2 that overlap, if R1 is ranked

higher than R2, then for all E2E instances in R1 ∩ R2,

we model them using the R1’s model. Given the n ranked

groups in the non-ascending order of their impact, denoted

by R1, R2, · · · , Rn, for each 1 ≤ i ≤ n, we build a separate

model for group Ri − ∪1≤j≤i−1Rj . Note that for group Ri,

if there exists 1 ≤ j ≤ i − 1 such that Ri ⊂ Rj , then

Ri − ∪1≤j≤i−1Rj = ∅.
3) Recursive E2E Instance Grouping: Just like having one

model for all E2E instances in EI is not accurate enough, for

some groups, having one separate model is also not accurate

enough. Therefore, we apply our fine grained E2E modeling

algorithm recursively on each group that we have identified as

above. We now empirically show that through recursive E2E

instance grouping, we achieve high modeling accuracy. We

use a training data collected over a duration of six weeks (i.e.,

W = 6). We calculate the aggregate E2E performance matrix

using the six weeks data and build a single baseline model for

all E2E instances. We then identify a first set of deviating E2E

instance groups. For each of these E2E instance groups, we

calculate the total number of E2E instances that are deviating

from the single baseline model. In Figure 5, the black bars

are the fraction of deviating E2E instances belonging to a

particular group, and the grey bars represent the fraction of

deviating E2E instances when a separate model is used for

each of the E2E instance groups. For each of the E2E instance

groups, we develop a separate set of fine grained models

through recursion. The white bars are the fraction of deviating

E2E instances in the original E2E instance group after separate

sets of fine grained models are used for each E2E instance

group after recursion. We observe that after at most three levels

of recursion, we do not get any further E2E instance grouping.

Figure 6 shows the CDF of residual errors obtained when a

single baseline model is used. Figure 7 shows the CDF of

residual errors obtained when a separate baseline models are

used. We observe that recursive E2E instance grouping and

fine grained modeling greatly reduce residual errors.

D. Performance Degradation Detection

So far we have discussed how to build E2E performance

models based on training data. Now we present solutions to

detect and localize degradations in an on-going data feed on an

hourly basis. In order to determine whether a particular E2E

instance in the on-going data feed has degrading performance

in the latest hour, we compare the performance of that E2E

instance in the latest hour with its predicted performance based

on the fine-grained model for that E2E instance for the same

hour. For a given E2E instance at a particular hour, if the value

of its performance metric is too much higher than the predicted

performance, then we label this E2E instance as “degrading”.
We use the predicted performance + 2 ∗σ as the guideline for

quantifying “too much”.

E. Performance Degradation Localization

For each new hour in the on-going data feed, we first label

each E2E instance as degradation or normal and then apply

association rule mining algorithm on the E2E instances labeled

as degradation. Unlike the training phase, we do not apply

the association rule mining recursively. The output rules show

the localization of performance degradations. For example,

the following rule shows that for a particular hour, for all

content providers, all device types, and all applications, the

cellular users in the New York area are experiencing significant

degrading performance for their cellular services.

NewYork→ degrading

This rule is useful for cellular network operators to investigate

potential issues in their cellular services in the New York

area. Again, here New York is just a metaphor for a specific

RNC. For another example, the following rule shows that for a

particular hour, for all locations, for all content providers, the

cellular users of iPhone are experiencing significant degrading

performance for their email application.

iPhone, Email→ degrading

This rule is useful for cellular network operators to contact

iPhone manufactures to investigate potential issues in their

email application.

V. EVALUATION

In this section, we evaluate our approach using the opera-

tional data collected from a large US-based cellular service

provider. The main challenge in our evaluation is lack of

ground truth anomalies. Due to the prohibitively huge size

of the data, it is practically infeasible to manually label all

anomalous events. To address this challenge, we introduce

some synthetic anomalies into the collected operational data to

effectively evaluate the accuracy of our approach. Specifically,

we first apply our approach on the operational data collected

during six consecutive weeks to learn the fine grained E2E

performance models and then use these models to detect and

localize synthetic anomalies. Besides synthetic anomalies, we

also present a few real-world anomalies detected and localized

by using the learned fine grained E2E performance models.

A. Synthetic Anomalies

To evaluate our system we introduce synthetic anomalies

in the data. We created three sets of scenarios, in the first

set we have 19 scenarios and in each scenario we introduce a

one dimensional anomaly, the second set involves 26 scenarios

with two dimensions and the third set involves 19 scenarios

with three dimensions. In each scenario we introduced a one-

hour anomaly that is associated with a group of instances in

the huge E2E performance matrix. For example, a particular

scenario introduces performance degradations at a particular

hour, for all users accessing their email (application type) from

Motorola V3 Razr (device type). Specifically, we first collect
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Fig. 8. 1-dimensional scenarios
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Fig. 9. 2-dimensional scenarios
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Fig. 10. 3-dimensional scenarios

another week’s operational data (different from the six weeks

we used to learn the fine grained E2E performance models)

and calculate the mean and standard deviation of the TCP loss

ratio for each E2E instance using 168 hours of that week. Then

for each E2E instance in each particular scenario, we create

a one-hour synthetic anomaly by using Anom = µ + 2σ +
|N (0, 2)|.

For each scenario, we first used the fine grained E2E perfor-

mance models learned from six-week data to detect anomalies

for each instance of E2E matrix and then use association rule

mining to localize the root cause of all detected anomalies. We

use confidence as our evaluation metric for the rules obtained

through association rule mining and select the top ranked

rule obtained from association rule mining according to their

confidence values. As we can see from Figure 8, Figure 9

and Figure 10, all 64 synthetic anomalies that we injected

into the collected operational data are successfully detected

and localized. We get all scenarios as association rules with

90% confidence for one dimensional scenarios. We achieved

0 false positives for a minimum confidence threshold of 70%
and 80% for two and three dimensional scenarios respectively.

Dim Loc Dev App CP

Loss
Anom 0 5 98 27

Conf 0 0.80 0.68 0.67

RTT
Anom 0 11 82 0

Conf 0 0.82 0.68 0

TABLE II
SINGLE DIMENSION ANOMALIES

B. Anomaly Detection in the Wild

In this section, we characterize the performance anomalies

detected on an operational network over a period of one week

in August 2014. Through this characterization analysis, we

will explain that how frequent E2E performance anomalies

are and how often multiple dimensions are the root cause of

performance degradation. We implemented and deployed our

system on an operational network and detected performance

anomalies for packet loss ratio and RTT separately. Overall, we

monitored 78 different regions, 51 device types, 13 application

types and 36 content providers.

It is interesting to see that how often a single dimension is

responsible for performance degradation. We use the output

rules from the localization step to count the number of single

dimensional and multi-dimensional anomalies. For each rule,

we count the total number of all E2E instances and the

number of E2E instances marked as degrading, which belong

to that rule. Table II gives the number of one dimensional

anomalies detected on hourly basis. For each dimension the
number of anomalies is the number of E2E instances which

were marked as degrading in the detection and localization

process as discussed in Section IV. We also report the average

confidence that is the fraction of all E2E instances which were

marked as degrading. We can see that there are no performance

anomalies in the user location dimension, which means that

a single user location cannot be blamed for the anomalies

occurring during the one week’s time period. We observe that

one dimensional anomalies are rare for content providers and

device types. This is mainly because content providers use

content distribution networks for serving content to remotely

located users. It is very unlikely that the performance of a con-

tent provider will degrade across all user locations. Therefore,

a problematic content server can only affect the performance of

a subset of user locations. For applications, single dimension

anomalies are relatively frequent. This observation highlights

the performance impact of application patches and bug fixes

that are released periodically and frequently and bugs in these

updates can cause performance issues at all user locations,

across all device types and content providers.

Next we look at multi-dimensional anomalies reported in

Table III. We observe that anomalies involving multiple di-

mensions are more frequent as compared to single dimension

anomalies. We detected a total of 8415 E2E instances as

anomalous. Our analysis reveals that in 83% of these E2E

instances content provider was one of the dimensions, 86%
involved device types and 86% involved application types.

Overall, in 80% of these instances, the RNC or location

dimension was not involved. In other words, 80% of the time

the anomalies are not because of problems at the cellular

network. This composition of E2E performance anomalies

shows that most of the time content providers, device types

and applications are involved in the performance degradations.

These results are extremely useful for network operators as

they highlight the nature of majority of performance anoma-

lies. Additionally, the findings point network operators to the

problematic dimensions and reduce the search space of root

causes.
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Fig. 11. Real-world Anomaly 1: root cause outside the cellular network



Dim Loc,Dev Loc,App Loc,CP Dev,App Dev,CP App,CP Loc,Dev,App Loc,Dev,CP Loc,App,CP Dev,App,CP

Loss
Anom 134 0 215 79 263 0 378 44 233 962

Conf 0.94 0 0.93 0.76 0.83 0 0.82 0.80 0.76 0.78

RTT
Anom 57 13 56 280 355 0 32 20 444 4627

Conf 0.80 0.85 0.84 0.71 0.83 0 0.82 0.96 0.72 0.78

TABLE III
MULTI DIMENSION ANOMALIES

C. Real-world Anomalies

In the section, we present two interesting real-word anoma-

lies detected and localized by the learned fine grained E2E

performance models (same as the synthetic anomalies) and

the possible underlying root causes.

The first real-world anomaly involves three dimension

namely, content provider, device type and application type.

Our system detected and localized a one-hour anomaly across

all 78 user locations (corresponding to 78 RNCs) but specific

to apple.com (content provider), iPhone 4s (device type)

and browsing (application type). Figure 11 shows the time

series plot of the TCP loss ratio for all 78 user locations ,

apple.com, iPhone 4s and browsing. We also plot the predicted

performance and the upper bound of the TCP loss ratio for

apple.com, iPhone 4s and browsing across all locations. One

can clearly see that the anomaly occurred around the 8th

hour in the week for all 78 user locations. As the anomaly

is across all locations and specific to apple.com, iPhone 4s

and browsing, the root cause is most likely to be outside of

the cellular network and might be apple related.
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Fig. 12. Real-world Anomaly 2: root cause inside the cellular network

In the second real-world anomaly, all four dimension are in-

volved. Our system detected and localized a 15-hours anomaly

for four user locations across all content providers, device

types and application types. Figure 12 shows the time series

plot of the TCP loss ratio for all locations aggregated on

other 3 dimensions. We only picked one user location to

plot the predicted performance and the upper bound of the

TCP loss ratio for that user location, apple.com, iPhone 4s

and browsing due to space limits. One can clearly see only

4 curves (corresponding to 4 RNCs) had a significant spike

starting around hour 108. As a contrast to the first real-

world anomaly, the anomalies here are only specific to 4 user

locations regardless other 3 dimensions. Thus the root cause

here is most likely to be something inside the cellular network

impacting the 4 user locations (corresponding to 4 RNCs).

VI. CONCLUSIONS

We make the following key contributions in this paper.

First, we design and implement a comprehensive and holistic
measurement system that monitors E2E service performance

across four dimensions - user locations, content providers,

device types, and application types. Second, we propose

fine grained models that capture the normal performance for

every combination of user locations, content providers, device

types, and application types, and use the models to detect

performance degradation. Third, we propose an association

rule mining based approach to localize performance degrada-

tion. Fourth, we use both real network traces and synthetic

performance degradation to show that our method is highly

effective.
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