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Outline
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the different big data phases associated with the big data value
chain. Specifically, Section IV focuses on big data generation
and introduces representative big data sources. Section V dis-
cusses big data acquisition and presents data collection, data
transmission, and data preprocessing techniques. Section VI
investigates big data storage approaches and programming
models. Section VII discusses big data analytics, and sev-
eral applications are discussed in Section VIII. Section IX
introduces Hadoop, which is the current mainstay of the big
data movement. Section X outlines several benchmarks for
evaluating the performance of big data systems. A brief con-
clusion with recommendations for future studies is presented
in Section XI.

II. BIG DATA: DEFINITION, HISTORY AND PARADIGMS
In this section, we first present a list of popular definitions
of big data, followed by a brief history of its evolution. This
section also discusses two alternative paradigms, streaming
processing and batch processing.

A. BIG DATA DEFINITION
Given its current popularity, the definition of big data is rather
diverse, and reaching a consensus is difficult. Fundamentally,
big data means not only a large volume of data but also other
features that differentiate it from the concepts of ‘‘massive
data’’ and ‘‘very large data’’. In fact, several definitions for
big data are found in the literature, and three types of defini-
tions play an important role in shaping how big data is viewed:

• Attributive Definition: IDC is a pioneer in studying
big data and its impact. It defines big data in a 2011
report that was sponsored by EMC (the cloud computing
leader) [15]: ‘‘Big data technologies describe a new
generation of technologies and architectures, designed to
economically extract value from very large volumes of a
wide variety of data, by enabling high-velocity capture,
discovery, and/or analysis.’’ This definition delineates
the four salient features of big data, i.e., volume, variety,
velocity and value. As a result, the ‘‘4Vs’’ definition
has been used widely to characterize big data. A similar
description appeared in a 2001 research report [2] in
which META group (now Gartner) analyst Doug Laney
noted that data growth challenges and opportunities
are three-dimensional, i.e., increasing volume, velocity,
and variety. Although this description was not meant
originally to define big data, Gartner and much of
the industry, including IBM [16] and certain Microsoft
researchers [17], continue to use this ‘‘3Vs’’ model to
describe big data 10 years later [18].

• Comparative Definition: In 2011, Mckinsey’s report [2]
defined big data as ‘‘datasets whose size is beyond
the ability of typical database software tools to cap-
ture, store, manage, and analyze.’’ This definition is
subjective and does not define big data in terms of any
particular metric. However, it incorporates an evolution-
ary aspect in the definition (over time or across sectors)
of what a dataset must be to be considered as big data.

• Architectural Definition: The National Institute of Stan-
dards and Technology (NIST) [19] suggests that, ‘‘Big
data is where the data volume, acquisition velocity,
or data representation limits the ability to perform
effective analysis using traditional relational approaches
or requires the use of significant horizontal scaling
for efficient processing.’’ In particular, big data can
be further categorized into big data science and big
data frameworks. Big data science is ‘‘the study of
techniques covering the acquisition, conditioning, and
evaluation of big data,’’ whereas big data frameworks are
‘‘software libraries alongwith their associated algorithms
that enable distributed processing and analysis of big
data problems across clusters of computer units’’. An
instantiation of one or more big data frameworks is
known as big data infrastructure.

Concurrently, there has been much discussion in various
industries and academia about what big data actually means
[20], [21].

However, reaching a consensus about the definition of big
data is difficult, if not impossible. A logical choice might
be to embrace all the alternative definitions, each of which
focuses on a specific aspect of big data. In this paper, we take
this approach and embark on developing an understanding of
common problems and approaches in big data science and
engineering.

TABLE 1. Comparison between big data and traditional data.

The aforementioned definitions for big data provide a set
of tools to compare the emerging big data with traditional
data analytics. This comparison is summarized in Table 1,
under the framework of the ‘‘4Vs’’. First, the sheer volume
of datasets is a critical factor for discriminating between
big data and traditional data. For example, Facebook reports
that its users registered 2.7 billion ‘‘like’’ and comments
per day [22] in February 2012. Second, big data comes in
three flavors: structured, semi-structured and unstructured.
Traditional data are typically structured and can thus be easily
tagged and stored. However, the vast majority of today’s data,
from sources such as Facebook, Twitter, YouTube and other
user-generated content, are unstructured. Third, the velocity
of big data means that datasets must be analyzed at a rate
that matches the speed of data production. For time-sensitive
applications, such as fraud detection and RFID data man-
agement, big data is injected into the enterprise in the form
of a stream, which requires the system to process the data
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What is Big Data

• The recognition that data is at the center of 
our digital world and that there are big 
challenges in collecting, storing, processing, 
analyzing, and making use of such data.

• “Big” may refer to very large data volume, 
but not necessarily so.
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Big Data is...

It is all about better analytic on a broader 
spectrum of data, and therefore represents an 
opportunity to create even more differentiation 
among industry (data) peers.
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Big-Data Systems

• Big data is a broad concept that covers many aspects of 
computer science.

• We focus on the computer systems aspect, for instance,

- How various parts of a big data computer system (hardware, 
system software, and applications) are put together?

- What are the appropriate approaches to realize high 
performance, scalability, reliability, and security in practical big 
data computer systems?

• Probably not the right course if you are hoping to learn about 
algorithmic design and theoretical/mathematical foundations for 
machine learning and data mining.
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Simple to Start

• What is the maximum download speed you get?

• What is the maximum file size you have 
downloaded/uploaded?

• What are the data types you have processed so far?
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stream as quickly as possible to maximize its value. Finally,
by exploiting a variety of mining methods to analyze big
datasets, significant value can be derived from a huge volume
of data with a low value density in the form of deep insight or
commercial benefits.

FIGURE 2. A brief history of big data with major milestones. It can be
roughly split into four stages according to the data size growth of order,
including Megabyte to Gigabyte, Gigabyte to Terabyte, Terabyte to
Petabyte, and Petabyte to Exabyte.

B. A BRIEF HISTORY OF BIG DATA
Following its definition, we move to understanding the
history of big data, i.e., how it evolved into its current stage.
Considering the evolution and complexity of big data sys-
tems, previous descriptions are based on a one-sided view-
point, such as chronology [23] or milepost technologies [24].
In this survey, the history of big data is presented in terms of
the data size of interest. Under this framework, the history
of big data is tied tightly to the capability of efficiently
storing and managing larger and larger datasets, with size
limitations expanding by orders of magnitude. Specifically,
for each capability improvement, new database technologies
were developed, as shown in Fig. 2. Thus, the history of big
data can be roughly split into the following stages:

• Megabyte to Gigabyte: In the 1970s and 1980s, his-
torical business data introduced the earliest ‘‘big data’’
challenge in moving from megabyte to gigabyte sizes.
The urgent need at that time was to house that data and
run relational queries for business analyses and report-
ing. Research efforts were made to give birth to the
‘‘database machine’’ that featured integrated hardware
and software to solve problems. The underlying philos-
ophy was that such integration would provide better per-
formance at lower cost. After a period of time, it became
clear that hardware-specialized database machines could
not keep pace with the progress of general-purpose com-
puters. Thus, the descendant database systems are soft-
ware systems that impose few constraints on hardware
and can run on general-purpose computers.

• Gigabyte to Terabyte: In the late 1980s, the popular-
ization of digital technology caused data volumes to
expand to several gigabytes or even a terabyte, which
is beyond the storage and/or processing capabilities of
a single large computer system. Data parallelization
was proposed to extend storage capabilities and to

improve performance by distributing data and related
tasks, such as building indexes and evaluating queries,
into disparate hardware. Based on this idea, several
types of parallel databases were built, including shared-
memory databases, shared-disk databases, and shared-
nothing databases, all as induced by the underlying
hardware architecture. Of the three types of databases,
the shared-nothing architecture, built on a networked
cluster of individual machines - each with its own pro-
cessor, memory and disk [25] - has witnessed great
success. Even in the past few years, we have witnessed
the blooming of commercialized products of this type,
such as Teradata [26], Netezza [27], Aster Data [28],
Greenplum [29], and Vertica [30]. These systems exploit
a relational data model and declarative relational query
languages, and they pioneered the use of divide-and-
conquer parallelism to partition data for storage.

• Terabyte to Petabyte: During the late 1990s, when
the database community was admiring its ‘‘finished’’
work on the parallel database, the rapid development
of Web 1.0 led the whole world into the Internet era,
alongwithmassive semi-structured or unstructuredweb-
pages holding terabytes or petabytes (PBs) of data. The
resulting need for search companies was to index and
query the mushrooming content of the web. Unfor-
tunately, although parallel databases handle structured
data well, they provide little support for unstructured
data. Additionally, systems capabilities were limited
to less than several terabytes. To address the chal-
lenge of web-scale data management and analy-
sis, Google created Google File System (GFS) [31]
and MapReduce [13] programming model. GFS and
MapReduce enable automatic data parallelization and
the distribution of large-scale computation applications
to large clusters of commodity servers. A system running
GFS and MapReduce can scale up and out and is there-
fore able to process unlimited data. In the mid-2000s,
user-generated content, various sensors, and other ubiq-
uitous data sources produced an overwhelming flow
of mixed-structure data, which called for a paradigm
shift in computing architecture and large-scale data
processing mechanisms. NoSQL databases, which are
scheme-free, fast, highly scalable, and reliable, began to
emerge to handle these data. In Jan. 2007, Jim Gray, a
database software pioneer, called the shift the ‘‘fourth
paradigm’’ [32]. He also argued that the only way to
cope with this paradigmwas to develop a new generation
of computing tools to manage, visualize and analyze the
data deluge.

• Petabyte to Exabyte: Under current development trends,
data stored and analyzed by big companies will undoubt-
edly reach the PB to exabyte magnitude soon. However,
current technology still handles terabyte to PB data;
there has been no revolutionary technology developed to
cope with larger datasets. In Jun. 2011, EMC published
a report entitled ‘‘Extracting Value from Chaos’’ [15].
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the different big data phases associated with the big data value
chain. Specifically, Section IV focuses on big data generation
and introduces representative big data sources. Section V dis-
cusses big data acquisition and presents data collection, data
transmission, and data preprocessing techniques. Section VI
investigates big data storage approaches and programming
models. Section VII discusses big data analytics, and sev-
eral applications are discussed in Section VIII. Section IX
introduces Hadoop, which is the current mainstay of the big
data movement. Section X outlines several benchmarks for
evaluating the performance of big data systems. A brief con-
clusion with recommendations for future studies is presented
in Section XI.

II. BIG DATA: DEFINITION, HISTORY AND PARADIGMS
In this section, we first present a list of popular definitions
of big data, followed by a brief history of its evolution. This
section also discusses two alternative paradigms, streaming
processing and batch processing.

A. BIG DATA DEFINITION
Given its current popularity, the definition of big data is rather
diverse, and reaching a consensus is difficult. Fundamentally,
big data means not only a large volume of data but also other
features that differentiate it from the concepts of ‘‘massive
data’’ and ‘‘very large data’’. In fact, several definitions for
big data are found in the literature, and three types of defini-
tions play an important role in shaping how big data is viewed:

• Attributive Definition: IDC is a pioneer in studying
big data and its impact. It defines big data in a 2011
report that was sponsored by EMC (the cloud computing
leader) [15]: ‘‘Big data technologies describe a new
generation of technologies and architectures, designed to
economically extract value from very large volumes of a
wide variety of data, by enabling high-velocity capture,
discovery, and/or analysis.’’ This definition delineates
the four salient features of big data, i.e., volume, variety,
velocity and value. As a result, the ‘‘4Vs’’ definition
has been used widely to characterize big data. A similar
description appeared in a 2001 research report [2] in
which META group (now Gartner) analyst Doug Laney
noted that data growth challenges and opportunities
are three-dimensional, i.e., increasing volume, velocity,
and variety. Although this description was not meant
originally to define big data, Gartner and much of
the industry, including IBM [16] and certain Microsoft
researchers [17], continue to use this ‘‘3Vs’’ model to
describe big data 10 years later [18].

• Comparative Definition: In 2011, Mckinsey’s report [2]
defined big data as ‘‘datasets whose size is beyond
the ability of typical database software tools to cap-
ture, store, manage, and analyze.’’ This definition is
subjective and does not define big data in terms of any
particular metric. However, it incorporates an evolution-
ary aspect in the definition (over time or across sectors)
of what a dataset must be to be considered as big data.

• Architectural Definition: The National Institute of Stan-
dards and Technology (NIST) [19] suggests that, ‘‘Big
data is where the data volume, acquisition velocity,
or data representation limits the ability to perform
effective analysis using traditional relational approaches
or requires the use of significant horizontal scaling
for efficient processing.’’ In particular, big data can
be further categorized into big data science and big
data frameworks. Big data science is ‘‘the study of
techniques covering the acquisition, conditioning, and
evaluation of big data,’’ whereas big data frameworks are
‘‘software libraries alongwith their associated algorithms
that enable distributed processing and analysis of big
data problems across clusters of computer units’’. An
instantiation of one or more big data frameworks is
known as big data infrastructure.

Concurrently, there has been much discussion in various
industries and academia about what big data actually means
[20], [21].
However, reaching a consensus about the definition of big

data is difficult, if not impossible. A logical choice might
be to embrace all the alternative definitions, each of which
focuses on a specific aspect of big data. In this paper, we take
this approach and embark on developing an understanding of
common problems and approaches in big data science and
engineering.

TABLE 1. Comparison between big data and traditional data.

The aforementioned definitions for big data provide a set
of tools to compare the emerging big data with traditional
data analytics. This comparison is summarized in Table 1,
under the framework of the ‘‘4Vs’’. First, the sheer volume
of datasets is a critical factor for discriminating between
big data and traditional data. For example, Facebook reports
that its users registered 2.7 billion ‘‘like’’ and comments
per day [22] in February 2012. Second, big data comes in
three flavors: structured, semi-structured and unstructured.
Traditional data are typically structured and can thus be easily
tagged and stored. However, the vast majority of today’s data,
from sources such as Facebook, Twitter, YouTube and other
user-generated content, are unstructured. Third, the velocity
of big data means that datasets must be analyzed at a rate
that matches the speed of data production. For time-sensitive
applications, such as fraud detection and RFID data man-
agement, big data is injected into the enterprise in the form
of a stream, which requires the system to process the data
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Framework of Big-data Industry

Manage & store huge 
volume of any data 

Hadoop File System 
MapReduce 

Manage streaming data Stream Computing 

Analyze unstructured data Text Analytics Engine 

Data Warehousing Structure and control data 

Integrate and govern all 
data sources 

Integration, Data Quality, Security, 
Lifecycle Management, MDM 

Understand and navigate 
federated big data sources Federated Discovery and Navigation 

28

Topics in Big-data Systems
• Collection: missing information, dummy data, 

organization

• Data Transfer: Limitations of current systems, CPU 
intensive

• Storage:  Data sets beyond relational database, 
clusters, data centers, distributed data

• Processing: Software, processing power, parallel and 
distributed computing 

• User Interaction: Non-programmers need to perform 
complex information, real time GUI interfaces, 
visualization of data
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Big-data Systems 
in this Course

• Big Data - Infrastructure (Cloud)

• Big Data - Storage (HDFS, GFS)

• Big Data - Computing (MapReduce, Spark)

• Big Data - Database (HBase)

• Big Data - Graph DB (GraphLab)

• Big Data - Streaming (Storm)

• Big Data - Tool (R)
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Big-data Systems 
in this Course

• Not limited to these systems

• We focus on the fundamental design 
principles, and performance issues
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General Course 
Information

• Online info: 

- Webpage: http://mmlab.top:38080/bigdatasys/

• Text and references

- No official textbook, will use online resources 
and papers

• Acknowledgements:

- Several Internet material – Thanks to “Internet”
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Our Tasks in this Course

• Knowing

- How big-data systems 
work

- Limitations

- Performance evaluation

- Potential improvement

• Engineering

- Helloworld in these 
systems

- Demo-level 
development

- Real job 
implementation
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Assignment and Final Projects
• Three programming assignments (individual)

- First on data collection (10%)

- The other two on data processing and analysis (2 x 10%)

• A survey on big-data system subject to your choice (team, 
20%) 

• A final course project on a topic of your choice (team, 30%)

- Proposal 

- Presentation

- Demo

• Exam (20%)
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Pre-requisite

• No formal prerequisite

• Desire good programming skills

- Know C++/Java/Python

- Ability to learn new programming languages
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Interaction, Please!

• This is a new course; I am learning along with you

• We encourage discussions and interactions

• Extra credits for strong participation
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Course Outline
1.Introduction to Big Data and Big-data Systems

2.Cloud Computing and Virtualization

3.Big-data System Management

4.Data Preprocessing (1st assignment)

5.Data Storage Systems

6.MapReduce (2nd assignment)

7.In-memory Data Processing (survey assignment)
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9.Graph Computing (3rd assignment)
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12.Big-data Applications
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FIGURE 6. The Data acquisition stage consists of three sub-tasks: collection, transmission and
pre-processing. In each stage, representative methods will be investigated. For example, the data collection
stage covers three common methods, including sensor, log file, and web crawler.

1) SENSOR
Sensors are used commonly to measure a physical quantity
and convert it into a readable digital signal for processing
(and possibly storing). Sensor types include acoustic, sound,
vibration, automotive, chemical, electric current, weather,
pressure, thermal, and proximity. Through wired or wireless
networks, this information can be transferred to a data collec-
tion point.
Wired sensor networks leverage wired networks to connect

a collection of sensors and transmit the collected information.
This scenario is suitable for applications in which sensors can
easily be deployed and managed. For example, many video
surveillance systems in industry are currently built using a
single Ethernet unshielded twisted pair per digital camera
wired to a central location (certain systems may provide both
wired and wireless interfaces) [59]. These systems can be
deployed in public spaces to monitor human behavior, such
as theft and other criminal behaviors.
By contrast, wireless sensor networks (WSNs) utilize a

wireless network as the substrate of information transmis-
sion. This solution is preferable when the exact location of
a particular phenomenon is unknown, particularly when the
environment to be monitored does not have an infrastructure
for either energy or communication. Recently, WSNs have
been widely discussed and applied in many applications, such
as in environment research [60], [61], water monitoring [62],
civil engineering [63], [64], and wildlife habitat monitor-
ing [65]. The WSN typically consists of a large number of
spatially distributed sensor nodes, which are battery-powered
tiny devices. Sensors are first deployed at the locations spec-
ified by the application requirement to collect sensing data.
After sensor deployment is complete, the base station will
disseminate the network setup/management and/or collec-
tion command messages to all sensor nodes. Based on this
indicated information, sensed data are gathered at different
sensor nodes and forwarded to the base station for further
processing. [66] offer a detailed discussion of the foregoing.
A sensor based data collection system can be considered as

a cyber-physical system [67]. Actually, in the scientific exper-
iment domain, many specialty instruments, such as magnetic
spectrometer, radio telescope, are used to collect experiment
data [68]. They can be regarded as a special type of sensor. In
this sense, experiment data collection systems also belong to
the category of cyber-physical system.
A sensor-based data collection system is considered a

cyber-physical system [67]. In the scientific experiment
domain, many specialty instruments, such as magnetic spec-

trometers and radio telescopes, are used to collect experi-
mental data [68]. These instruments may be considered as
a special type of sensor. In this sense, experiment data col-
lection systems also belong to the category of cyber-physical
systems.

2) LOG FILE
Log files, one of the most widely deployed data collection
methods, are generated by data source systems to record
activities in a specified file format for subsequent analysis.
Log files are useful in almost all the applications running on
digital devices. For example, a web server normally records
all the clicks, hits, access and other attributes [69] made by
any website user in an access log file. There are three main
types of web server log file formats available to capture the
activities of users on a website: Common Log File Format
(NCSA), Extended Log Format (W3C), and IIS Log Format
(Microsoft). All three log file formats are in the ASCII text
format. Alternatively, databases can be utilized instead of
text files to store log information to improve the querying
efficiency of massive log repositories [70], [71]. Other exam-
ples of log file-based data collection include stock ticks in
financial applications, performance measurement in network
monitoring, and traffic management.
In contrast to a physical sensor, a log file can be viewed

as ‘‘software-as-a-sensor’’. Much user-implemented data col-
lection software [58] belongs to this category.

3) WEB CRAWLER
A crawler [72] is a program that downloads and stores web-
pages for a search engine. Roughly, a crawler starts with
an initial set of URLs to visit in a queue. All the URLs to
be retrieved are kept and prioritized. From this queue, the
crawler gets a URL that has a certain priority, downloads the
page, identifies all the URLs in the downloaded page, and
adds the newURLs to the queue. This process is repeated until
the crawler decides to stop. Web crawlers are general data
collection applications for website-based applications, such
as web search engines and web caches. The crawling process
is determined by several policies, including the selection
policy, re-visit policy, politeness policy, and parallelization
policy [73]. The selection policy communicates which pages
to download; the re-visit policy decides when to check for
changes to the pages; the politeness policy prevents overload-
ing the websites; the parallelization policy coordinates dis-
tributed web crawlers. Traditional web application crawling
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domains. As a result, this growing interest in big-data from
diverse domains demands a clear and intuitive understanding
of its definition, evolutionary history, building technologies
and potential challenges.

This tutorial paper focuses on scalable big-data systems,
which include a set of tools and mechanisms to load, extract,
and improve disparate data while leveraging the massively
parallel processing power to perform complex transforma-
tions and analysis. Owing to the uniqueness of big-data,
designing a scalable big-data system faces a series of tech-
nical challenges, including:

• First, due to the variety of disparate data sources and the
sheer volume, it is difficult to collect and integrate data
with scalability from distributed locations. For instance,
more than 175 million tweets containing text, image,
video, social relationship are generated by millions of
accounts distributed globally [9].

• Second, big data systems need to store and manage
the gathered massive and heterogeneous datasets, while
provide function and performance guarantee, in terms
of fast retrieval, scalability, and privacy protection. For
example, Facebook needs to store, access, and analyze
over 30 pertabytes of user generate data [9].

• Third, big data analytics must effectively mine mas-
sive datasets at different levels in realtime or near
realtime - including modeling, visualization, prediction,
and optimization - such that inherent promises can be
revealed to improve decision making and acquire further
advantages.

These technological challenges demand an overhauling
re-examination of the current data management systems,
ranging from their architectural principle to the implementa-
tion details. Indeed, many leading industry companies [10]
have discarded the transitional solutions to embrace the
emerging big data platforms.

However, traditional data management and analysis
systems, mainly based on relational database management
system (RDBMS), are inadequate in tackling the aforemen-
tioned list of big-data challenges. Specifically, the mismatch
between the traditional RDBMS and the emerging big-data
paradigm falls into the following two aspects, including:

• From the perspective of data structure, RDBMSs can
only support structured data, but offer little support for
semi-structured or unstructured data.

• From the perspective of scalability, RDBMSs scale up
with expensive hardware and cannot scale out with com-
modity hardware in parallel, which is unsuitable to cope
with the ever growing data volume.

To address these challenges, the research community and
industry have proposed various solutions for big data systems
in an ac-hoc manner. Cloud computing can be deployed as
the infrastructure layer for big data systems to meet cer-
tain infrastructure requirements, such as cost-effectiveness,
elasticity, and the ability to scale up or down. Distributed
file systems [11] and NoSQL [12] databases are suitable for

persistent storage and the management of massive scheme-
free datasets. MapReduce [13], a programming framework,
has achieved great success in processing group-aggregation
tasks, such as website ranking. Hadoop [14] integrates data
storage, data processing, system management, and other
modules to form a powerful system-level solution, which
is becoming the mainstay in handling big data challenges.
We can construct various big data applications based on these
innovative technologies and platforms. In light of the prolifer-
ation of big-data technologies, a systematic framework should
be in order to capture the fast evolution of big-data research
and development efforts and put the development in different
frontiers in perspective.

FIGURE 1. A modular data center was built at Nanyang Technological
University (NTU) for system/testbed research. The testbed hosts 270
servers organized into 10 racks.

In this paper, learning from our first-hand experience of
building a big-data solution on our private modular data
center testbed (as illustrated in Fig. 1), we strive to offer
a systematic tutorial for scalable big-data systems, focusing
on the enabling technologies and the architectural principle.
It is our humble expectation that the paper can serve as a
first stop for domain experts, big-data users and the general
audience to look for information and guideline in their spe-
cific needs for big-data solutions. For example, the domain
experts could follow our guideline to develop their own big-
data platform and conduct research in big-data domain; the
big-data users can use our framework to evaluate alternative
solutions proposed by their vendors; and the general audience
can understand the basic of big-data and its impact on their
work and life. For such a purpose, we first present a list
of alternative definitions of big data, supplemented with the
history of big-data and big-data paradigms. Following that,
we introduce a generic framework to decompose big data
platforms into four components, i.e., data generation, data
acquisition, data storage, and data analysis. For each stage, we
survey current research and development efforts and provide
engineering insights for architectural design. Moving toward
a specific solution, we then delve on Hadoop - the de facto
choice for big data analysis platform, and provide benchmark
results for big-data platforms.
The rest of this paper is organized as follows. In Section II,

we present the definition of big data and its brief history,
in addition to processing paradigms. Then, in Section III,
we introduce the big data value chain (which is composed of
four phases), the big data technology map, the layered system
architecture and challenges. The next four sections describe

VOLUME 2, 2014 653

43

Computer Storage

44

Data Processing

45

RDD Lineage

46

47

Google Bigtable

47 48



Everyone is talking about graphs...

Facebook Open Graph

49

Distributed Machine Learning  
System

50 51

! Introduction to Data Science (UC Berkeley) 
" Instructor: Mike Franklin  

" Pre-requisites: 61A, 61B, 61C, basic programming skill. Run VirtualBox on laptop. 

" Grading: Class Participation and in-class labs:20%; Midterm:20%; Final Project (in 

groups):25%; Homeworks:30%; Bunnies: 5%.  

" Final Project: Identify two or more data sets you would like to study, write the code 

to collect and integrate those data sets, then build two or three visualizations of data. 
#  Keep diary of success and failures; final submission consists: paper document; presentation 

#  Project proposals: problem intend to address; data intended to use… 

#  Resources: Stanford 224w Page; Quandl-Find use and share numerical data  

" Homework1: Text analysis and entity resolution 

" Homework2: Introduction to machine learning: clustering & regression 
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! Web Scale Data Management (Buffalo) 
" Professor Oliver Kennedy, a seminar course  

" Related to storing and querying large datasets, distributed systems and primitives, 

including data processing, synchronization, key-value stores, stream processors, as 

well as full SQL database system. 

" Grading: S/U, all students submit a short, weekly abstract and critical analysis of 

the week’s papers, and to participate in class discussion. Enrolled for 3 credits submit 

a simple experimental project. 
# Implement and compare two join algorithms(Nested Loop+Hash) on M/R 

# Implement and benchmark a ring DHT like Chord(Scaling Performance) 

# Implement and compare two distributed join algorithm as standalone processes. 

" Project Resources: a 12-core development server; Amazon AWS. 

��������	 
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! Scalable and Data-Intensive Computing in the Cloud (Washington) 
" Instructor: Bill Howe  

" Explore the technology landscape at the intersection of big data and cloud computing. Each 

class consist of a 1-hour lecture, a 1-hour case study and demonstration of a specific system 

and a 1-hour of discussion and hands-on work. 

" Student Assessment: Assignments:80%; Participation: 20%. All assignments will be due 1 

week later by the start of class. Participation will be a combination of attendance and discussion 

involvement; in class and online involvement will both contribute. 

" Websites: 

http://homes.cs.washington.edu/~billhowe/bigdatacloud/ 

��������	 
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Big-data Systems: 
Problems & Principles

• How to make use of growing computer/network/
storage resource to deal with growing data, to 
satisfy growing user demands

• Everything is unreliable, including user requirement

• Objectives: 

- Greedy: make use of all resource

- Adaptive: codes can change and can move

- Modular: let users manipulate data like playing a 
game
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FIGURE 6. The Data acquisition stage consists of three sub-tasks: collection, transmission and
pre-processing. In each stage, representative methods will be investigated. For example, the data collection
stage covers three common methods, including sensor, log file, and web crawler.

1) SENSOR
Sensors are used commonly to measure a physical quantity
and convert it into a readable digital signal for processing
(and possibly storing). Sensor types include acoustic, sound,
vibration, automotive, chemical, electric current, weather,
pressure, thermal, and proximity. Through wired or wireless
networks, this information can be transferred to a data collec-
tion point.
Wired sensor networks leverage wired networks to connect

a collection of sensors and transmit the collected information.
This scenario is suitable for applications in which sensors can
easily be deployed and managed. For example, many video
surveillance systems in industry are currently built using a
single Ethernet unshielded twisted pair per digital camera
wired to a central location (certain systems may provide both
wired and wireless interfaces) [59]. These systems can be
deployed in public spaces to monitor human behavior, such
as theft and other criminal behaviors.
By contrast, wireless sensor networks (WSNs) utilize a

wireless network as the substrate of information transmis-
sion. This solution is preferable when the exact location of
a particular phenomenon is unknown, particularly when the
environment to be monitored does not have an infrastructure
for either energy or communication. Recently, WSNs have
been widely discussed and applied in many applications, such
as in environment research [60], [61], water monitoring [62],
civil engineering [63], [64], and wildlife habitat monitor-
ing [65]. The WSN typically consists of a large number of
spatially distributed sensor nodes, which are battery-powered
tiny devices. Sensors are first deployed at the locations spec-
ified by the application requirement to collect sensing data.
After sensor deployment is complete, the base station will
disseminate the network setup/management and/or collec-
tion command messages to all sensor nodes. Based on this
indicated information, sensed data are gathered at different
sensor nodes and forwarded to the base station for further
processing. [66] offer a detailed discussion of the foregoing.
A sensor based data collection system can be considered as

a cyber-physical system [67]. Actually, in the scientific exper-
iment domain, many specialty instruments, such as magnetic
spectrometer, radio telescope, are used to collect experiment
data [68]. They can be regarded as a special type of sensor. In
this sense, experiment data collection systems also belong to
the category of cyber-physical system.
A sensor-based data collection system is considered a

cyber-physical system [67]. In the scientific experiment
domain, many specialty instruments, such as magnetic spec-

trometers and radio telescopes, are used to collect experi-
mental data [68]. These instruments may be considered as
a special type of sensor. In this sense, experiment data col-
lection systems also belong to the category of cyber-physical
systems.

2) LOG FILE
Log files, one of the most widely deployed data collection
methods, are generated by data source systems to record
activities in a specified file format for subsequent analysis.
Log files are useful in almost all the applications running on
digital devices. For example, a web server normally records
all the clicks, hits, access and other attributes [69] made by
any website user in an access log file. There are three main
types of web server log file formats available to capture the
activities of users on a website: Common Log File Format
(NCSA), Extended Log Format (W3C), and IIS Log Format
(Microsoft). All three log file formats are in the ASCII text
format. Alternatively, databases can be utilized instead of
text files to store log information to improve the querying
efficiency of massive log repositories [70], [71]. Other exam-
ples of log file-based data collection include stock ticks in
financial applications, performance measurement in network
monitoring, and traffic management.
In contrast to a physical sensor, a log file can be viewed

as ‘‘software-as-a-sensor’’. Much user-implemented data col-
lection software [58] belongs to this category.

3) WEB CRAWLER
A crawler [72] is a program that downloads and stores web-
pages for a search engine. Roughly, a crawler starts with
an initial set of URLs to visit in a queue. All the URLs to
be retrieved are kept and prioritized. From this queue, the
crawler gets a URL that has a certain priority, downloads the
page, identifies all the URLs in the downloaded page, and
adds the newURLs to the queue. This process is repeated until
the crawler decides to stop. Web crawlers are general data
collection applications for website-based applications, such
as web search engines and web caches. The crawling process
is determined by several policies, including the selection
policy, re-visit policy, politeness policy, and parallelization
policy [73]. The selection policy communicates which pages
to download; the re-visit policy decides when to check for
changes to the pages; the politeness policy prevents overload-
ing the websites; the parallelization policy coordinates dis-
tributed web crawlers. Traditional web application crawling
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domains. As a result, this growing interest in big-data from
diverse domains demands a clear and intuitive understanding
of its definition, evolutionary history, building technologies
and potential challenges.

This tutorial paper focuses on scalable big-data systems,
which include a set of tools and mechanisms to load, extract,
and improve disparate data while leveraging the massively
parallel processing power to perform complex transforma-
tions and analysis. Owing to the uniqueness of big-data,
designing a scalable big-data system faces a series of tech-
nical challenges, including:

• First, due to the variety of disparate data sources and the
sheer volume, it is difficult to collect and integrate data
with scalability from distributed locations. For instance,
more than 175 million tweets containing text, image,
video, social relationship are generated by millions of
accounts distributed globally [9].

• Second, big data systems need to store and manage
the gathered massive and heterogeneous datasets, while
provide function and performance guarantee, in terms
of fast retrieval, scalability, and privacy protection. For
example, Facebook needs to store, access, and analyze
over 30 pertabytes of user generate data [9].

• Third, big data analytics must effectively mine mas-
sive datasets at different levels in realtime or near
realtime - including modeling, visualization, prediction,
and optimization - such that inherent promises can be
revealed to improve decision making and acquire further
advantages.

These technological challenges demand an overhauling
re-examination of the current data management systems,
ranging from their architectural principle to the implementa-
tion details. Indeed, many leading industry companies [10]
have discarded the transitional solutions to embrace the
emerging big data platforms.

However, traditional data management and analysis
systems, mainly based on relational database management
system (RDBMS), are inadequate in tackling the aforemen-
tioned list of big-data challenges. Specifically, the mismatch
between the traditional RDBMS and the emerging big-data
paradigm falls into the following two aspects, including:

• From the perspective of data structure, RDBMSs can
only support structured data, but offer little support for
semi-structured or unstructured data.

• From the perspective of scalability, RDBMSs scale up
with expensive hardware and cannot scale out with com-
modity hardware in parallel, which is unsuitable to cope
with the ever growing data volume.

To address these challenges, the research community and
industry have proposed various solutions for big data systems
in an ac-hoc manner. Cloud computing can be deployed as
the infrastructure layer for big data systems to meet cer-
tain infrastructure requirements, such as cost-effectiveness,
elasticity, and the ability to scale up or down. Distributed
file systems [11] and NoSQL [12] databases are suitable for

persistent storage and the management of massive scheme-
free datasets. MapReduce [13], a programming framework,
has achieved great success in processing group-aggregation
tasks, such as website ranking. Hadoop [14] integrates data
storage, data processing, system management, and other
modules to form a powerful system-level solution, which
is becoming the mainstay in handling big data challenges.
We can construct various big data applications based on these
innovative technologies and platforms. In light of the prolifer-
ation of big-data technologies, a systematic framework should
be in order to capture the fast evolution of big-data research
and development efforts and put the development in different
frontiers in perspective.

FIGURE 1. A modular data center was built at Nanyang Technological
University (NTU) for system/testbed research. The testbed hosts 270
servers organized into 10 racks.

In this paper, learning from our first-hand experience of
building a big-data solution on our private modular data
center testbed (as illustrated in Fig. 1), we strive to offer
a systematic tutorial for scalable big-data systems, focusing
on the enabling technologies and the architectural principle.
It is our humble expectation that the paper can serve as a
first stop for domain experts, big-data users and the general
audience to look for information and guideline in their spe-
cific needs for big-data solutions. For example, the domain
experts could follow our guideline to develop their own big-
data platform and conduct research in big-data domain; the
big-data users can use our framework to evaluate alternative
solutions proposed by their vendors; and the general audience
can understand the basic of big-data and its impact on their
work and life. For such a purpose, we first present a list
of alternative definitions of big data, supplemented with the
history of big-data and big-data paradigms. Following that,
we introduce a generic framework to decompose big data
platforms into four components, i.e., data generation, data
acquisition, data storage, and data analysis. For each stage, we
survey current research and development efforts and provide
engineering insights for architectural design. Moving toward
a specific solution, we then delve on Hadoop - the de facto
choice for big data analysis platform, and provide benchmark
results for big-data platforms.
The rest of this paper is organized as follows. In Section II,

we present the definition of big data and its brief history,
in addition to processing paradigms. Then, in Section III,
we introduce the big data value chain (which is composed of
four phases), the big data technology map, the layered system
architecture and challenges. The next four sections describe
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TABLE 4. Comparison for three data collection methods.

is a well-researched field with multiple efficient solutions.
With the emergence of richer and more advanced web appli-
cations, some crawling strategies [74] have been proposed to
crawl rich Internet applications. Currently, there are plenty
of general-purpose crawlers available as enumerated in the
list [75].

In addition to the methods discussed above, there are many
data collection methods or systems that pertain to specific
domain applications. For example, in certain government
sectors, human biometrics [76], such as fingerprints and sig-
natures, are captured and stored for identity authentication
and to track criminals. In summary, data collection methods
can be roughly divided into two categories:

• Pull-Based Approach: Data are collected proactively by
a centralized/distributed agent.

• Push-Based Approach: Data are pushed toward the sink
by its source or a third party.

The three aforementioned methods are compared in
Table 4. We can see from the table that the log file is the
simplest data collection method, but it can collect only a
relatively small amount of structured data. The web crawler is
the most flexible data collection model and can acquire vast
amounts of data with complex structures.

FIGURE 7. Big data transmission procedure. It can be divided into two
stages, IP backbone transmission and data center transmission.

B. DATA TRANSMISSION
Once we gather the raw data, we must transfer it into a data
storage infrastructure, commonly in a data center, for subse-
quent processing. The transmission procedure can be divided
into two stages, IP backbone transmission and data center
transmission, as illustrated in Fig. 7. Next, we introduce sev-
eral emerging technologies in these two stages.

1) IP BACKBONE
The IP backbone, at either the region or Internet scale, pro-
vides a high-capacity trunk line to transfer big data from its
origin to a data center. The transmission rate and capacity are
determined by the physical media and the link management
methods.

• Physical Media are typically composed of many fiber

optic cables bundled together to increase capacity.
In general, physical media should guarantee path diver-
sity to reroute traffic in case of failure.

• LinkManagement concerns how the signal is transmitted
over the physical media. IP over Wavelength-Division
Multiplexing (WDM) has been developed over the past
two decades [77], [78]. WDM is technology that multi-
plexes multiple optical carrier signals on a single optical
fiber using different wavelengths of laser light to carry
different signals. To address the electrical bandwidth
bottleneck limitation, Orthogonal Frequency-Division
Multiplexing (OFDM) has been considered as a promis-
ing candidate for future high-speed optical transmission
technology. OFDM allows the spectrum of individual
subcarriers to overlap, which leads to a more data-rate
flexible, agile, and resource-efficient optical network
[79], [80].

Thus far, optical transmission systems with up to capac-
ities of 40 Gb/s per channel have been deployed in back-
bone networks, whereas 100 Gb/s interfaces are now com-
mercially available and 100 Gb/s deployment is expected
soon. Even Tb/s-level transmission is foreseen in the near
future [81].
Due to the difficulty of deploying enhanced network pro-

tocols in the Internet backbone, we must follow standard
Internet protocols to transmit big data. However, for a regional
or private IP backbone, certain alternatives [82] may achieve
better performance for specific applications.

2) DATA CENTER TRANSMISSION
When big data is transmitted into the data center, it will be
transited within the data center for placement adjustment,
processing, and so on. This process is referred to as data
center transmission. It always associates with data center
network architecture and transportation protocol:

• Data Center Network Architecture: A data center con-
sists of multiple racks hosting a collection of servers
connected through the data center’s internal connection
network. Most current data center internal connection
networks are based on commodity switches that con-
figure a canonical fat-tree 2-tier [83] or 3-tier archi-
tecture [84]. Some other topologies that aim to create
more efficient data center networks can be found in
[85]–[88]. Because of the inherent shortage of electronic
packet switches, increasing communication bandwidth
while simultaneously reducing energy consumption is
difficult. Optical interconnects for data center networks
have gained attention recently as a promising solution
that offers high throughput, low latency, and reduced
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technology. Typical storage technologies include, but are not
limited to, the following.

• Random Access Memory (RAM): RAM is a form of
computer data storage associated with volatile types
of memory, which loses its information when pow-
ered off. Modern RAM includes static RAM (SRAM),
dynamic RAM (DRAM), and phase-change memory
(PRAM). DRAM is the predominant form of computer
memory.

• Magnetic Disks and Disk Arrays: Magnetic disks, such
as hard disk drive (HDD), are the primary component
in modern storage systems. An HDD consists of one or
more rigid rapidly rotating discs with magnetic heads
arranged on a moving actuator arm to read and write
data to the surfaces. Unlike RAM, an HDD retains
its data even when powered off with much lower per-
capacity cost, but the read and write operations are much
slower. Because of the high expenditure of a single large
capacity disk, disk arrays assemble a number of disks to
achieve large capacity, high access throughput, and high
availability at much lower costs.

• Storage Class Memory: Storage class memory refers to
non-mechanical storage media, such as flash memory.
In general, flash memory is used to construct solid-state
drives (SSDs). Unlike HDDs, SSDs have no mechan-
ical components, run more quietly, and have lower
access times and less latency than HDDs. However,
SSDs remain more expensive per unit of storage than
HDDs.

FIGURE 8. Multi-tier SSD based storage system. It consists of three
components, including I/Orequest queue, virtualization layer, and array.

These devices have different performance metrics, which
can be leveraged to build a scalable and high-performance
big data storage subsystem. More details about storage
devices development can be found in [122]. Lately, hybrid
approaches [123], [124] have been proposed to build a hier-
archical storage system that combines the features of SSDs
and HDDs in the same unit, containing a large hard disk
drive and an SSD cache to improve performance of frequently
accessed data. A typical architecture of multi-tier SSD-based
storage system is shown in Fig. 8, which consists of three
components, i.e., I/O request queue, virtualization layer, and
array [125]. Virtualization layer accepts I/O requests and
dispatches them to volumes that are made up of extents
stored in arrays of different device types. Current commercial

SSD-based multi-tier systems from IBM, EMC, 3PAR and
Compllent already gain satisfied performance. However, the
major difficulty of these systems is to determine what mix of
devices will perform well at minimum cost.
Second, storage infrastructure can be understood from a

networking architecture perspective [126]. In this category,
the storage subsystem can be organized in different ways,
including, but not limited to the following.

• Direct Attached Storage (DAS): DAS is a storage system
that consists of a collection of data storage devices (for
example, a number of hard disk drives). These devices
are connected directly to a computer through a host bus
adapter (HBS) with no storage network between them
and the computer. DAS is a simple storage extension to
an existing server.

• Network Attached Storage (NAS): NAS is file-level stor-
age that contains many hard drives arranged into logi-
cal, redundant storage containers. Compared with SAN,
NAS provides both storage and a file system, and can
be considered as a file server, whereas SAN is volume
management utilities, through which a computer can
acquire disk storage space.

• Storage Area Network (SAN): SANs are dedicated net-
works that provide block-level storage to a group of com-
puters. SANs can consolidate several storage devices,
such as disks and disk arrays, and make them accessible
to computers such that the storage devices appear to be
locally attached devices.

The networking architecture of these three technologies is
shown in Fig. 9. The SAN scheme possesses the most com-
plicated architecture, depending on the specific networking
devices.

FIGURE 9. Network architecture of storage systems. It can be organized
into three different architectures, including direct attached storage,
network attached storage, and storage area network. (a) DAS. (b) NAS (file
oriented). (c) SAN (block oriented).

Finally, existing storage system architecture has been a hot
research area but might not be directly applicable to big data
analytics platform. In response to the ‘‘4V’’ nature of the big
data analytics, the storage infrastructure should be able to
scale up and out and be dynamically configured to accom-
modate diverse applications. One promising technology to
address these requirements is storage virtualization, enabled
by the emerging cloud computing paradigm [127]. Storage
virtualization is the amalgamation of multiple network stor-
age devices into what appears to be a single storage device.
Currently, storage virtualization [128] is achieved with SAN
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technology. Typical storage technologies include, but are not
limited to, the following.

• Random Access Memory (RAM): RAM is a form of
computer data storage associated with volatile types
of memory, which loses its information when pow-
ered off. Modern RAM includes static RAM (SRAM),
dynamic RAM (DRAM), and phase-change memory
(PRAM). DRAM is the predominant form of computer
memory.

• Magnetic Disks and Disk Arrays: Magnetic disks, such
as hard disk drive (HDD), are the primary component
in modern storage systems. An HDD consists of one or
more rigid rapidly rotating discs with magnetic heads
arranged on a moving actuator arm to read and write
data to the surfaces. Unlike RAM, an HDD retains
its data even when powered off with much lower per-
capacity cost, but the read and write operations are much
slower. Because of the high expenditure of a single large
capacity disk, disk arrays assemble a number of disks to
achieve large capacity, high access throughput, and high
availability at much lower costs.

• Storage Class Memory: Storage class memory refers to
non-mechanical storage media, such as flash memory.
In general, flash memory is used to construct solid-state
drives (SSDs). Unlike HDDs, SSDs have no mechan-
ical components, run more quietly, and have lower
access times and less latency than HDDs. However,
SSDs remain more expensive per unit of storage than
HDDs.

FIGURE 8. Multi-tier SSD based storage system. It consists of three
components, including I/Orequest queue, virtualization layer, and array.

These devices have different performance metrics, which
can be leveraged to build a scalable and high-performance
big data storage subsystem. More details about storage
devices development can be found in [122]. Lately, hybrid
approaches [123], [124] have been proposed to build a hier-
archical storage system that combines the features of SSDs
and HDDs in the same unit, containing a large hard disk
drive and an SSD cache to improve performance of frequently
accessed data. A typical architecture of multi-tier SSD-based
storage system is shown in Fig. 8, which consists of three
components, i.e., I/O request queue, virtualization layer, and
array [125]. Virtualization layer accepts I/O requests and
dispatches them to volumes that are made up of extents
stored in arrays of different device types. Current commercial

SSD-based multi-tier systems from IBM, EMC, 3PAR and
Compllent already gain satisfied performance. However, the
major difficulty of these systems is to determine what mix of
devices will perform well at minimum cost.
Second, storage infrastructure can be understood from a

networking architecture perspective [126]. In this category,
the storage subsystem can be organized in different ways,
including, but not limited to the following.

• Direct Attached Storage (DAS): DAS is a storage system
that consists of a collection of data storage devices (for
example, a number of hard disk drives). These devices
are connected directly to a computer through a host bus
adapter (HBS) with no storage network between them
and the computer. DAS is a simple storage extension to
an existing server.

• Network Attached Storage (NAS): NAS is file-level stor-
age that contains many hard drives arranged into logi-
cal, redundant storage containers. Compared with SAN,
NAS provides both storage and a file system, and can
be considered as a file server, whereas SAN is volume
management utilities, through which a computer can
acquire disk storage space.

• Storage Area Network (SAN): SANs are dedicated net-
works that provide block-level storage to a group of com-
puters. SANs can consolidate several storage devices,
such as disks and disk arrays, and make them accessible
to computers such that the storage devices appear to be
locally attached devices.

The networking architecture of these three technologies is
shown in Fig. 9. The SAN scheme possesses the most com-
plicated architecture, depending on the specific networking
devices.

FIGURE 9. Network architecture of storage systems. It can be organized
into three different architectures, including direct attached storage,
network attached storage, and storage area network. (a) DAS. (b) NAS (file
oriented). (c) SAN (block oriented).

Finally, existing storage system architecture has been a hot
research area but might not be directly applicable to big data
analytics platform. In response to the ‘‘4V’’ nature of the big
data analytics, the storage infrastructure should be able to
scale up and out and be dynamically configured to accom-
modate diverse applications. One promising technology to
address these requirements is storage virtualization, enabled
by the emerging cloud computing paradigm [127]. Storage
virtualization is the amalgamation of multiple network stor-
age devices into what appears to be a single storage device.
Currently, storage virtualization [128] is achieved with SAN
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FIGURE 10. Data management technology.

or NAS architecture. SAN-based storage virtualization can
gain better performance than the NAS architecture in terms of
scalability, reliability, and security. However, SAN requires a
professional storage infrastructure, which comes at a higher
cost.

B. DATA MANAGEMENT FRAMEWORK
The data management framework concerns how to organize
the information in a convenient manner for efficient process-
ing. Data management frameworks were actively researched,
even before the era of big data. In this survey, we adopt a lay-
ered view of current research efforts in this field, classifying
the data management framework into three layers that con-
sist of file systems, database technology, and programming
models, as illustrated in Fig. 10. These layers are elaborated
below.

1) FILE SYSTEMS
The file system is the basis of big data storage and there-
fore attracts great attention from both industry and academy.
In this subsection, we only consider examples that are either
open source or designed for enterprise use.

Google designed and implemented GFS as a scalable dis-
tributed file system [31] for large distributed data intensive
applications. GFS runs on inexpensive commodity servers
to provide fault tolerance and high performance to a large
number of clients. It is suitable for applications with large
file sizes and many more read operations than write oper-
ations. Some disadvantages of GFS, such as single point
failure and poor performance for small size files, have been
overcome in the successor to GFS that is known as Colos-
sus [129]. Additionally, other companies and researchers
have developed their own solutions to fulfill distinct big
data storage requirements. HDFS [130] and Kosmosfs [131]
are open source derivatives of GFS. Microsoft created Cos-
mos [132] to support its search and advertisement busi-
nesses. Facebook implemented Haystack [133] to store a
massive amount of small-file photos. Two similar distributed
file systems for small files, the Tao File System (TFS)
[134] and FastDFS [135], have been proposed by Taobao.
In summary, distributed file systems are relatively mature
after a long period of large-scale commercial operation.
Therefore, in this section, we emphasize the remaining two
layers.

2) DATABASE TECHNOLOGIES
Database technology has gone through more than three
decades of development. Various database systems have been
proposed for different scales of datasets and diverse appli-
cations. Traditional relational database systems obviously
cannot address the variety and scale challenges required
by big data. Due to certain essential characteristics, includ-
ing being schema free, supporting easy replication, pos-
sessing a simple API, eventual consistency and supporting
a huge amount of data, the NoSQL database is becom-
ing the standard to cope with big data problems. In this
subsection, we mainly focus on three primary types of
NoSQL databases that are organized by the data model, i.e.,
key-value stores, column-oriented databases, and document
databases.

FIGURE 11. Partitioning and replication of keys in Dynamo ring [136].

a: KEY-VALUE STORES
Key-value stores have a simple data model in which data are
stored as a key-value pair. Each of the keys is unique, and
the clients put on or request values for each key. Key-value
databases that have emerged in recent years have been heavily
influenced by Amazon’s Dynamo [136]. In Dynamo, data
must be partitioned across a cluster of servers and replicated
to multiple copies. The scalability and durability rely on
two key mechanisms: partitioning and replication and object
versioning.

• Partitioning and Replication: Dynamo’s partitioning
scheme relies on consistent hashing [137] to distribute
the load across multiple storage hosts. In this mecha-
nism, the output range of a hash function is treated as a
fixed circular space or ‘‘ring.’’ Each node in the system is
assigned a random value within this space, which repre-
sents its ‘‘position’’ on the ring. Each data item identified
by a key is mapped to a node by hashing the data item’s
key to yield the node’s position on the ring. Each data
item in the Dynamo system is stored in its coordinator
node, and replicated at N � 1 successors, where N is
a parameter configured per instance. As illustrated in
Fig. 11, node B is a coordinator node for the key k ,
and the data will be replicated at nodes C and D, in
addition to being stored at node B. Additionally, node D
will store the keys that fall in the ranges (A,B], (B,C],
and (C,D].

• Object Version: Because there are multiple replications
for each unique data item, Dynamo allows updates to
be propagated to all replicas asynchronously to provide
eventual consistency. Each update is treated as a new
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FIGURE 3. Big data technology map. It pivots on two axes, i.e., data value chain and timeline. The data value chain divides the
data lifecycle into four stages, including data generation, data acquisition, data storage, and data analytics. In each stage, we
highlight exemplary technologies over the past 10 years.

rough patterns first, and then employ specific data mining
methods. I mention this in data analytics section. The details
for each phase are explained as follows.
Data generation concerns how data are generated. In this

case, the term ‘‘big data’’ is designated to mean large,
diverse, and complex datasets that are generated from various
longitudinal and/or distributed data sources, including sen-
sors, video, click streams, and other available digital sources.
Normally, these datasets are associated with different levels
of domain-specific values [2]. In this paper, we focus on
datasets from three prominent domains, business, Internet,
and scientific research, for which values are relatively easy to
understand. However, there are overwhelming technical chal-
lenges in collecting, processing, and analyzing these datasets
that demand new solutions to embrace the latest advances
in the information and communications technology (ICT)
domain.
Data acquisition refers to the process of obtaining informa-

tion and is subdivided into data collection, data transmission,
and data pre-processing. First, because data may come from
a diverse set of sources, websites that host formatted text,
images and/or videos - data collection refers to dedicated
data collection technology that acquires raw data from a spe-
cific data production environment. Second, after collecting
raw data, we need a high-speed transmission mechanism to
transmit the data into the proper storage sustaining system
for various types of analytical applications. Finally, collected
datasets might contain many meaningless data, which
unnecessarily increases the amount of storage space and
affects the consequent data analysis. For instance, redundancy

is common in most datasets collected from sensors deployed
to monitor the environment, and we can use data compres-
sion technology to address this issue. Thus, we must per-
form data pre-processing operations for efficient storage and
mining.
Data storage concerns persistently storing and managing

large-scale datasets. A data storage system can be divided
into two parts: hardware infrastructure and data manage-
ment. Hardware infrastructure consists of a pool of shared
ICT resources organized in an elastic way for various tasks
in response to their instantaneous demand. The hardware
infrastructure should be able to scale up and out and be able
to be dynamically reconfigured to address different types
of application environments. Data management software is
deployed on top of the hardware infrastructure to main-
tain large-scale datasets. Additionally, to analyze or interact
with the stored data, storage systems must provide several
interface functions, fast querying and other programming
models.
Data analysis leverages analytical methods or tools to

inspect, transform, and model data to extract value. Many
application fields leverage opportunities presented by abun-
dant data and domain-specific analytical methods to derive
the intended impact. Although various fields pose dif-
ferent application requirements and data characteristics, a
few of these fields may leverage similar underlying tech-
nologies. Emerging analytics research can be classified
into six critical technical areas: structured data analytics,
text analytics, multimedia analytics, web analytics, net-
work analytics, and mobile analytics. This classification is
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intended to highlight the key data characteristics of each
area.

B. BIG-DATA TECHNOLOGY MAP
Big data research is a vast field that connects with many
enabling technologies. In this section, we present a big data
technology map, as illustrated in Fig. 3. In this technology
map, we associate a list of enabling technologies, both open-
source and proprietary, with different stages in the big data
value chain.

This map reflects the development trends of big data.
In the data generation stage, the structure of big data
becomes increasingly complex, from structured or unstruc-
tured to a mixture of different types, whereas data sources
become increasingly diverse. In the data acquisition stage,
data collection, data pre-processing, and data transmission
research emerge at different times. Most research in the
data storage stage began in approximately 2005. The fun-
damental methods of data analytics were built before 2000,
and subsequent research attempts to leverage these meth-
ods to solve domain-specific problems. Moreover, quali-
fied technology or methods associated with different stages
can be chosen from this map to customize a big data
system.

C. BIG-DATA SYSTEM: A LAYERED VIEW
Alternatively, the big data system can be decomposed into a
layered structure, as illustrated in Fig. 4. The layered structure

FIGURE 4. Layered architecture of big data system. It can be decomposed
into three layers, including infrastructure layer, computing layer, and
application layer, from bottom to up.

is divisible into three layers, i.e., the infrastructure layer, the
computing layer, and the application layer, from bottom to
top. This layered view only provides a conceptual hierarchy to
underscore the complexity of a big data system. The function
of each layer is as follows.

• The infrastructure layer consists of a pool of ICT
resources, which can be organized by cloud computing
infrastructure and enabled by virtualization technology.
These resources will be exposed to upper-layer systems
in a fine-grained manner with a specific service-level
agreement (SLA). Within this model, resources must be
allocated to meet the big data demand while achieving
resource efficiency by maximizing system utilization,
energy awareness, operational simplification, etc.

• The computing layer encapsulates various data tools into
a middleware layer that runs over raw ICT resources.
In the context of big data, typical tools include data inte-
gration, data management, and the programming model.
Data integration means acquiring data from disparate
sources and integrating the dataset into a unified form
with the necessary data pre-processing operations. Data
management refers to mechanisms and tools that provide
persistent data storage and highly efficient management,
such as distributed file systems and SQL or NoSQL data
stores. The programming model implements abstraction
application logic and facilitates the data analysis appli-
cations. MapReduce [13], Dryad [42], Pregel [43], and
Dremel [44] exemplify programming models.

• The application layer exploits the interface provided
by the programming models to implement various data
analysis functions, including querying, statistical anal-
yses, clustering, and classification; then, it combines
basic analytical methods to develop various filed related
applications. McKinsey presented five potential big data
application domains: health care, public sector admin-
istration, retail, global manufacturing, and personal
location data.

D. BIG-DATA SYSTEM CHALLENGES
Designing and deploying a big data analytics system is not
a trivial or straightforward task. As one of its definitions
suggests, big data is beyond the capability of current hard-
ware and software platforms. The new hardware and software
platforms in turn demand new infrastructure and models to
address the wide range of challenges of big data. Recent
works [38], [45], [46] have discussed potential obstacles to
the growth of big data applications. In this paper, we strive to
classify these challenges into three categories: data collection
and management, data analytics, and system issues.
Data collection and management addresses massive

amounts of heterogeneous and complex data. The following
challenges of big data must be met:

• Data Representation: Many datasets are heterogeneous
in type, structure, semantics, organization, granular-
ity, and accessibility. A competent data presentation
should be designed to reflect the structure, hierarchy,
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Scale out vs. Scale up
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Divide and Conquer

“Work”'

w1# w2# w3#

r1# r2# r3#

“Result”'

“worker”' “worker”' “worker”'

Par11on'

Combine'
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Parallelization Challenges

• How do we assign work units to workers?

• What if we have more work units than workers?

• What if workers need to share partial results?

• How do we aggregate partial results?

• How do we know all the workers have finished?

• What if workers die?
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Current Tools

• Programming models

- Shared memory 
(pthreads)

- Message passing (MPI)

• Design Patterns

- Master-slaves

- Producer-consumer flows

- Shared work queues

Message&Passing&

P1& P2& P3& P4& P5&

Shared'Memory'

P1' P2' P3' P4' P5'

M
em

or
y'

master'

slaves'

work%queue%

Concurrency is difficult to reason about, not to mention debug
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What is the Point
• It’s all about the right level of abstraction

- The von Neumann architecture has served us well, but is no 
longer appropriate for the big-data processing

• Hide system-level details from the developers

- No more race conditions, lock contention, etc.

• Separating the what from how

- Developer specifies the computation that needs to be 
performed

- Execution framework (“runtime”) handles actual execution

Datacenter is the Computer!
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Virtualization

Physical Box 

Virtualization Platform (Xen, KVM, VMware…) 

Guest OS Guest OS Guest OS 

Applications Applications Applications 

VM VM VM 
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What%is%Cloud%Compu/ng?%
•  Cloud&Compu)ng&is%a%general%term%used%to%describe%a%new%

class%of%network%based%compu/ng%that%takes%place%over%the%
Internet,%%
–  basically%a%step%on%from%U/lity%Compu/ng%
–  a%collec/on/group%of%integrated%and%networked%hardware,%
so@ware%and%Internet%infrastructure%(called%a%plaBorm).%

–  Using%the%Internet%for%communica/on%and%transport%
provides%hardware,%so@ware%and%networking%services%to%
clients%

•  These%plaBorms%hide%the%complexity%and%details%of%the%
underlying%infrastructure%from%users%and%applica/ons%by%
providing%very%simple%graphical%interface%or%API%(Applica/ons%
Programming%Interface).%

3 
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Cloud&Compu)ng&Characteris)cs&

9 

Common Characteristics: 

Low Cost Software 

Virtualization Service Orientation 

Advanced Security 

Homogeneity 

Massive Scale Resilient Computing 

Geographic Distribution 

Essential Characteristics: 

Resource Pooling 
Broad Network Access Rapid Elasticity 

Measured Service 

On Demand Self-Service 

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim Grance 
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Cloud&Service&Models&

10 

Software as a 
Service (SaaS) 

Platform as a 
Service (PaaS) 

Infrastructure as a 
Service (IaaS) 

Google 
App 
Engine 

SalesForce*CRM*

LotusLive*

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim Grance 
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Virtualization Layers

Application Service 
(SaaS)  

Application Platform 

Server Platform 

Storage Platform Amazon S3, Dell, Apple, ... 

3Tera, EC2, SliceHost,  
GoGrid, RightScale, Linode 

Google App Engine, Mosso, 
Force.com, Engine Yard, 
Facebook, Heroku,  AWS 

MS Live/ExchangeLabs, IBM,  
Google Apps; Salesforce.com 
Quicken Online, Zoho, Cisco 
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Virtual(Machines(
•  VM(technology(allows(mul4ple(virtual(
machines(to(run(on(a(single(physical(machine.(

Hardware(

Virtual(Machine(Monitor((VMM)(/(Hypervisor(

Guest(OS(
(Linux)(

Guest(OS(
(NetBSD)(

Guest(OS(
(Windows)(

VM( VM( VM(

App App App App App 
Xen 

VMWare 

UML 

Denali 
etc. 

Performance: Para-virtualization (e.g. Xen) is very close to raw physical 
performance! 

18 
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Summary: Principles for 
Big-data Systems

• Scale “out”, not “up”

- Limits of SMP and large shared-memory machines

• Move processing to the data

- Cluster have limited bandwidth

• Process data sequentially, avoid random access

- Seeks are expensive, disk throughput is reasonable

• Seamless scalability

- From the mythical man-month to the tradable machine-
hour
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