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Outline

• MapReduce Basis 

• MapReduce Programming Model 

• Algorithms in MapReduce
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Motivation: Large-scale Data 
Processing

• Many tasks: Process lots of data to produce other 
data 

• Want to use hundreds or thousands of CPUs 

• but this needs to be easy
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Typical Large-Data 
Problems

• Iterate over a large number of records 

• Extract something of interest from each 

• Shuffle and sort intermediate results 

• Aggregate intermediate results 

• Generate final output

Key idea: provide a functional abstraction for these two operations
Z. Wang, Foundations for Big Data Systems 2015

What is MapReduce?
• MapReduce is a programming model Google has used 

successfully is processing its “big-data” sets (~ 20000 
peta bytes per day) 

• Users specify the computation in terms of a map and a 
reduce function,  

• Underlying runtime system automatically parallelizes 
the computation across large-scale clusters of 
machines, and 

• Underlying system also handles machine failures, 
efficient communications, and performance issues.
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How MapReduce is 
Structured

• Functional programming meets distributed 
computing 

• A batch data processing system 

• Factors out many reliability concerns from 
application logic
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MapReduce Provides
• Automatic parallelization & distribution  

• Fault-tolerance 

• Status and monitoring tools 

• A clean abstraction for programmers
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Architecture

Namenode

Datanode Datanode Datanode
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MapReduce: the complete picture 
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Step 1: Split input files into chunks (shards) 

• Break up the input data into M pieces (typically 64 MB) 

 

Shard 0 Shard 1 Shard 2 Shard 3 … 

Input files 

Shard M-1 

Divided into M shards 
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Step 2: Fork processes 

• Start up many copies of the program on a cluster of machines 
– 1 master: scheduler & coordinator 
– Lots of workers 

• Idle workers are assigned either: 
– map tasks (each works on a shard) – there are M map tasks 
– reduce tasks (each works on intermediate files) – there are R 
• R = # partitions, defined by the user 
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Step 3: Map Task 

• Reads contents of the input shard assigned to it 

• Parses key/value pairs out of the input data 

• Passes each pair to a user-defined map function 
– Produces intermediate key/value pairs 
– These are buffered in memory 

 

Shard 2 Map 
worker 

read 
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Step 4: Create intermediate files 

• Intermediate key/value pairs produced by the user‟s map function 
buffered in memory and are periodically written to the local disk 
– Partitioned into R regions by a partitioning function 

• Notifies master when complete 
– Passes locations of intermediate data to the master 
– Master forwards these locations to the reduce worker 

Shard 2 Map 
worker 

Intermediate file 

read local write Partition 1 

Partition 1 

Partition R-1 
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Step 4a. Partitioning 

• Map data will be processed by Reduce workers 
– The user‟s Reduce function will be called once per unique key generated 

by Map. 

• This means we will need to sort all the (key, value) data by keys and 
decide which Reduce worker processes which keys – the Reduce 
worker will do this 

• Partition function: decides which of R reduce workers will work on 
which key 
– Default function: hash(key) mod R 
– Map worker partitions the data by keys 

• Each Reduce worker will read their partition from every Map worker 
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Step 5: Reduce Task: sorting 

• Reduce worker gets notified by the master about the location of 
intermediate files for its partition 

• Uses RPCs to read the data from the local disks of the map workers 

• When the reduce worker reads intermediate data for its partition 
– It sorts the data by the intermediate keys 
– All occurrences of the same key are grouped together 
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Step 6: Reduce Task: Reduce 
• The sort phase grouped data with a unique intermediate key 

• User‟s Reduce function is given the key and the set of intermediate 
values for that key 
– < key, (value1, value2, value3, value4, …) > 

• The output of the Reduce function is appended to an output file 
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Step 7: Return to user 

• When all map and reduce tasks have completed, the 
master wakes up the user program 

• The MapReduce call in the user program returns and the 
program can resume execution. 
– Output of MapReduce is available in R output files 
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Paradigm

Hadoop 

30 

 

 

x During a MapReduce job, Hadoop sends the Map and Reduce tasks to the 
appropriate servers in the cluster.  

x The framework manages all the details of data-passing such as issuing 
tasks, verifying task completion, and copying data around the cluster 
between the nodes.  

x Most of the computing takes place on nodes with data on local disks that 
reduces the network traffic. 

x After completion of the given tasks, the cluster collects and reduces the 
data to form an appropriate result, and sends it back to the Hadoop 
server. 

 

Inputs and Outputs (Java Perspective) 
The MapReduce framework operates on <key, value> pairs, that is, the 
framework views the input to the job as a set of <key, value> pairs and 
produces a set of <key, value> pairs as the output of the job, conceivably of 
different types. 

The key and the value classes should be in serialized manner by the framework 
and hence, need to implement the Writable interface. Additionally, the key 
classes have to implement the Writable-Comparable interface to facilitate sorting 
by the framework. Input and Output types of a MapReduce job: (Input) <k1, 
v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output). 

 Input Output 

Map <k1, v1> list (<k2, v2>) 

Reduce <k2, list(v2)> list (<k3, v3>) 

Hadoop 

30 
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Z. Wang, Foundations for Big Data Systems 2015

Example 

Input 
It will be seen that this mere painstaking 
burrower and grub-worm of a poor devil 
of a Sub-Sub appears to have gone 
through the long Vaticans and street-
stalls of the earth, picking up whatever 
random allusions to whales he could 
anyways find in any book whatsoever, 
sacred or profane.  Therefore you must 
not, in every case at least, take the 
higgledy-piggledy whale statements, 
however authentic, in these extracts, for 
veritable gospel cetology.  Far from it.  
As touching the ancient authors 
generally, as well as the poets here 
appearing, these extracts are solely 
valuable or entertaining, as affording a 
glancing bird's eye view of what has 
been promiscuously said, thought, 
fancied, and sung of Leviathan, by many 
nations and generations, including our 
own. 
 

After Map 

it 1 
will 1 
be 1 
seen 1 
that 1 
this 1 
mere 1 
painstaking 1 
burrower 1 
and 1 
grub-worm 1 
of 1 
a 1 
poor 1 
devil 1 
of 1 
a 1 
sub-sub 1 
appears 1 
to 1 
have 1 
gone 1 

After Sort 
… 
a 1 
a 1 
aback 1 
aback 1 
abaft 1 
abaft 1 
abandon 1 
abandon 1 
abandon 1 
abandoned 1 
abandoned 1 
abandoned 1 
abandoned 1 
abandoned 1 
abandoned 1 
abandoned 1 
abandonedly 1 
abandonment 1 
abandonment 1 
abased 1 
abased 1 

a 4736 
aback 2 
abaft 2 
abandon 3 
abandoned 7 
abandonedly 1 
abandonment 2 
abased 2 
abasement 1 
abashed 2 
abate 1 
abated 3 
abatement 1 
abating 2 
abbreviate 1 
abbreviation 1 
abeam 1 
abed 2 
abednego 1 
abel 1 
abhorred 3 
abhorrence 1 

After Reduce [Intermediate file] 

MAP REDUCE 
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MapReduce: whole picture
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Movie of this week
The Trueman Show (1998)


