
MapReduce
/ Hadoop

Zhi Wang
wangzhi@sz.tsinghua.edu.cn

Z. Wang, Foundations for Big Data Systems 2015

�
��

����
	������B205�

Z. Wang, Foundations for Big Data Systems 2015

Pre-processing

Data Storage

MapReduce In-memory Processing

Big-data
Database

Graph
Computing Streaming

Big-data Analysis ToolsApplications

Cl
ou

d
Co

m
pu

tin
g

an
d

Vi
rtu

al
iza

tio
n

Re
so

ur
ce

 M
an

ag
em

en
t

Data Sources

Z. Wang, Foundations for Big Data Systems 2015

Pre-processing

Data Storage

MapReduce In-memory Processing

Big-data
Database

Graph
Computing Streaming

Big-data Analysis ToolsApplications

Cl
ou

d
Co

m
pu

tin
g

an
d

Vi
rtu

al
iza

tio
n

Re
so

ur
ce

 M
an

ag
em

en
t

Data Sources

Z. Wang, Foundations for Big Data Systems 2015

Outline

• MapReduce Basis

• MapReduce Programming Model

• Algorithms in MapReduce

Z. Wang, Foundations for Big Data Systems 2015

Motivation: Large-scale Data
Processing

• Many tasks: Process lots of data to produce other
data

• Want to use hundreds or thousands of CPUs

• but this needs to be easy

Z. Wang, Foundations for Big Data Systems 2015

Typical Large-Data
Problems

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction for these two operations
Z. Wang, Foundations for Big Data Systems 2015

What is MapReduce?
• MapReduce is a programming model Google has used

successfully is processing its “big-data” sets (~ 20000
peta bytes per day)

• Users specify the computation in terms of a map and a
reduce function,

• Underlying runtime system automatically parallelizes
the computation across large-scale clusters of
machines, and

• Underlying system also handles machine failures,
efficient communications, and performance issues.

Z. Wang, Foundations for Big Data Systems 2015

How MapReduce is
Structured

• Functional programming meets distributed
computing

• A batch data processing system

• Factors out many reliability concerns from
application logic

Z. Wang, Foundations for Big Data Systems 2015

MapReduce Provides
• Automatic parallelization & distribution

• Fault-tolerance

• Status and monitoring tools

• A clean abstraction for programmers

Z. Wang, Foundations for Big Data Systems 2015

Architecture

Namenode

Datanode Datanode Datanode

Z. Wang, Foundations for Big Data Systems 2015

Architecture

Namenode

Datanode Datanode Datanode

TaskTacker TaskTracker TaskTracker

JobTacker

Z. Wang, Foundations for Big Data Systems 2015

MapReduce: the complete picture

Shard 0

Shard 1

Shard 2

Shard 3

…

Shard M-1

master

Map
worker

Map
worker

Map
worker

Reduce
worker

Reduce
worker

Output
file 1

Output
file 2

Input
files

Map
workers

Intermediate
files

Reduce
workers

Output
files

Assign tasks

client
forks

R work items
M work items

IF

IF

IF

Z. Wang, Foundations for Big Data Systems 2015

Step 1: Split input files into chunks (shards)

• Break up the input data into M pieces (typically 64 MB)

Shard 0 Shard 1 Shard 2 Shard 3 …

Input files

Shard M-1

Divided into M shards

Z. Wang, Foundations for Big Data Systems 2015

Step 2: Fork processes

• Start up many copies of the program on a cluster of machines
– 1 master: scheduler & coordinator
– Lots of workers

• Idle workers are assigned either:
– map tasks (each works on a shard) – there are M map tasks
– reduce tasks (each works on intermediate files) – there are R
• R = # partitions, defined by the user

User

progra
m

master worker worker worker …

Remote fork

Z. Wang, Foundations for Big Data Systems 2015

Step 3: Map Task

• Reads contents of the input shard assigned to it

• Parses key/value pairs out of the input data

• Passes each pair to a user-defined map function
– Produces intermediate key/value pairs
– These are buffered in memory

Shard 2 Map
worker

read

Z. Wang, Foundations for Big Data Systems 2015

Step 4: Create intermediate files

• Intermediate key/value pairs produced by the user‟s map function
buffered in memory and are periodically written to the local disk
– Partitioned into R regions by a partitioning function

• Notifies master when complete
– Passes locations of intermediate data to the master
– Master forwards these locations to the reduce worker

Shard 2 Map
worker

Intermediate file

read local write Partition 1

Partition 1

Partition R-1

Z. Wang, Foundations for Big Data Systems 2015

Step 4a. Partitioning

• Map data will be processed by Reduce workers
– The user‟s Reduce function will be called once per unique key generated

by Map.

• This means we will need to sort all the (key, value) data by keys and
decide which Reduce worker processes which keys – the Reduce
worker will do this

• Partition function: decides which of R reduce workers will work on
which key
– Default function: hash(key) mod R
– Map worker partitions the data by keys

• Each Reduce worker will read their partition from every Map worker

Z. Wang, Foundations for Big Data Systems 2015

Step 5: Reduce Task: sorting

• Reduce worker gets notified by the master about the location of
intermediate files for its partition

• Uses RPCs to read the data from the local disks of the map workers

• When the reduce worker reads intermediate data for its partition
– It sorts the data by the intermediate keys
– All occurrences of the same key are grouped together

Map
worker

Intermediate
file

local write Reduce
worker

remote read

Map
worker

Intermediate
file

local write Reduce
worker

remote read

Z. Wang, Foundations for Big Data Systems 2015

Step 6: Reduce Task: Reduce
• The sort phase grouped data with a unique intermediate key

• User‟s Reduce function is given the key and the set of intermediate
values for that key
– < key, (value1, value2, value3, value4, …) >

• The output of the Reduce function is appended to an output file

Intermediate
file

Reduce
worker

remote read Output
file

write

Intermediate
file

Intermediate
file

Z. Wang, Foundations for Big Data Systems 2015

Step 7: Return to user

• When all map and reduce tasks have completed, the
master wakes up the user program

• The MapReduce call in the user program returns and the
program can resume execution.
– Output of MapReduce is available in R output files

Z. Wang, Foundations for Big Data Systems 2015

MapReduce: the complete picture

Shard 0

Shard 1

Shard 2

Shard 3

…

Shard M-1

master

Map
worker

Map
worker

Map
worker

Reduce
worker

Reduce
worker

Output
file 1

Output
file 2

Input
files

Map
workers

Intermediate
files

Reduce
workers

Output
files

Assign tasks

client
forks

R work items
M work items

IF

IF

IF

Z. Wang, Foundations for Big Data Systems 2015

Paradigm

Hadoop

30

x During a MapReduce job, Hadoop sends the Map and Reduce tasks to the
appropriate servers in the cluster.

x The framework manages all the details of data-passing such as issuing
tasks, verifying task completion, and copying data around the cluster
between the nodes.

x Most of the computing takes place on nodes with data on local disks that
reduces the network traffic.

x After completion of the given tasks, the cluster collects and reduces the
data to form an appropriate result, and sends it back to the Hadoop
server.

Inputs and Outputs (Java Perspective)
The MapReduce framework operates on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and
produces a set of <key, value> pairs as the output of the job, conceivably of
different types.

The key and the value classes should be in serialized manner by the framework
and hence, need to implement the Writable interface. Additionally, the key
classes have to implement the Writable-Comparable interface to facilitate sorting
by the framework. Input and Output types of a MapReduce job: (Input) <k1,
v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output).

 Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

Hadoop

30

x During a MapReduce job, Hadoop sends the Map and Reduce tasks to the
appropriate servers in the cluster.

x The framework manages all the details of data-passing such as issuing
tasks, verifying task completion, and copying data around the cluster
between the nodes.

x Most of the computing takes place on nodes with data on local disks that
reduces the network traffic.

x After completion of the given tasks, the cluster collects and reduces the
data to form an appropriate result, and sends it back to the Hadoop
server.

Inputs and Outputs (Java Perspective)
The MapReduce framework operates on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and
produces a set of <key, value> pairs as the output of the job, conceivably of
different types.

The key and the value classes should be in serialized manner by the framework
and hence, need to implement the Writable interface. Additionally, the key
classes have to implement the Writable-Comparable interface to facilitate sorting
by the framework. Input and Output types of a MapReduce job: (Input) <k1,
v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output).

 Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

Z. Wang, Foundations for Big Data Systems 2015

Example

Input
It will be seen that this mere painstaking
burrower and grub-worm of a poor devil
of a Sub-Sub appears to have gone
through the long Vaticans and street-
stalls of the earth, picking up whatever
random allusions to whales he could
anyways find in any book whatsoever,
sacred or profane. Therefore you must
not, in every case at least, take the
higgledy-piggledy whale statements,
however authentic, in these extracts, for
veritable gospel cetology. Far from it.
As touching the ancient authors
generally, as well as the poets here
appearing, these extracts are solely
valuable or entertaining, as affording a
glancing bird's eye view of what has
been promiscuously said, thought,
fancied, and sung of Leviathan, by many
nations and generations, including our
own.

After Map

it 1
will 1
be 1
seen 1
that 1
this 1
mere 1
painstaking 1
burrower 1
and 1
grub-worm 1
of 1
a 1
poor 1
devil 1
of 1
a 1
sub-sub 1
appears 1
to 1
have 1
gone 1

After Sort
…
a 1
a 1
aback 1
aback 1
abaft 1
abaft 1
abandon 1
abandon 1
abandon 1
abandoned 1
abandoned 1
abandoned 1
abandoned 1
abandoned 1
abandoned 1
abandoned 1
abandonedly 1
abandonment 1
abandonment 1
abased 1
abased 1

a 4736
aback 2
abaft 2
abandon 3
abandoned 7
abandonedly 1
abandonment 2
abased 2
abasement 1
abashed 2
abate 1
abated 3
abatement 1
abating 2
abbreviate 1
abbreviation 1
abeam 1
abed 2
abednego 1
abel 1
abhorred 3
abhorrence 1

After Reduce [Intermediate file]

MAP REDUCE

Z. Wang, Foundations for Big Data Systems 2015

MapReduce: whole picture

Z. Wang, Foundations for Big Data Systems 2015

Movie of this week
The Trueman Show (1998)

