
NoSQL
Zhi Wang

wangzhi@sz.tsinghua.edu.cn

Outline

• NoSQL

• Bigtable/HBase

History of Relational DB

• Relational Databases – mainstay of business

• Web-based applications caused spikes

• Especially true for public-facing e-Commerce sites

• Developers begin to front RDBMS with memcache or

integrate other caching mechanisms within the
application

Scale
• Issues with scaling up when the dataset is just too big

• RDBMS were not designed to be distributed

• Began to look at multi-node database solutions

• Known as ‘scaling out’ or ‘horizontal scaling’

• Different approaches include:

– Master-slave

– Sharding

Scaling RDBMS – Master/Slave
• Master-Slave

– All writes are written to the master

– All reads performed against the replicated slave
databases

– Critical reads may be incorrect as writes may not
have been propagated down

– Large data sets can pose problems as master
needs to duplicate data to slaves

Scaling RDBMS - Sharding
• Partition or sharding

– Scales well for both reads and writes

– Not transparent, application needs to be partition-
aware

– Can no longer have relationships/joins across
partitions

– Loss of referential integrity across shards

Other ways to scale RDBMS

• Multi-Master replication

• INSERT only, not UPDATES/DELETES

• No JOINs, thereby reducing query time

• This involves de-normalizing data

• In-memory databases

What is NoSQL?

• Stands for Not Only SQL

• Class of non-relational data storage systems

• Usually do not require a fixed table schema

nor do they use the concept of joins

• All NoSQL offerings relax one or more of the

ACID properties

How did we get here?
• Explosion of social media sites (Facebook, Twitter) with

large data needs

• Rise of cloud-based solutions such as Amazon S3
(simple storage solution)

• Just as moving to dynamically-typed languages (Ruby/

Groovy), a shift to dynamically-typed data with frequent
schema changes

• Open-source community

The Perfect Storm

• Large datasets, acceptance of alternatives, and
dynamically-typed data has come together in a
perfect storm

• Not a backlash/rebellion against RDBMS

• SQL is a rich query language that cannot be rivaled
by the current list of NoSQL offerings

CAP Theorem
• Three properties of a system: consistency, availability and

partitions

• You can have at most two of these three properties for any
shared-data system

• To scale out, you have to partition: that leaves either

consistency or availability to choose from

– In almost all cases, you would choose availability

over consistency

Availability

• Traditionally, thought of as the server/process
available five 9’s (99.999 %).

• However, for large node system, at almost any point in
time there’s a good chance that a node is either down
or there is a network disruption among the nodes.

Consistency Model
• A consistency model determines rules for visibility and apparent order of updates.
• For example:

– Row X is replicated on nodes M and N

– Client A writes row X to node N

– Some period of time t elapses.

– Client B reads row X from node M

– Does client B see the write from client A?

– Consistency is a continuum with tradeoffs

– For NoSQL, the answer would be: maybe

– CAP Theorem states: Strict Consistency can't be achieved at the same
time as availability and partition-tolerance.

Eventual Consistency
• When no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the nodes will be consistent

• For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

• Known as BASE (Basically Available, Soft state,

Eventual consistency), as opposed to ACID

Common Advantages
• Cheap, easy to implement (open source)
• Data is replicated to multiple nodes (therefore identical

and fault-tolerant) and can be partitioned
• Down nodes easily replaced
• No single point of failure

• Easy to distribute
• Don't require a schema
• Can scale up and down
• Relax the data consistency requirement (CAP)

What am I giving up?

• joins
• group by
• order by
• ACID transactions
• SQL as a sometimes frustrating but still

powerful query language
• easy integration with other applications that

support SQL

Typical NoSQL API

• Basic API access:

– get(key) -- Extract the value given a key

– put(key, value) -- Create or update the value given its
key

– delete(key) -- Remove the key and its associated value

– execute(key, operation, parameters) -- Invoke an
operation to the value (given its key) which is a special
data structure (e.g. List, Set, Map etc).

What kinds of NoSQL

• NoSQL solutions fall into two major areas:

– Key/Value or ‘the big hash table’.
• Bigtable
• Dynamo

– Schema-less which comes in multiple flavors,
column-based, document-based or graph-based.
• Cassandra (column-based)

Key/Value
Pros:

• very fast

• very scalable

• simple model

• able to distribute horizontally

Cons:
- many data structures (objects) can't be easily modeled as key

value pairs

Schema-less
Pros:

- Schema-less data model is richer than key/value pairs

- eventual consistency

- many are distributed

- still provide excellent performance and scalability 

Cons:
- typically no ACID transactions or joins

Google Bigtable

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

BigTable Features
• Fault-tolerant, persistent
• Scalable

– Thousands of servers
– Terabytes of in-memory data
– Petabytes of disk-based data
– Millions of reads / writes per second, efficient scans

• Self managing
– Servers can be added / removed dynamically
– Servers adjust to load imbalance

Data model
• Distributed multi-dimensional sparse map

 (row, column, timestamp) → cell contents

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and t6.

We settled on this data model after examining a variety
of potential uses of a Bigtable-like system. As one con-
crete example that drove some of our design decisions,
suppose we want to keep a copy of a large collection of
web pages and related information that could be used by
many different projects; let us call this particular table
the Webtable. In Webtable, we would use URLs as row
keys, various aspects of web pages as column names, and
store the contents of the web pages in the contents: col-
umn under the timestamps when they were fetched, as
illustrated in Figure 1.

Rows

The row keys in a table are arbitrary strings (currently up
to 64KB in size, although 10-100 bytes is a typical size
for most of our users). Every read or write of data under
a single row key is atomic (regardless of the number of
different columns being read or written in the row), a
design decision that makes it easier for clients to reason
about the system’s behavior in the presence of concurrent
updates to the same row.

Bigtable maintains data in lexicographic order by row
key. The row range for a table is dynamically partitioned.
Each row range is called a tablet, which is the unit of dis-
tribution and load balancing. As a result, reads of short
row ranges are efficient and typically require communi-
cation with only a small number of machines. Clients
can exploit this property by selecting their row keys so
that they get good locality for their data accesses. For
example, in Webtable, pages in the same domain are
grouped together into contiguous rows by reversing the
hostname components of the URLs. For example, we
store data for maps.google.com/index.html under the
key com.google.maps/index.html. Storing pages from
the same domain near each other makes some host and
domain analyses more efficient.

Column Families

Column keys are grouped into sets called column fami-
lies, which form the basic unit of access control. All data
stored in a column family is usually of the same type (we
compress data in the same column family together). A
column family must be created before data can be stored
under any column key in that family; after a family has
been created, any column key within the family can be
used. It is our intent that the number of distinct column
families in a table be small (in the hundreds at most), and
that families rarely change during operation. In contrast,
a table may have an unbounded number of columns.
A column key is named using the following syntax:
family:qualifier. Column family names must be print-
able, but qualifiers may be arbitrary strings. An exam-
ple column family for the Webtable is language, which
stores the language in which a web page was written. We
use only one column key in the language family, and it
stores each web page’s language ID. Another useful col-
umn family for this table is anchor; each column key in
this family represents a single anchor, as shown in Fig-
ure 1. The qualifier is the name of the referring site; the
cell contents is the link text.
Access control and both disk and memory account-
ing are performed at the column-family level. In our
Webtable example, these controls allow us to manage
several different types of applications: some that add new
base data, some that read the base data and create derived
column families, and some that are only allowed to view
existing data (and possibly not even to view all of the
existing families for privacy reasons).

Timestamps

Each cell in a Bigtable can contain multiple versions of
the same data; these versions are indexed by timestamp.
Bigtable timestamps are 64-bit integers. They can be as-
signed by Bigtable, in which case they represent “real
time” in microseconds, or be explicitly assigned by client

To appear in OSDI 2006 2

Rows
• Name is an arbitrary string (64KB)

– Access to data in a row is atomic

– Row creation is implicit upon storing data

• Rows ordered lexicographically

– Rows close together lexicographically usually

reside on one or a small number of machines

• Each row range is called a tablet

Columns

• Columns have two-level name structure:
• family:optional_qualifier

• Column family
– Unit of access control
– Has associated type information

• Qualifier gives unbounded columns
– Additional level of indexing, if desired

“www.cnn.com”

“contents:”

“<html>…” “CNN home page”

“anchor:cnnsi.com”

“CNN”

“anchor:stanford.edu”

Column Families

• Must be created before data can be stored

• Small number of column families

• Unbounded number of columns

Timestamps

• Used to store different versions of data in a cell (64
bit)

– New writes default to current time, but

timestamps for writes can also be set explicitly
by clients

Timestamps

• Garbage Collection

– Per-column-family settings to tell Bigtable to GC

– “Only retain most recent K values in a cell”

– “Keep values until they are older than K seconds”

Architecture

Chubby
• Namespace that consists of directories and small files

– Each directory or file can be used as lock

• Chubby client maintains session with Chubby service
– Expires if unable to renew its session lease within expiration

time

– If expired, client loses any locks and open handles

• Atomic Reads / Writes

Tablets
• Large tables are broken into tablets at row boundaries

– Tablet holds contiguous range of rows

– Aim for ~100MB to 200MB of data per tablet

• Tablet server responsible for tablets

– Fine-grained load balancing:
• Migrate tablets away from overloaded machine

• Master makes load-balancing decisions

Tablets

Rows A - E

Rows F - R

Rows S - Z

As table grows,
split tables into

tablets
(100-200MB)

Tablet Server

• Master assigns tablets to table servers

• Tablet server

– Handles reads / writes requests to tablets

– Splits large tablets

• Client does not move data through master

Finding a tablet

• Metadata table
• includes log of all events pertaining to each tablet
• never splits

• Client library caches tablet locations

key, and to iterate over all key/value pairs in a specified
key range. Internally, each SSTable contains a sequence
of blocks (typically each block is 64KB in size, but this
is configurable). A block index (stored at the end of the
SSTable) is used to locate blocks; the index is loaded
into memory when the SSTable is opened. A lookup
can be performed with a single disk seek: we first find
the appropriate block by performing a binary search in
the in-memory index, and then reading the appropriate
block from disk. Optionally, an SSTable can be com-
pletely mapped into memory, which allows us to perform
lookups and scans without touching disk.
Bigtable relies on a highly-available and persistent
distributed lock service called Chubby [8]. A Chubby
service consists of five active replicas, one of which is
elected to be the master and actively serve requests. The
service is live when a majority of the replicas are running
and can communicate with each other. Chubby uses the
Paxos algorithm [9, 23] to keep its replicas consistent in
the face of failure. Chubby provides a namespace that
consists of directories and small files. Each directory or
file can be used as a lock, and reads and writes to a file
are atomic. The Chubby client library provides consis-
tent caching of Chubby files. Each Chubby client main-
tains a session with a Chubby service. A client’s session
expires if it is unable to renew its session lease within the
lease expiration time. When a client’s session expires, it
loses any locks and open handles. Chubby clients can
also register callbacks on Chubby files and directories
for notification of changes or session expiration.
Bigtable uses Chubby for a variety of tasks: to ensure
that there is at most one active master at any time; to
store the bootstrap location of Bigtable data (see Sec-
tion 5.1); to discover tablet servers and finalize tablet
server deaths (see Section 5.2); to store Bigtable schema
information (the column family information for each ta-
ble); and to store access control lists. If Chubby becomes
unavailable for an extended period of time, Bigtable be-
comes unavailable. We recently measured this effect
in 14 Bigtable clusters spanning 11 Chubby instances.
The average percentage of Bigtable server hours during
which some data stored in Bigtable was not available due
to Chubby unavailability (caused by either Chubby out-
ages or network issues) was 0.0047%. The percentage
for the single cluster that was most affected by Chubby
unavailability was 0.0326%.

5 Implementation

The Bigtable implementation has three major compo-
nents: a library that is linked into every client, one mas-
ter server, and many tablet servers. Tablet servers can be

dynamically added (or removed) from a cluster to acco-
modate changes in workloads.
The master is responsible for assigning tablets to tablet
servers, detecting the addition and expiration of tablet
servers, balancing tablet-server load, and garbage col-
lection of files in GFS. In addition, it handles schema
changes such as table and column family creations.
Each tablet server manages a set of tablets (typically
we have somewhere between ten to a thousand tablets per
tablet server). The tablet server handles read and write
requests to the tablets that it has loaded, and also splits
tablets that have grown too large.
As with many single-master distributed storage sys-
tems [17, 21], client data does not move through the mas-
ter: clients communicate directly with tablet servers for
reads and writes. Because Bigtable clients do not rely on
the master for tablet location information, most clients
never communicate with the master. As a result, the mas-
ter is lightly loaded in practice.
A Bigtable cluster stores a number of tables. Each ta-
ble consists of a set of tablets, and each tablet contains
all data associated with a row range. Initially, each table
consists of just one tablet. As a table grows, it is auto-
matically split into multiple tablets, each approximately
100-200 MB in size by default.

5.1 Tablet Location
We use a three-level hierarchy analogous to that of a B+-
tree [10] to store tablet location information (Figure 4).

..

.

...

...

..

.

...

..

.

 tablets
METADATA
 Other

Chubby file
...

UserTable1

UserTableN
...

...

...

...

...
Root tablet

(1st METADATA tablet)

Figure 4: Tablet location hierarchy.

The first level is a file stored in Chubby that contains
the location of the root tablet. The root tablet contains
the location of all tablets in a special METADATA table.
Each METADATA tablet contains the location of a set of
user tablets. The root tablet is just the first tablet in the
METADATA table, but is treated specially—it is never
split—to ensure that the tablet location hierarchy has no
more than three levels.
The METADATA table stores the location of a tablet
under a row key that is an encoding of the tablet’s table

To appear in OSDI 2006 4

2^34 tables or 2^61 bytes

SSTable
• File-format for storing files

• Key-Value Map
– Persistent

– Ordered

– Immutable

– Keys and values are strings

SSTable
• Operations

– Look up value for key

– Iterate over all key/value pairs in specified range

• Sequence of blocks (64 KB)
– Block index used to locate blocks

• Block index
– Binary search on in-memory index

– Or, map complete SSTable into memory

SSTable
• Immutable, sorted file of key-value pairs

• Chunks of data plus an index
– Index is of block ranges, not values
– Index loaded into memory when SSTable is opened
– Lookup is a single disk seek

• Alternatively, client can load SSTable into memory

Index

64K
block

64K
block

64K
block

SSTable

SSTable

• Relies on lock service called Chubby
– Ensure there is at most one active master

– Store bootstrap location of Bigtable data

– Finalize table server death

– Store column family information

– Store access control lists

Tablet representation

because the tablet server or the master died), the master
detects the new tablet when it asks a tablet server to load
the tablet that has now split. The tablet server will notify
the master of the split, because the tablet entry it finds in
the METADATA table will specify only a portion of the
tablet that the master asked it to load.

5.3 Tablet Serving
The persistent state of a tablet is stored in GFS, as illus-
trated in Figure 5. Updates are committed to a commit
log that stores redo records. Of these updates, the re-
cently committed ones are stored in memory in a sorted
buffer called amemtable; the older updates are stored in a
sequence of SSTables. To recover a tablet, a tablet server

tablet log

GFS

Memory

Write Op
SSTable Files

memtable Read Op

Figure 5: Tablet Representation

reads its metadata from the METADATA table. This meta-
data contains the list of SSTables that comprise a tablet
and a set of a redo points, which are pointers into any
commit logs that may contain data for the tablet. The
server reads the indices of the SSTables into memory and
reconstructs the memtable by applying all of the updates
that have committed since the redo points.
When a write operation arrives at a tablet server, the
server checks that it is well-formed, and that the sender
is authorized to perform the mutation. Authorization is
performed by reading the list of permitted writers from a
Chubby file (which is almost always a hit in the Chubby
client cache). A valid mutation is written to the commit
log. Group commit is used to improve the throughput of
lots of small mutations [13, 16]. After the write has been
committed, its contents are inserted into the memtable.
When a read operation arrives at a tablet server, it is
similarly checked for well-formedness and proper autho-
rization. A valid read operation is executed on a merged
view of the sequence of SSTables and the memtable.
Since the SSTables and the memtable are lexicograph-
ically sorted data structures, the merged view can be
formed efficiently.
Incoming read and write operations can continue
while tablets are split and merged.

5.4 Compactions
As write operations execute, the size of the memtable in-
creases. When the memtable size reaches a threshold, the
memtable is frozen, a new memtable is created, and the
frozen memtable is converted to an SSTable and written
to GFS. This minor compaction process has two goals:
it shrinks the memory usage of the tablet server, and it
reduces the amount of data that has to be read from the
commit log during recovery if this server dies. Incom-
ing read and write operations can continue while com-
pactions occur.
Everyminor compaction creates a new SSTable. If this
behavior continued unchecked, read operations might
need to merge updates from an arbitrary number of
SSTables. Instead, we bound the number of such files
by periodically executing a merging compaction in the
background. A merging compaction reads the contents
of a few SSTables and the memtable, and writes out a
new SSTable. The input SSTables and memtable can be
discarded as soon as the compaction has finished.
A merging compaction that rewrites all SSTables
into exactly one SSTable is called a major compaction.
SSTables produced by non-major compactions can con-
tain special deletion entries that suppress deleted data in
older SSTables that are still live. A major compaction,
on the other hand, produces an SSTable that contains
no deletion information or deleted data. Bigtable cy-
cles through all of its tablets and regularly applies major
compactions to them. These major compactions allow
Bigtable to reclaim resources used by deleted data, and
also allow it to ensure that deleted data disappears from
the system in a timely fashion, which is important for
services that store sensitive data.

6 Refinements

The implementation described in the previous section
required a number of refinements to achieve the high
performance, availability, and reliability required by our
users. This section describes portions of the implementa-
tion in more detail in order to highlight these refinements.

Locality groups

Clients can group multiple column families together into
a locality group. A separate SSTable is generated for
each locality group in each tablet. Segregating column
families that are not typically accessed together into sep-
arate locality groups enables more efficient reads. For
example, page metadata in Webtable (such as language
and checksums) can be in one locality group, and the
contents of the page can be in a different group: an ap-

To appear in OSDI 2006 6

Editing/Reading a table
• Mutations are committed to a commit log (in GFS); then

applied to an in-memory version (memtable)
• For concurrency, each memtable row is copy-on-write

• Reads applied to merged view of SSTables & memtable
• Reads & writes continue during tablet split or merge

SSTable
(sorted)

SSTable
(sorted)

Tablet

apple_two_E boat

Insert

Insert

Delete

Insert

Delete

Insert

Memtable
 (sorted)

Master Startup
• Grab unique master lock in Chubby

• Scan servers directory in Chubby to find live
servers

• Communicate with every live tablet to discover

which tablets are assigned

• Scan METADATA table to learn set of tablets

– Track unassigned tablet

Tablet Assignment

• Master has list of unassigned tablets

• When a tablet is unassigned, and a tablet server
has room for it, master sends tablet load request to
tablet server

Tablet Serving

• Persistent state of tablet is stored in GFS

• Updates committed to log that stores redo records

– Memtable: sorted buffer in memory of recent
commits

– Older updates stored in SSTable

System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

GFSCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()
read/write

metadata ops

API
// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com");
Operation op;
Apply(&op, &r1);

Figure 2: Writing to Bigtable.

applications. Applications that need to avoid collisions
must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp or-
der, so that the most recent versions can be read first.
To make the management of versioned data less oner-
ous, we support two per-column-family settings that tell
Bigtable to garbage-collect cell versions automatically.
The client can specify either that only the last n versions
of a cell be kept, or that only new-enough versions be
kept (e.g., only keep values that were written in the last
seven days).
In our Webtable example, we set the timestamps of
the crawled pages stored in the contents: column to
the times at which these page versions were actually
crawled. The garbage-collection mechanism described
above lets us keep only the most recent three versions of
every page.

3 API

The Bigtable API provides functions for creating and
deleting tables and column families. It also provides
functions for changing cluster, table, and column family
metadata, such as access control rights.
Client applications can write or delete values in
Bigtable, look up values from individual rows, or iter-
ate over a subset of the data in a table. Figure 2 shows
C++ code that uses a RowMutation abstraction to per-
form a series of updates. (Irrelevant details were elided
to keep the example short.) The call to Apply performs
an atomic mutation to the Webtable: it adds one anchor
to www.cnn.com and deletes a different anchor.
Figure 3 shows C++ code that uses a Scanner ab-
straction to iterate over all anchors in a particular row.
Clients can iterate over multiple column families, and
there are several mechanisms for limiting the rows,
columns, and timestamps produced by a scan. For ex-
ample, we could restrict the scan above to only produce
anchors whose columns match the regular expression
anchor:*.cnn.com, or to only produce anchors whose
timestamps fall within ten days of the current time.

Scanner scanner(T);
ScanStream *stream;
stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {
printf("%s %s %lld %s\n",

scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

Figure 3: Reading from Bigtable.

Bigtable supports several other features that allow the
user to manipulate data in more complex ways. First,
Bigtable supports single-row transactions, which can be
used to perform atomic read-modify-write sequences on
data stored under a single row key. Bigtable does not cur-
rently support general transactions across row keys, al-
though it provides an interface for batching writes across
row keys at the clients. Second, Bigtable allows cells
to be used as integer counters. Finally, Bigtable sup-
ports the execution of client-supplied scripts in the ad-
dress spaces of the servers. The scripts are written in a
language developed at Google for processing data called
Sawzall [28]. At the moment, our Sawzall-based API
does not allow client scripts to write back into Bigtable,
but it does allow various forms of data transformation,
filtering based on arbitrary expressions, and summariza-
tion via a variety of operators.
Bigtable can be used with MapReduce [12], a frame-
work for running large-scale parallel computations de-
veloped at Google. We have written a set of wrappers
that allow a Bigtable to be used both as an input source
and as an output target for MapReduce jobs.

4 Building Blocks

Bigtable is built on several other pieces of Google in-
frastructure. Bigtable uses the distributed Google File
System (GFS) [17] to store log and data files. A Bigtable
cluster typically operates in a shared pool of machines
that run a wide variety of other distributed applications,
and Bigtable processes often share the same machines
with processes from other applications. Bigtable de-
pends on a cluster management system for scheduling
jobs, managing resources on shared machines, dealing
with machine failures, and monitoring machine status.
The Google SSTable file format is used internally to
store Bigtable data. An SSTable provides a persistent,
ordered immutable map from keys to values, where both
keys and values are arbitrary byte strings. Operations are
provided to look up the value associated with a specified

To appear in OSDI 2006 3

API
// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com");
Operation op;
Apply(&op, &r1);

Figure 2: Writing to Bigtable.

applications. Applications that need to avoid collisions
must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp or-
der, so that the most recent versions can be read first.
To make the management of versioned data less oner-
ous, we support two per-column-family settings that tell
Bigtable to garbage-collect cell versions automatically.
The client can specify either that only the last n versions
of a cell be kept, or that only new-enough versions be
kept (e.g., only keep values that were written in the last
seven days).
In our Webtable example, we set the timestamps of
the crawled pages stored in the contents: column to
the times at which these page versions were actually
crawled. The garbage-collection mechanism described
above lets us keep only the most recent three versions of
every page.

3 API

The Bigtable API provides functions for creating and
deleting tables and column families. It also provides
functions for changing cluster, table, and column family
metadata, such as access control rights.
Client applications can write or delete values in
Bigtable, look up values from individual rows, or iter-
ate over a subset of the data in a table. Figure 2 shows
C++ code that uses a RowMutation abstraction to per-
form a series of updates. (Irrelevant details were elided
to keep the example short.) The call to Apply performs
an atomic mutation to the Webtable: it adds one anchor
to www.cnn.com and deletes a different anchor.
Figure 3 shows C++ code that uses a Scanner ab-
straction to iterate over all anchors in a particular row.
Clients can iterate over multiple column families, and
there are several mechanisms for limiting the rows,
columns, and timestamps produced by a scan. For ex-
ample, we could restrict the scan above to only produce
anchors whose columns match the regular expression
anchor:*.cnn.com, or to only produce anchors whose
timestamps fall within ten days of the current time.

Scanner scanner(T);
ScanStream *stream;
stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {
printf("%s %s %lld %s\n",

scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

Figure 3: Reading from Bigtable.

Bigtable supports several other features that allow the
user to manipulate data in more complex ways. First,
Bigtable supports single-row transactions, which can be
used to perform atomic read-modify-write sequences on
data stored under a single row key. Bigtable does not cur-
rently support general transactions across row keys, al-
though it provides an interface for batching writes across
row keys at the clients. Second, Bigtable allows cells
to be used as integer counters. Finally, Bigtable sup-
ports the execution of client-supplied scripts in the ad-
dress spaces of the servers. The scripts are written in a
language developed at Google for processing data called
Sawzall [28]. At the moment, our Sawzall-based API
does not allow client scripts to write back into Bigtable,
but it does allow various forms of data transformation,
filtering based on arbitrary expressions, and summariza-
tion via a variety of operators.
Bigtable can be used with MapReduce [12], a frame-
work for running large-scale parallel computations de-
veloped at Google. We have written a set of wrappers
that allow a Bigtable to be used both as an input source
and as an output target for MapReduce jobs.

4 Building Blocks

Bigtable is built on several other pieces of Google in-
frastructure. Bigtable uses the distributed Google File
System (GFS) [17] to store log and data files. A Bigtable
cluster typically operates in a shared pool of machines
that run a wide variety of other distributed applications,
and Bigtable processes often share the same machines
with processes from other applications. Bigtable de-
pends on a cluster management system for scheduling
jobs, managing resources on shared machines, dealing
with machine failures, and monitoring machine status.
The Google SSTable file format is used internally to
store Bigtable data. An SSTable provides a persistent,
ordered immutable map from keys to values, where both
keys and values are arbitrary byte strings. Operations are
provided to look up the value associated with a specified

To appear in OSDI 2006 3

Google: The Big Picture
• Custom solutions for unique problems!

• GFS: Stores data reliably
– But just raw files

• BigTable: gives us key/value map

– Database like, but doesn’t provide everything we need

– Chubby: locking mechanism

– SSTable file format

• MapReduce: lets us process data from BigTable
(and other sources)

Common Principles
• One master, multiple helpers

– MapReduce: master coordinates work amongst
map / reduce workers

– Bigtable: master knows about location of tablet
servers

– GFS: master coordinates data across chunkservers

• Issues with a single master

– What about master failure?

– How do you avoid bottlenecks?

Difference between
MapReduce and BigTable?

HBase
• HBase is a Bigtable clone.

• It is open source

• It has a good community and promise for the future

• It is developed on top of and has good integration
for the Hadoop platform, if you are using Hadoop
already.

• It has a Cascading connector.

HBase Architecture

codes
$"hbase shell
>"create"'test',"'data'
0"row(s)"in"4.3066"seconds
>"list
test
1"row(s)"in"0.1485"seconds
>"put"'test',"'row1',"'data:1',"'value1'
0"row(s)"in"0.0454"seconds
>"put"'test',"'row2',"'data:2',"'value2'
0"row(s)"in"0.0035"seconds
>"put"'test',"'row3',"'data:3',"'value3'
0"row(s)"in"0.0090"seconds

>"scan"'test'
ROW$COLUMN+CELL
row1$column=data:1,$ timestamp=1240148026198,$

value=value1
row2$column=data:2,$ timestamp=1240148040035,$

value=value2
row3$column=data:3,$ timestamp=1240148047497,$

value=value3
3$row(s)$in0.0825seconds
>"disable"'test'
09/04/19$06:40:13$INFO$client.HBaseAdmin:$Disabled$

test
0$row(s)$in6.0426seconds
>"drop"'test'
09/04/19$06:40:17$INFO$client.HBaseAdmin:$Deleted$

test
0$row(s)$in0.0210seconds
>"list
0$row(s)$in2.0645seconds

Connection to HBase
Java client

get(byte [] row, byte [] column, long timestamp, int versions);

Non-Java clients
Thrift server hosting HBase client instance

Sample ruby, c++, & java (via thrift) clients
REST server hosts HBase client

TableInput/OutputFormat for MapReduce

HBase as MR source or sink
HBase Shell

JRuby IRB with “DSL” to add get, scan, and admin
./bin/hbase shell YOUR_SCRIPT

• https://www.youtube.com/watch?v=rRoy6I4gKWU

SQL vs. NoSQL

Bigtable vs. HBase

• https://www.youtube.com/watch?v=lNSsFCh4wmk

