Outline

NoSQL

* NoSQL
~ ZhiWang » Bigtable/HBase
wangzhi@sz.tsinghua.edu.cn
History of Relational DB Scale

* Issues with scaling up when the dataset is just too big

+ Relational Databases — mainstay of business » RDBMS were not designed to be distributed

+ Web-based applications caused spikes * Began to look at multi-node database solutions

- Especially true for public-facing e-Commerce sites * Known as ‘scaling out’ or ‘horizontal scaling’

« Developers begin to front RDBMS with memcache or * Different approaches include:

integrate other caching mechanisms within the _ Master-slave
application

— Sharding

Scaling RDBMS — Master/Slave

« Master-Slave
— All writes are written to the master

— All reads performed against the replicated slave
databases

— Critical reads may be incorrect as writes may not
have been propagated down

—Large data sets can pose problems as master
needs to duplicate data to slaves

Scaling RDBMS - Sharding

Partition or sharding
— Scales well for both reads and writes

— Not transparent, application needs to be partition-
aware

— Can no longer have relationships/joins across
partitions

— Loss of referential integrity across shards

Other ways to scale RDBMS

* Multi-Master replication

* INSERT only, not UPDATES/DELETES

* No JOINSs, thereby reducing query time
* This involves de-normalizing data

* In-memory databases

What is NoSQL?

Stands for Not Only SQL

Class of non-relational data storage systems
Usually do not require a fixed table schema
nor do they use the concept of joins

All NoSQL offerings relax one or more of the

ACID properties

How did we get here?

* Explosion of social media sites (Facebook, Twitter) with

large data needs

* Rise of cloud-based solutions such as Amazon S3
(simple storage solution)

+ Just as moving to dynamically-typed languages (Ruby/
Groovy), a shift to dynamically-typed data with frequent

schema changes

* Open-source community

The Perfect Storm

Large datasets, acceptance of alternatives, and
dynamically-typed data has come together in a
perfect storm

Not a backlash/rebellion against RDBMS

SQL is a rich query language that cannot be rivaled

by the current list of NoSQL offerings

CAP Theorem

* Three properties of a system: consistency, availability and

partitions

* You can have at most two of these three properties for any

shared-data system
« To scale out, you have to partition: that leaves either

consistency or availability to choose from

—In almost all cases, you would choose availability

over consistency

Availability

Traditionally, thought of as the server/process
available five 9’s (99.999 %).

However, for large node system, at almost any point in
time there’s a good chance that a node is either down

or there is a network disruption among the nodes.

Consistency Model

* A consistency model determines rules for visibility and apparent order of updates.

» For example:
— Row X is replicated on nodes M and N
— Client A writes row X to node N
— Some period of time t elapses.
— Client B reads row X from node M
— Does client B see the write from client A?
— Consistency is a continuum with tradeoffs
— For NoSQL, the answer would be: maybe

— CAP Theorem states: Strict Consistency can't be achieved at the same
time as availability and partition-tolerance.

Eventual Consistency

When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

Known as BASE (Basically Available, Soft state,

Eventual consistency), as opposed to ACID

Common Advantages

* Cheap, easy to implement (open source)

+ Data is replicated to multiple nodes (therefore identical
and fault-tolerant) and can be partitioned

* Down nodes easily replaced
* No single point of failure
* Easy to distribute
» Don't require a schema
* Can scale up and down
* Relax the data consistency requirement (CAP)

What am | giving up?

joins

group by

order by

ACID transactions

SQL as a sometimes frustrating but still
powerful query language

easy integration with other applications that
support SQL

Typical NoSQL API

* Basic APl access:
— get(key) -- Extract the value given a key

— put(key, value) -- Create or update the value given its
key

— delete(key) -- Remove the key and its associated value
— execute(key, operation, parameters) -- Invoke an

operation to the value (given its key) which is a special
data structure (e.g. List, Set, Map etc).

What kinds of NoSQL

* NoSQL solutions fall into two major areas:

—Key/Value or ‘the big hash table’.
* Bigtable
* Dynamo

—Schema-less which comes in multiple flavors,
column-based, document-based or graph-based.
» Cassandra (column-based)

Key/Value

Pros:
+ very fast
+ very scalable
* simple model

- able to distribute horizontally

Cons:

- many data structures (objects) can't be easily modeled as key
value pairs

Schema-less

Pros:
- Schema-less data model is richer than key/value pairs
- eventual consistency
- many are distributed
- still provide excellent performance and scalability

Cons:
- typically no ACID transactions or joins

Google Bigtable

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber } @ google.com

Google, Inc.

BigTable Features Data model

« Distributed multi-dimensional sparse map

* Fault-tolerant, persistent (row, column, timestamp) — cell contents

* Scalable
- Thousands of servers .
"contents:" "anchor:cnnsi.com” "anchor'my look.ca"
- Terabytes of in-memory data ; ; # 3 ; { ;
- Petabytes of disk-baseddata | | e L E— S S— T
"com.cnn.www" — <ht CNN ty W
- Millions of reads / writes per second, efficient scans ‘ L —— S

* Self managing
- Servers can be added / removed dynamically
- Servers adjust to load imbalance

Rows

* Name is an arbitrary string (64KB)
- Access to data in a row is atomic
- Row creation is implicit upon storing data
* Rows ordered lexicographically
- Rows close together lexicographically usually
reside on one or a small number of machines

» Eachrow range is called a tablet

Columns

“contents:” “anchor:cnnsi.com” “anchor:stanford.edu”

“www.cnn.com”

— [hm] “CNN home page” |

* Columns have two-level name structure:
* family:optional_qualifier
- Column family
- Unit of access control
- Has associated type information
* Qualifier gives unbounded columns
- Additional level of indexing, if desired

Column Families

» Must be created before data can be stored
¢ Small number of column families

* Unbounded number of columns

Timestamps

» Used to store different versions of data in a cell (64
bit)
- New writes default to current time, but

timestamps for writes can also be set explicitly
by clients

Timestamps

- Garbage Collection
- Per-column-family settings to tell Bigtable to GC
- “Only retain most recent K values in a cell”

- “Keep values until they are older than K seconds”

Architecture

Metadata Client
Master server

Client Library

Read/write |,

Tablet server Tablet server Tablet server
(roblet | “Toblet J Ml Toviet | Tabiet JRI“Tabiet | Tablet

ers se

7 fr

15siar

Open()

[Cluster Scheduling J GFS

System -
008 ()

SSTables Tablet logs
And replicas

randles jariover ana

Chubby

» Namespace that consists of directories and small files
- Each directory or file can be used as lock
* Chubby client maintains session with Chubby service

- Expires if unable to renew its session lease within expiration
time

- If expired, client loses any locks and open handles

e Atomic Reads / Writes

Tablets

» Large tables are broken into tablets at row boundaries
- Tablet holds contiguous range of rows
- Aim for ~100MB to 200MB of data per tablet

» Tablet server responsible for tablets
- Fine-grained load balancing:

» Migrate tablets away from overloaded machine

« Master makes load-balancing decisions

As table grows,
split tables into

tablets

(100-200MB)

Tablets

Tablet Server

- Tablet server

- Splits large tablets

» Master assigns tablets to table servers

- Handles reads / writes requests to tablets

* Client does not move data through master

Chubby file

» Metadata table

2N\34 tables or 2761 bytes

Root tablet

(1st METADATA tablet)

/

C

Finding a tablet

-

Other
METADATA
tablets

N

UserTable1

=: @

i tablet

« includes log of all events pertaining to each tablet

* never splits
« Client library caches tablet locations

® atabletis stored as a set of

® an SSTablehas a set of 64K

|
I
SSTable | |SSTable SSTable
SSTable SSTables
64K || 64K 64K
Block || Block | " | Block | | index

blocksand an index

m each SSTableis a GFS file

SSTable

File-format for storing files
Key-Value Map

- Persistent

- Ordered

- Immutable

- Keys and values are strings

SSTable

» Operations

- Look up value for key

- lterate over all key/value pairs in specified range
» Sequence of blocks (64 KB)

- Block index used to locate blocks
* Block index

- Binary search on in-memory index

- Or, map complete SSTable into memory

SSTable

Immutable, sorted file of key-value pairs

Chunks of data plus an index
- Index is of block ranges, not values
- Index loaded into memory when SSTable is opened

- Lookup is a single disk seek

Alternatively, client can load SSTable into memory

SSTable

Index

64K 64K 64K
block block block

SSTable

* Relies on lock service called Chubby
- Ensure there is at most one active master
- Store bootstrap location of Bigtable data
- Finalize table server death
- Store column family information

- Store access control lists

Tablet representation

memtable Read Op

Memory
GFS

‘ tablet log

SSTable Files

Editing/Reading a table

* Mutations are committed to a commit log (in GFS); then
applied to an in-memory version (memtable)

» For concurrency, each memtable row is copy-on-write
» Reads applied to merged view of SSTables & memtable
» Reads & writes continue during tablet split or merge

Tablet
Insert Memtable
Insert (sorted)
Delete
apple_two_E boat
Insert
Delete
Insert
SSTable ||SSTable

(sorted) ||(sorted)

Master Startup

* Grab unique master lock in Chubby

* Scan servers directory in Chubby to find live

servers

» Communicate with every live tablet to discover
which tablets are assigned
* Scan METADATA table to learn set of tablets

- Track unassigned tablet

Tablet Assignment

* Master has list of unassigned tablets

* When a tablet is unassigned, and a tablet server
has room for it, master sends tablet load request to

tablet server

Tablet Serving

* Persistent state of tablet is stored in GFS
* Updates committed to log that stores redo records
- Memtable: sorted buffer in memory of recent
commits

- Older updates stored in SSTable

System Structure

metadata ops

/

performs metadata ops +
load balancing

. Open()
read/write pen(

serves data serves data serves data

| Cluster scheduling system I GFS

L. o holds metadata,
handles failover, monitoring holds tablet data, logs handles master-election

API

// Open the table
Table *T = OpenOrDie ("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation rl (T, "com.cnn.www");

rl.Set ("anchor:www.c—-span.org", "CNN");
rl.Delete ("anchor:www.abc.com") ;

Operation op;

Apply (&op, &rl);

API

Scanner scanner (T);

ScanStream *stream;

stream = scanner.FetchColumnFamily ("anchor");

stream->SetReturnAllVersions () ;

scanner.Lookup ("com.cnn.www") ;

for (; !stream->Done(); stream—->Next ()) {

printf ("$s %s %11d %s\n",

scanner.RowName (),
stream->ColumnName (),
stream->MicroTimestamp (),
stream->Value());

Google: The Big Picture

Custom solutions for unique problems!

GFS: Stores data reliably

- But just raw files

BigTable: gives us key/value map

- Database like, but doesn’t provide everything we need

- Chubby: locking mechanism

- SSTable file format
MapReduce: lets us process data from BigTable

(and other sources)

Common Principles

One master, multiple helpers

- MapReduce: master coordinates work amongst
map / reduce workers

- Bigtable: master knows about location of tablet
servers

- GFS: master coordinates data across chunkservers

Issues with a single master

- What about master failure”?

- How do you avoid bottlenecks?

Difference between

MapReduce and BigTable?

HBase

HBase is a Bigtable clone.

It is open source

It has a good community and promise for the future
It is developed on top of and has good integration
for the Hadoop platform, if you are using Hadoop

already.

It has a Cascading connector.

Master

HBase Architecture

HRegionServer

HRegionServer

Store (WemSiore) ; . Sore Store (WemSiore)
StoreFile . StoreFile ; StoreFile. StoreFile. e StoreFile.

Regionserver Regionserver Regionserver

|

00oogd || 0o0Qoo O
0od

O

0d

codes

Region
Server

-

Connection to HBase

Java client

get(byte [] row, byte [] column, long timestamp, int versions);
Non-Java clients

Thrift server hosting HBase client instance
Sample ruby, c++, & java (via thrift) clients

REST server hosts HBase client
Tablelnput/OutputFormat for MapReduce

HBase as MR source or sink
HBase Shell

JRuby IRB with “DSL” to add get, scan, and admin

./bin/hbase shell YOUR_SCRIPT

SQL vs. NoSQL

* https://www.youtube.com/watch?v=rRoy6l14gKWU

Bigtable vs. HBase

* https://www.youtube.com/watch?v=INSsFCh4wmk

