Making Sense of Per

Analytics Fra

0rma

MeEWOo

nce In Data

kS

Kay Qusterhout, Ryan Rasti, Sylvia Ratnasamy,
Scott Shenker, Byung-Gon Chun

Large-scale data analytics has
become widespread

HEEERRRRRiiiy

Spark (or Hadoop/Dryad/etc.) task

HEEERRRRRiiiy

Spark (or Hadoop/Dryad/etc.) task

HEERERRRRRiiey HEERERRRRRiiey

HIREERRGRRaGEF

OO

—

HEERERRRRRiiei HEERERRRRRiiei

HRRRRRRERaahy HIRERRRGRRaGEd

OO

HERERes

HERRRRRGRaRini L

HiERiEgi HEERERRRRRiiei
LLITEEE

UL D

O

e e

Network

Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI 10], Sinbad [SIGCOMM "13]
Application semantics: Orchestra [SIGCOMM "11], Baraat [SIGCOMM “14], Varys
[SIGCOMM "14]

Reduce data sent: PeriSCOPE [OSDI “12], SUDO [NSDI "12]

In-network aggregation: Camdoop [NSDI"12]

Better isolation and fairess: Oktopus [SIGCOMM "11], EyeQ [NSDI 121, FairCloud
[SIGCOMM "12]

Disk

Themis [S0CC 12], PACMan [NSDI"12], Spark [NSDI"12], Tachyon [SoCC "14]

Stragglers

Scarlett [EuroSys ‘111, SkewTune [SIGMOD “12], LATE [OSDI‘08], Mantri [OSDI 101,
Dolly [NSDI“13], GRASS [NSDI “14], Wrangler [SoCC "14]

Missing: what's most important to
end-to-end performance?

Widely-accepted mantras:
Network and disk 1/0 are hottlenecks

Stragglers are a major issue with
unknown causes

This work

(1) How can we quantify performance bottlenecks?
Blocked time analysis

(2) Do the mantras hold?

Takeaways hased on three workloads run
with Spark

Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by at most 2%

CPU (not 1/0) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and
fixed

Takeaways will not hold
for every single analytics workload
nor for all time

This work:

Accepted mantras are often not true

Methodology to avoid performance
misunderstandings in the future

Outline

Methodology: How can we measure bottlenecks?
Workloads: \What workloads did we use?
Results: How well do the mantras hold?

Why?: Why do our results differ from past work?

What is the job’s bottleneck?

network
compute
tasks < Task x: may be bottlenecked
on different resources at
different times

“— Time t: different tasks may be

bottlenecked on different resources
time >

How does network affect the job’s completion

~

tasks <

time?

[

network

Blocked time analysis: how much
|@RComplete it tasks never blocked o

faster woulc

Time when task is
blocked on the

the

1 the netwo

kb

NTUUCIVCOC U

tasks <

Block

ed time analysis

\

—— (1) Measure time

when tasks are

blocked on the

network

[

<€

>

(2) Simulate how job completion
time would change

(1) Measure time when tasks are blocked on
network

networkread R 1 [0 [
compute

disk write

< >

Original task runtime

-time to handle one record = - time blocked on network
7, time blocked on disk

compute [EEEIERIETITRY

/

Best case task runtime if network were inﬂnitely fast

(2) Simulate how |0

-

0 completion time woulo

ch

ange

t Original job completion fime.

Task 0

Task 2

dbwmt@mmm&aﬂltmmﬂdmewast network
account for task scheduling

" time blocked
on network

Blocked time analysis:

could a job have comr
were infin

nleted

N10W qUIC

iT a resou

)

itely fast:

Kly

(€

Outline

« Workloads: \What workloads did we use?

Large-scale traces?

Don’t have enough instrumentation for
blocked-time analysis

SQL Workloads run on|Spark

Only 3 workloads 1 Framework
(TPC-DS (20 machines/ 850GB:;

)
Big Data Benchmark (5 machines | 60GB)

 Databricks (Pro Wmachinesjtens of GB)

Small cluster sizes

2 versions of each: in-memory, on-disk

/

Outline

e Results: How well do the mantras hold?

Reduction in JCT

How much faster could jobs ge

from optimizing

network performance?
On-disk workload —
08 L Im-memory workload =4 ===
0.6
04
02 . —_
0 __E_I_:I: I l |

BDBench TPC-DS Production

Reduction in JCT

How much faster could jobs get from optimizing

network performance? |
Percentiles
95 ——
On Aicl- n,nflﬂ.nnfl .
In-n Median improvement: 2% -
95%ile improvement: 10%
T 50
—— L, | | 25

o1

Reduction in JCT

How much faster could jobs get from optimizing

network performance?

On-disk workload ——
0.8 | In-memory workload ——

06

04 oo

02 b)

Percentiles
95 ——

BDBench TPC-DS

Production o

Median improvement at most 2%

How much faster could jobs get from optimizing
disk performance?

On-disk workload —

— 0.8 | In-memory workload —23
= 3

S 06 L S
=

S £

5 04 b Lo
= —_ =

e, =

v =

a2

0-2 '_--EE-- . -_-I:--_ | N B 7, N N N N | NN]
T £ I
|

0 | e | —

BDBenc TPC-DS Production

Median improvement at most 19%

Utilization

How important is CPU?

Network Disk —— CPU —

1 ~
0.8 |
06 L........ T T —
o4 L T 1 -
o2 L L1 1 s ERRRRRRRRN o S
0 ! =T L o

BDBench BDBench TPC-DS TPC-DS
(disk) (memory) (disk) (memory)

CPU much more highly utilized than
disk or network!

What about stragglers?

5-10% improvement from eliminating stragglers
Based on simulation

Can explain >60% of stragglers in >75% of jobs

Fixing underlying cause can speed up other tasks too!

XS

needup from fixing one straggler cause

Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by at most 2%

CPU (not 1/0) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and
fixed

Outline

« Why?: Why do our/\results differ from past work?
network

Why ar

e our results so ar

Terent than what's

Stated in prio

CWOrk?

Are the workloads we measured unusually
network-light?

¥

How can we compare our workloads to large-

scale

races used to motivate prior work?

How much data is transferred per CPU second?

100 100 -
Disk ——
e In-memory ——
‘é RO L...—01T~.... y_ _________________________ 8O0 L............
2
= o0 | | 60 L
Q
3}
% A0 o 40 .- -
%
o o0l LER 20 ||
> = B
0 S I T == 0 |
BDBench TPC-DS Production Facebook

Microsoft '09-10: 1.9-6.35 Mb / task second
Google '04-'07: 1.34-1.61 Mb / machine second

Why are our results so different than what's
stated in prior work?

Our-workloads-are-networktight

1) Incomplete metrics

/) Conflation of CPU and network time

When is the network used?

\
Input data
Fzread { >O(LjJt?ut
locally) ata
\ y
Some work (2) To
focuses only on replicate
the shuffle output data

How does the data transferred over the network
compare to the input data?

1-? o Shuitenput = 1-? St1u£|eddataison\y

sl T o /3 otinput data!

é o6 L | 7 obH

S0 o — . EVpA Jess output data
O Ml s [" @)

BDBench TPC-DS Facebook Google Microsoft

Not realistic to look only at shuffle!
Or to use workloads where all input is shuftleo

Prior work conflates CPU and network time

Reduction in JCT from
optimizing network

S o o ©
S N B N 0 =

SRMREEREEEE RN To send data over network:

(1) Serialize objects into
bytes

= - (2) Send bytes

Sort PageRank
200 machines 16 machines

(1) and (2) often conflated.

Reducing application data sent reduces both!

When does the network matter?

(2) Serialization time low

Network important when; _
(1) Computation optimized -

(3) Large amount of data sent .

over network ML (matrix)

200 machines

0.8
0.6
0.4
0.2

Why are our results so different than what's
stated in prior work?

—Ourworkloads-are-networklight—

1) Incomplete metrics
e.g., looking only at shuffle time

2) Conflation of CPU and network time
Sending data over the network has an associated CPU cost

LImitations

Only three workloads

Small cluster sizes

One framework (Spark)

Limitations aren’t fatal

Only three workloads
Industry-standard workloads
Results sanity-checked with larger production traces

Small cluster sizes
Takeaways don't change when we move between cluster sizes

One framework (Spark)
Results sanity-checked with production traces from other frameworks
We instrumented and evaluated Hadoop, with consistent results

Network optimizations
can reduce job completion time by at most 2%

CPU (not 1/0) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed

Takeaway: performance understandability should
be a first-class concern!
Instrument systems for blocked time analysis
(almost) All Instrumentation now part of Spark

All traces publicly available: tinyurl.com/nsdi-traces

Backup Slides

Why is the CPU time so high?

Compressed, serialized datd e
Decompressed, serialized data ee =
Decompressed, deserialized data

Cumulative Probability
Rt e ettt
O WA UNAAI0\O—

0 2500 5000 7500 100001250015000175002000022500
Total CPU seconds

Compression and serialization are costly

What can be done to reduce compute time?

Odatabricks PRODUCT SPARK RESOURCES COMPANY BLOG

=

M Project Tungsten: Bringing Spark Closer to Bare Metal

All Posts Y ‘f Bl April 28,2015 | by Reynold Xin and Josh Rosen
Partners
Events) : .
In a previous blog post, we looked back and surveyed performance improvements made to Spark in
Press Releases the past year. In this post, we look forward and share with you the next chapter, which we are calling
Project Tungsten. 2014 witnessed Spark setting the world record in large-scale sorting and saw major
improvements across the entire engine from Python to SQL to machine learning. Performance
optimization, however, is a never ending process.
All Posts
Project Tungsten will be the largest change to Spark’s execution engine since the project’s inception. It
Spark focuses on substantially improving the efficiency of memory and CPU for Spark applications, to push
Spark SQL performance closer to the limits of modern hardware. This effort includes three initiatives:
Spa rk Streamin g 1. Memory Management and Binary Processing: leveraging application semantics to manage
) memory explicitly and eliminate the overhead of JVM object model and garbage collection
MLIib 2. Cache-aware computation: algorithms and data structures to exploit memory hierarchy
Spark Summit 3. Code generation: using code generation to exploit modern compilers and CPUs
The focus on CPU efficiency is motivated by the fact that Spark workloads are increasingly
Search Blog Q bottlenecked by CPU and memory use rather than 10 and network communication. This trend is
shown by recent research on the performance of big data workloads (Ousterhout et al) and we've
Subscribe arrived at similar findings as part of our ongoing tuning and optimization efforts for Databricks Cloud

customers.

Why is CPU the new bottleneck? There are many reasons for this. One is that hardware configurations
offerincreasingly large aggregate 10 bandwidth, such as 10Gbps links in networks and high bandwidth
SSD’s or striped HDD arrays for storage. From a software perspective, Spark’s optimizer now allows
many workloads to avoid significant disk |0 by pruning input data that is not needed in a given job. In
Spark’s shuffle subsystem, serialization and hashing (which are CPU bound) have been shown to be
key bottlenecks, rather than raw network throughput of underlying hardware. All these trends mean
that Spark today is often constrained by CPU efficiency and memory pressure rather than [O.

