
Making Sense of Performance in Data
Analytics Frameworks

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy,
Scott Shenker, Byung-Gon Chun

Large-scale data analytics has
become widespread

More resource-
efficient Faster

…	

…
	

Task Task

Task

Task

Spark (or Hadoop/Dryad/etc.) task

…	

Task Task

Task

Task

Spark (or Hadoop/Dryad/etc.) task

…
	

…	

Task Task

Task

Task
Task Task

Task

Task

…
	

Stragglers
Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE [OSDI ‘08], Mantri [OSDI ‘10],
Dolly [NSDI ‘13], GRASS [NSDI ‘14], Wrangler [SoCC ’14]

Disk
Themis [SoCC ‘12], PACMan [NSDI ’12], Spark [NSDI ’12], Tachyon [SoCC ’14]

Network
Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI ’10], Sinbad [SIGCOMM ’13]
Application semantics: Orchestra [SIGCOMM ’11], Baraat [SIGCOMM ‘14], Varys
[SIGCOMM ’14]
Reduce data sent: PeriSCOPE [OSDI ‘12], SUDO [NSDI ’12]
In-network aggregation: Camdoop [NSDI ’12]
Better isolation and fairness: Oktopus [SIGCOMM ’11], EyeQ [NSDI ‘12], FairCloud
[SIGCOMM ’12]

Disk
Themis [SoCC ‘12], PACMan [NSDI ’12], Spark [NSDI ’12], Tachyon [SoCC ’14]

Stragglers
Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE [OSDI ‘08], Mantri [OSDI ‘10],
Dolly [NSDI ‘13], GRASS [NSDI ‘14], Wrangler [SoCC ’14]

Network
Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI ’10], Sinbad [SIGCOMM ’13]
Application semantics: Orchestra [SIGCOMM ’11], Baraat [SIGCOMM ‘14], Varys
[SIGCOMM ’14]
Reduce data sent: PeriSCOPE [OSDI ‘12], SUDO [NSDI ’12]
In-network aggregation: Camdoop [NSDI ’12]
Better isolation and fairness: Oktopus [SIGCOMM ‘11]), EyeQ [NSDI ‘12], FairCloud
[SIGCOMM ’12] Missing: what’s most important to

end-to-end performance?

Disk
Themis [SoCC ‘12], PACMan [NSDI ’12], Spark [NSDI ’12], Tachyon [SoCC ’14]

Stragglers
Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE [OSDI ‘08], Mantri [OSDI ‘10],
Dolly [NSDI ‘13], GRASS [NSDI ‘14], Wrangler [SoCC ’14]

Network
Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI ’10], Sinbad [SIGCOMM ’13]
Application semantics: Orchestra [SIGCOMM ’11], Baraat [SIGCOMM ‘14], Varys
[SIGCOMM ’14]
Reduce data sent: PeriSCOPE [OSDI ‘12], SUDO [NSDI ’12]
In-network aggregation: Camdoop [NSDI ’12]
Better isolation and fairness: Oktopus [SIGCOMM ‘11]), EyeQ [NSDI ‘12], FairCloud
[SIGCOMM ’12]

Widely-accepted mantras:

Network and disk I/O are bottlenecks

Stragglers are a major issue with
unknown causes

(1)  How can we quantify performance bottlenecks?
Blocked time analysis

(2) Do the mantras hold?

Takeaways based on three workloads run
with Spark

This work

Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck

<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and
fixed

Takeaways will not hold
for every single analytics workload

nor for all time	

Accepted mantras are often not true

Methodology to avoid performance
misunderstandings in the future

This work:

Outline

•  Methodology: How can we measure bottlenecks?

•  Workloads: What workloads did we use?

•  Results: How well do the mantras hold?

•  Why?: Why do our results differ from past work?

What is the job’s bottleneck?

time

tasks

compute
network

disk

Task x: may be bottlenecked
on different resources at

different times

Time t: different tasks may be
bottlenecked on different resources

How does network affect the job’s completion
time?

time

tasks

:Time when task is
blocked on the

network

Blocked time analysis: how much faster would the
job complete if tasks never blocked on the network?

Blocked time analysis

tasks

(2) Simulate how job completion
time would change

(1) Measure time
when tasks are
blocked on the

network

network read
compute
disk write

Original task runtime
: time blocked on network

compute

task runtime if network were infinitely fast

: time blocked on disk

Best case

(1) Measure time when tasks are blocked on
network

: time to handle one record

(2) Simulate how job completion time would
change

Task 0

Task 1

Task 2
time

2 s
lot

s

to: Original job completion time

Task 0

Task 1

Task 2

2 s
lot

s

Incorrectly computed time: doesn’t
account for task scheduling

: time blocked
on network

tn: Job completion time with infinitely fast network

Blocked time analysis: how quickly
could a job have completed if a resource

were infinitely fast?

Outline

•  Methodology: How can we measure bottlenecks?

•  Workloads: What workloads did we use?

•  Results: How well do the mantras hold?

•  Why?: Why do our results differ from prior work?

Large-scale traces?
Don’t have enough instrumentation for

blocked-time analysis

SQL Workloads run on Spark

TPC-DS (20 machines, 850GB;
60 machines, 2.5TB; 200 machines, 2.5TB)
Big Data Benchmark (5 machines, 60GB)

Databricks (Production; 9 machines, tens of GB)

2 versions of each: in-memory, on-disk

Only 3 workloads

Small cluster sizes

1 Framework

Outline

•  Methodology: How can we measure bottlenecks?

•  Workloads: What workloads did we use?

•  Results: How well do the mantras hold?

•  Why?: Why do our results differ from prior work?

How much faster could jobs get from optimizing
network performance?

��

����

����

����

����

��

	
	��
� ����
� �����
����

��
��
��
��
	

�	

��

����������������
 ��!�!��"���������

How much faster could jobs get from optimizing
network performance?

��

����

����

����

����

��

	
	��
� ����
� �����
����

��
��
��
��
	

�	

��

����������������
 ��!�!��"���������

��

����

����

����

����

��

	
	��
� ����
� �����
����

��
��
��
��
	

�	

��

����������������
 ��!�!��"���������

5

95

75

25

50

Percentiles

Median improvement: 2%
95%ile improvement: 10%

How much faster could jobs get from optimizing
network performance?

Median improvement at most 2%

5

95

75

25

50

Percentiles

��

����

����

����

����

��

	
	��
� ����
� �����
����

��
��
��
��
	

�	

��

����������������
 ��!�!��"���������

How much faster could jobs get from optimizing
disk performance?

Median improvement at most 19%

��

����

����

����

����

��

	
	��
� ����
� �����
����

��
��
��
��
	

�	

��

���
��
��
��
	�

��

�

����������������
 ��!�!��"���������

How important is CPU?

��
����
����
����
����
��

	
	��
�
������

	
	��
�
��������

����
�
������

����
�
��������

�
���
��
��
��
�

��� ���
��� ��!

CPU much more highly utilized than
disk or network!

What about stragglers?

5-10% improvement from eliminating stragglers
 Based on simulation

Can explain >60% of stragglers in >75% of jobs

Fixing underlying cause can speed up other tasks too!

 2x speedup from fixing one straggler cause

Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck

<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and
fixed

Outline

•  Methodology: How can we measure bottlenecks?

•  Workloads: What workloads did we use?

•  Results: How well do the mantras hold?

•  Why?: Why do our results differ from past work?
network

>

Why are our results so different than what’s
stated in prior work?

Are the workloads we measured unusually
network-light?

How can we compare our workloads to large-
scale traces used to motivate prior work?

How much data is transferred per CPU second?

Microsoft ’09-’10: 1.9–6.35 Mb / task second
Google ’04-‘07: 1.34–1.61 Mb / machine second

��

���

���

���

���

����

�	�
��
 ����	� ����������

�
��
��
���
	

��
	�

�
	��
��
��

	���
����
����

��

���

���

���

���

����

�	
��

�

Why are our results so different than what’s
stated in prior work?

Our workloads are network light

1)  Incomplete metrics

2)  Conflation of CPU and network time

When is the network used?
map
task

map
task

map
task

…

reduce
task

reduce
task

reduce
task

…
Input data

(read
locally)

Output
data

(1) To shuffle
intermediate

data

(2) To
replicate

output data

Some work
focuses only on

the shuffle

How does the data transferred over the network
compare to the input data?

��

����

����

����

����

��

����

	
	��
� ����
�

��
���

��������������
��������������

��

����

����

����

����

��

����

	
��
��� ������ ���������

�
���
�
��� �
���

Not realistic to look only at shuffle!
Or to use workloads where all input is shuffled

Shuffled data is only
~1/3 of input data!

Even less output data

Prior work conflates CPU and network time

To send data over network:
(1) Serialize objects into

bytes
(2) Send bytes

(1) and (2) often conflated.

Reducing application data sent reduces both!

��

����

����

����

����

��

	
��
����
�������

��������
���
�������

����
������
����
�������

��

����

����

����

����

��

��
��
��
��
	

�	

��

���
�

��
���
��
�	
�

	�
��
��
�

��

����

����

����

����

��

	
��
����
�������

��������
���
�������

����
������
����
�������

��

����

����

����

����

��

��
��
��
��
	

�	

��

���
�

��
���
��
�	
�

	�
��
��
�

When does the network matter?

Network important when:
(1)  Computation optimized
(2)  Serialization time low

(3)  Large amount of data sent
over network

Why are our results so different than what’s
stated in prior work?

Our workloads are network light

1) Incomplete metrics
e.g., looking only at shuffle time

2) Conflation of CPU and network time
Sending data over the network has an associated CPU cost

Limitations
Only three workloads

 Industry-standard workloads
 Results sanity-checked with larger production traces

Small cluster sizes

 Results don’t change when we move between cluster sizes

One framework (Spark)

 Results sanity-checked with production traces from other frameworks
 We instrumented and evaluated Hadoop, with consistent results

Limitations aren’t fatal
Only three workloads

 Industry-standard workloads
 Results sanity-checked with larger production traces

Small cluster sizes

 Takeaways don’t change when we move between cluster sizes

One framework (Spark)

 Results sanity-checked with production traces from other frameworks
 We instrumented and evaluated Hadoop, with consistent results

Network optimizations
can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed

All traces publicly available: tinyurl.com/nsdi-traces

Takeaway: performance understandability should
be a first-class concern!

Instrument systems for blocked time analysis
(almost) All Instrumentation now part of Spark

Backup Slides

Why is the CPU time so high?

Compression and serialization are costly

��
����
����
����
����
����
���	
���

����
����
��

�� ����� ����� �
�����������������������
�����������������
�
��
��
��
	

��

�
��
���
��

����������������

���������������������������
 ����������������������������

 ������������������������������

What can be done to reduce compute time?

