

EFFICIENT PERFORMANCE PREDICTION FOR LARGE-SCALE ADVANCED ANALYTICS

Shivaram Venkataraman, Zongheng Yang Michael Franklin, Benjamin Recht, Ion Stoica

KEYSTONE-ML TIMIT PIPELINE

KEYSTONE-ML TIMIT PIPELINE

Cosine

Raw

PROPERTIES

Normalization

Iterative (each iteration many jobs)

Numerically Intensive

Long Running \rightarrow Expensive

CLOUD COMPUTING CHOICES

t2.nano, t2.micro, t2.small m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m3.medium, c4.large, c4.xlarge, c4.2xlarge,	Basic tier: A0, A1, A2, A3, A4 Optimized Compute : D1, D2, D3, D4, D11, D12, D13 D1v2, D2v2, D3v2, D11v2,	n1-standard-1, ns1-standard-2, ns1-standard-4, ns1-standard-8, ns1-standard-16, ns1highmem-2, ns1-highmem-4, ns1-highmem-8,
Instance Types and Number of Instances		
l2.2xlarge, l2.4xlarge, d2.xlarge d2.2xlarge, d2.4xlarge,	Compute Intensive: A10, A11,	highcpu-32, f1-micro, g1-small
AMAZON EC2	MICROSOFT AZURE	GOOGLE CLOUD ENGINE

н

TYRANNY OF CHOICE

"What is the cheapest configuration to run my job in 2 hours?"

USER Concerns

Given a budget, how fast can I run my job ?

"What kind of instances should I use on EC2 ?"

DO CHOICES MATTER ? MATRIX MULTIPLY

Matrix size: 400K by 1K

DO CHOICES MATTER ?

Matrix Multiply: 400K by 1K

DO CHOICES MATTER ?

r3.4xlarge instances, QR Factorization:1M by 1K

Performance Model

Black Box Jobs

Model Building Overhead

Regular Structure + Few Iterations

MODELING JOBS

COMPUTATION PATTERNS

BASIC MODEL

Collect Training Data

Fit Linear Regression

COLLECTING TRAINING DATA

Grid of input, machines

Associate cost with each experiment

Baseline: Cheapest configurations first

OPTIMAL DESIGN OF EXPERIMENTS

Given a Linear Model

$$y_i = a_i^T x + w_i, \quad i = 1, \dots, m,$$

 λ_i – Fraction of times each experiment is run

Minimize
$$\operatorname{tr}((\sum_{i=1}^{m} \lambda_i a_i a_i^T)^{-1})$$

subject to $\lambda_i \ge 0, \lambda_i \le 1$
 $\sum_{i=1}^{m} c_i \lambda_i \le B$

Lower variance → Better model

Bound total cost

OPTIMAL DESIGN OF EXPERIMENTS

USING ERNEST

Detecting when the model is wrong

Model extensions

MORE IN THE PAPER

Amazon EC2 variations over time

Straggler mitigation strategies

Sparse datasets

EVALUATION

OBJECTIVES

Optimal number of machines Prediction accuracy Model training overhead Importance of experiment design Choosing EC2 instance types Model extensions

WORKLOADS

Keystone-ML Spark MLlib ADAM GenBase Sparse GLMs Random Projections

OBJECTIVES

Optimal number of machines Prediction accuracy Model training overhead Importance of experiment design Choosing EC2 instance types Model extensions

WORKLOADS

Keystone-ML Spark MLlib ADAM GenBase Sparse GLMs Random Projections

NUMBER OF INSTANCES: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, 100 iterations

ACCURACY: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, Time Per Iteration

TRAINING TIME: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, 100 iterations

IS EXPERIMENT DESIGN USEFUL ?

IN CONCLUSION

Workload Trends: Advanced Analytics in the Cloud

Computation, Communication patterns affect scalability

Ernest: Performance predictions with low overhead End-to-end linear model Optimal experimental design