
Ernest
Efficient Performance Prediction for
Large-Scale Advanced Analytics

Shivaram Venkataraman, Zongheng Yang
Michael Franklin, Benjamin Recht, Ion Stoica

Workload TRENDS: ADVANCED ANALYTICS

Workload Trends: Advanced Analytics

4

Workload Trends: Advanced Analytics

5

Workload Trends: Advanced Analytics

Keystone-ML TIMIT PIPELINE

Cosine Transform Normalization Linear SolverRaw Data

Cosine
Transform Normalization

Linear Solver

~100 iterations

Iterative
(each iteration many jobs)

Long Running à Expensive

Numerically Intensive

7

Keystone-ML TIMIT PIPELINE
Raw
Data

Properties

Cloud Computing CHOICEs

Amazon EC2

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m3.medium,
c4.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge
d2.2xlarge, d2.4xlarge,…

MICROSOFT AZURE

Basic tier: A0, A1, A2, A3, A4
Optimized Compute : D1, D2,
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,…
Latest CPUs: G1, G2, G3, …
Network Optimized: A8, A9
Compute Intensive: A10, A11,…

n1-standard-1, ns1-standard-2,
ns1-standard-4, ns1-standard-8,
ns1-standard-16, ns1highmem-2,
ns1-highmem-4, ns1-highmem-8,
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small…

Google Cloud Engine

Instance Types and Number of Instances

TYRANNY of CHOICE

User
Concerns

“What is the cheapest configuration to run my job in 2 hours?”

Given a budget, how fast can I run my job ?

“What kind of instances should I use on EC2 ?”

10

DO CHOICES MATTER ? MATRIX MULTIPLY

0

5

10

15

20

25

30

Ti
m

e
(s)

1 r3.8xlarge

2 r3.4xlarge

4 r3.2xlarge

8 r3.xlarge

16 r3.large

Matrix size: 400K by 1K

Cores = 16
Memory = 244 GB
Cost = $2.66/hr

DO CHOICES MATTER ?

0

5

10

15

20

25

30

Ti
m

e
(s)

1 r3.8xlarge

2 r3.4xlarge

4 r3.2xlarge

8 r3.xlarge

16 r3.large

Matrix Multiply: 400K by 1K

0

5

10

15

20

25

30

35

Ti
m

e
(s)

QR Factorization 1M by 1K

Network Bound Mem Bandwidth Bound

0

10

20

30

0 100 200 300 400 500 600

Ti
m

e
(s)

Cores

Actual Ideal

r3.4xlarge instances, QR Factorization:1M by 1K

13

Do choices MATTER ?

Computation + Communication à Non-linear Scaling

APPROACH

JobData +

Performance Model

Challenges

Black Box Jobs

Model Building Overhead

Regular Structure + Few Iterations

Modeling Jobs

15

Computation patterns

Time INPUT Time 1
machines

Communication Patterns

ONE-To-ONE Tree DAG All-to-one

CONSTANT LOG LINEAR

17

BASIC Model

time = x1 + x2 ∗
input

machines
+ x3 ∗ log(machines)+ x4 ∗ (machines)

Serial
Execution

Computation (linear)

Tree DAG

All-to-One DAG

Collect Training Data Fit Linear Regression

COLLECTING TRAINING DATA

1%

2%

4%

8%

1 2 4 8

In
pu

t

Machines

Grid of
input, machines

Associate cost with
each experiment

Baseline: Cheapest
configurations first

OPTIMAL Design of EXPERIMENTS

384 7 Statistical estimation

σ

pr
ob

ab
ili
ty

of
co
rr
ec
t
de

te
ct
io
n

0.2 0.3 0.4 0.5
0.9

0.95

1

Figure 7.8 The Chernoff lower bound (solid line) and a Monte Carlo esti-
mate (dashed line) of the probability of correct detection of symbol s1, as
a function of σ. In this example the noise is Gaussian with zero mean and
covariance σ2I.

7.5 Experiment design

We consider the problem of estimating a vector x ∈ Rn from measurements or
experiments

yi = aTi x+ wi, i = 1, . . . ,m,

where wi is measurement noise. We assume that wi are independent Gaussian
random variables with zero mean and unit variance, and that the measurement
vectors a1, . . . , am span Rn. The maximum likelihood estimate of x, which is the
same as the minimum variance estimate, is given by the least-squares solution

x̂ =

(
m∑

i=1

aia
T
i

)−1 m∑

i=1

yiai.

The associated estimation error e = x̂− x has zero mean and covariance matrix

E = E eeT =

(
m∑

i=1

aia
T
i

)−1

.

The matrix E characterizes the accuracy of the estimation, or the informativeness
of the experiments. For example the α-confidence level ellipsoid for x is given by

E = {z | (z − x̂)TE−1(z − x̂) ≤ β},

where β is a constant that depends on n and α.
We suppose that the vectors a1, . . . , am, which characterize the measurements,

can be chosen among p possible test vectors v1, . . . , vp ∈ Rn, i.e., each ai is one of

Given a Linear Model

20

Lower variance à
Better model

λi - Fraction of times each experiment is run
comparing two schemes: in the first scheme we collect data
in an increasing order of machines and in the second scheme
we use a mixed strategy as shown in Figure 6. From the fig-
ure we make two important observations: (a) in this partic-
ular case, the mixed strategy gets to a lower error quickly.
After three data points we get to less than 15% error. (b) We
see a trend of diminishing returns where adding more data
points does not improve accuracy by much. Thus, in order to
minimize the time spent on collecting training data we need
techniques that will help us find how much training data is
required and what those data points should be.

4. Improving Predictions
To improve the time taken for training without sacrificing
the prediction accuracy, in this section we outline a scheme
based on optimal experiment design, a statistical technique
that can be used to minimize the number of experiment runs
required. After that we discuss the trade-offs associated with
including more fine-grained information in the form of time
taken per-task as opposed to end-to-end jobs.

4.1 Optimal Experiment Design
In statistics, experiment design [55] refers to the study of
how to collect data required for any experiment given the
modeling task at hand. Optimal experiment design specifi-
cally looks at how to choose experiments that are optimal
with respect to some statistical criterion. At a high-level the
goal of experiment design is to determine data points that can
give us most information to build an accurate model. In or-
der to do this we choose some subset of training data points
and then determine how far a model trained with those data
points is from the ideal model.

More formally, consider the problem where we are try-
ing to fit a linear model X given measurements y1, . . . , ym
and features a1, . . . , am for each measurement. Each feature
vector could in turn consist of a number of dimensions (say
n dimensions). In the case of a linear model we typically
estimate X using linear regression. We can denote this esti-
mate as ˆX and ˆX � X is the estimation error or a measure
of how far our model is from the true model.

To measure estimation error we can compute the Mean
Squared Error (MSE) which takes into account both the
bias and the variance of the estimator. In the case of the
linear model above if we have m data points each having
n features, then the variance of the estimator is represented

by the n⇥ n covariance matrix (

mP
i=1

aia
T
i)

�1. The key point

to note here is that the covariance matrix only depends on the
feature vectors that were used for this experiment and not on
the model that we are estimating.

In optimal experiment design we choose feature vectors
(i.e. ai) that minimize the estimation error. Thus we can
frame this as an optimization problem where we minimize
the estimation error subject to some constraints on the cost
or number of experiments we wish to run. More formally we

can set �i as the fraction of time an experiment is chosen and
minimize the trace of the covariance matrix:

Minimize tr((
mX

i=1

�iaia
T
i)

�1
)

subject to �i � 0,�i 1

Using Experiment Design: The predictive model we de-
scribed in the previous section can be formulated as an ex-
periment design problem. The feature set used for model de-
sign consisted of just the scale of the data used and the num-
ber of machines used for the experiment. Given some bounds
for the scale and number of machines we want to explore, we
can come up with all the features that could be used in our
experiment. For example if the scale bounds range from say
1% to 10% of the data and the number of machine we can
use ranges from 1 to 5, we can enumerate 50 different fea-
ture vectors from all the scale and machine values possible.
We can then feed these feature vectors into the experiment
design setup described above and only choose to run those
experiments whose � values are non-zero.
Accounting for Cost: One additional factor we need to
consider in using experiment design is that each experiment
we run costs a different amount. This cost could be in terms
of time (i.e. it is more expensive to train with larger fraction
of the input) or in terms of machines (i.e. there is a fixed
cost to say launching a machine). To account for the cost
of an experiment we can augment the optimization problem
we setup above with an additional constraint that the total
cost should be lesser than some budget. That is if we have a
cost function which gives us a cost ci for an experiment with
scale si and mi machines, we add a constraint to our solver
that

mP
i=1

ci�i B where B is the total budget. For the rest

of this paper we use the time taken to collect training data
as the cost and ignore any machine setup costs as we can
usually amortize that cost over all the training data we need
to collect. However we can plug-in in any user-defined cost
function in our framework.
Implementation: The optimization problem we defined
above can be solved using any standard convex program-
ming solver like CVX [38, 39]. Even for a large range of
scale and machine values we find that the time to complete
this process is a few seconds. Thus we believe that there
should be no additional overhead due to this step. Finally
we also note that the results from experiment design can be
used across multiple jobs as it only depends on the scale and
number of machines under consideration.

4.2 Using Per-Stage Timings
Although the model described in the previous section en-
codes some of the patterns we see in execution DAGs, we
didn’t explicitly measure anything other than the end-to-end
running time of the whole job. Given that existing data pro-
cessing frameworks already have support for fine grained

6 2015/3/26

Bound total cost

comparing two schemes: in the first scheme we collect data
in an increasing order of machines and in the second scheme
we use a mixed strategy as shown in Figure 6. From the fig-
ure we make two important observations: (a) in this partic-
ular case, the mixed strategy gets to a lower error quickly.
After three data points we get to less than 15% error. (b) We
see a trend of diminishing returns where adding more data
points does not improve accuracy by much. Thus, in order to
minimize the time spent on collecting training data we need
techniques that will help us find how much training data is
required and what those data points should be.

4. Improving Predictions
To improve the time taken for training without sacrificing
the prediction accuracy, in this section we outline a scheme
based on optimal experiment design, a statistical technique
that can be used to minimize the number of experiment runs
required. After that we discuss the trade-offs associated with
including more fine-grained information in the form of time
taken per-task as opposed to end-to-end jobs.

4.1 Optimal Experiment Design
In statistics, experiment design [55] refers to the study of
how to collect data required for any experiment given the
modeling task at hand. Optimal experiment design specifi-
cally looks at how to choose experiments that are optimal
with respect to some statistical criterion. At a high-level the
goal of experiment design is to determine data points that can
give us most information to build an accurate model. In or-
der to do this we choose some subset of training data points
and then determine how far a model trained with those data
points is from the ideal model.

More formally, consider the problem where we are try-
ing to fit a linear model X given measurements y1, . . . , ym
and features a1, . . . , am for each measurement. Each feature
vector could in turn consist of a number of dimensions (say
n dimensions). In the case of a linear model we typically
estimate X using linear regression. We can denote this esti-
mate as ˆX and ˆX � X is the estimation error or a measure
of how far our model is from the true model.

To measure estimation error we can compute the Mean
Squared Error (MSE) which takes into account both the
bias and the variance of the estimator. In the case of the
linear model above if we have m data points each having
n features, then the variance of the estimator is represented

by the n⇥ n covariance matrix (

mP
i=1

aia
T
i)

�1. The key point

to note here is that the covariance matrix only depends on the
feature vectors that were used for this experiment and not on
the model that we are estimating.

In optimal experiment design we choose feature vectors
(i.e. ai) that minimize the estimation error. Thus we can
frame this as an optimization problem where we minimize
the estimation error subject to some constraints on the cost
or number of experiments we wish to run. More formally we

can set �i as the fraction of time an experiment is chosen and
minimize the trace of the covariance matrix:

Minimize tr((
mX

i=1

�iaia
T
i)

�1
)

subject to �i � 0,�i 1

Using Experiment Design: The predictive model we de-
scribed in the previous section can be formulated as an ex-
periment design problem. The feature set used for model de-
sign consisted of just the scale of the data used and the num-
ber of machines used for the experiment. Given some bounds
for the scale and number of machines we want to explore, we
can come up with all the features that could be used in our
experiment. For example if the scale bounds range from say
1% to 10% of the data and the number of machine we can
use ranges from 1 to 5, we can enumerate 50 different fea-
ture vectors from all the scale and machine values possible.
We can then feed these feature vectors into the experiment
design setup described above and only choose to run those
experiments whose � values are non-zero.
Accounting for Cost: One additional factor we need to
consider in using experiment design is that each experiment
we run costs a different amount. This cost could be in terms
of time (i.e. it is more expensive to train with larger fraction
of the input) or in terms of machines (i.e. there is a fixed
cost to say launching a machine). To account for the cost
of an experiment we can augment the optimization problem
we setup above with an additional constraint that the total
cost should be lesser than some budget. That is if we have a
cost function which gives us a cost ci for an experiment with
scale si and mi machines, we add a constraint to our solver
that

mP
i=1

ci�i B where B is the total budget. For the rest

of this paper we use the time taken to collect training data
as the cost and ignore any machine setup costs as we can
usually amortize that cost over all the training data we need
to collect. However we can plug-in in any user-defined cost
function in our framework.
Implementation: The optimization problem we defined
above can be solved using any standard convex program-
ming solver like CVX [38, 39]. Even for a large range of
scale and machine values we find that the time to complete
this process is a few seconds. Thus we believe that there
should be no additional overhead due to this step. Finally
we also note that the results from experiment design can be
used across multiple jobs as it only depends on the scale and
number of machines under consideration.

4.2 Using Per-Stage Timings
Although the model described in the previous section en-
codes some of the patterns we see in execution DAGs, we
didn’t explicitly measure anything other than the end-to-end
running time of the whole job. Given that existing data pro-
cessing frameworks already have support for fine grained

6 2015/3/26

OPTIMAL Design of EXPERIMENTS

1%

2%

4%

8%

1 2 4 8

In
pu

t

Machines

Use off-the-shelf solver
(CVX)

USING ERNEST

Training
Jobs

Job
Binary

Machines,
Input Size

Linear
Model

Experiment
Design

Use few iterations for
training

0

200

400

600

800

1000

1 30 900

Ti
m

e

Machines

ERNEST

MORE in the paper

Detecting when the model is wrong

Model extensions

Amazon EC2 variations over time

Straggler mitigation strategies

Sparse datasets

EVALUATION

24

Workloads
Keystone-ML

Spark MLlib
ADAM

GenBase
Sparse GLMs

Random Projections

OBJECTIVES

Optimal number of machines
Prediction accuracy
Model training overhead
Importance of experiment design
Choosing EC2 instance types
Model extensions

Workloads
Keystone-ML

Spark MLlib
ADAM

GenBase
Sparse GLMs

Random Projections

OBJECTIVES

Optimal number of machines
Prediction accuracy
Model training overhead
Importance of experiment design
Choosing EC2 instance types
Model extensions

NUMBER OF INSTANCES: Keystone-ml

TIMIT Pipeline on r3.xlarge instances, 100 iterations

27

0
4000
8000

12000
16000
20000
24000

0 20 40 60 80 100 120 140

Ti
m

e
(s)

Machines

For 2 hour deadline, up to 5x lower cost

ACCURACY: Keystone-ml

TIMIT Pipeline on r3.xlarge instances, Time Per Iteration

28

0
40
80

120
160
200

0 20 40 60 80 100 120 140Ti
m

e
Pe

r I
te

ra
tio

n
(s)

Machines

10%-15% Prediction error

TRAINING TIME: Keystone-ml

TIMIT Pipeline on r3.xlarge instances, 100 iterations

29

7 data points
Up to 16 machines
Up to 10% data

EXPERIMENT DESIGN

0 1000 2000 3000 4000 5000 6000

42 machines

Time (s)

Training Time
Running Time

0% 20% 40% 60% 80% 100%

Regression

Classification

KMeans

PCA

TIMIT

Prediction Error (%)

Experiment Design

Cost-based

Is Experiment Design useful ?

30

IN Conclusion

Workload Trends: Advanced Analytics in the Cloud

Computation, Communication patterns affect scalability

Ernest: Performance predictions with low overhead

End-to-end linear model
Optimal experimental design

31

