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ABSTRACT

Cellular network service providers often have to conduct small scale
testing in the operational network before a change (e.g., a new fea-
ture) is fully rolled out across the entire network. This is referred to
as the First Field Application (FFA). However, assessing the effec-
tiveness of FFA changes is challenging because of overlapping ex-
ternal factors: seasonality (foliage, leaves budding), weather (rain,
snow, hurricanes, storms), traffic pattern changes due to big events
(e.g., games at stadiums, students returning to school after holi-
days), and network events such as outages or other maintenance
activities in different regions. In this paper, we first highlight the
technical challenges in assessing the service performance impact of
changes in operational cellular networks. We then propose Litmus,
a new approach based on a spatial dependency model for robust as-
sessment of changes. We evaluate the effectiveness of Litmus using
real-world data from operational cellular networks (GSM, UMTS
and LTE). Our operational experiences demonstrate accurate infer-
ences of the service performance impact of changes in the field.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management; G.3 [Probability and Statistics]:
Statistical Computing

General Terms

Management, Performance, Reliability

Keywords

Cellular networks, Statistical change detection, Study and control
group analysis, Robust spatial regression

1. INTRODUCTION

In recent years, there has been a rapid growth in the usage and
popularity of cellular voice and data services. This explosive growth
places high demand and stringent requirements on wireless cellu-
lar networks and the supporting transport infrastructure. Cellular
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Figure 1: Performance impact assessment of configuration
change is significantly influenced by extremely strong winds in
the region.

service providers are rolling out capacity at an aggressive pace, ex-
panding coverage, introducing new technologies (e.g., LTE, voice
over LTE), upgrading software to introduce new features and to
continuously enhance service performance and regularly tuning net-
work element configurations. Changes have to be carefully planned,
tested and executed in order to ensure a continuous high quality of
experience to end-users.

Extensive testing of each new type of network change (e.g., new
software) is typically executed in large-scale laboratory environ-
ments. However, no laboratory environment can fully replicate the
scale, complexity and diversity of a large scale operational network.
Thus, once a change has been certified in a lab environment, it is
then tested on a relatively small scale in the network. We refer
to this here as the First Field Application (FFA). If the change is
deemed successfully trialed there, it can then be rolled out network-
wide. The decision to proceed with a wide-scale roll out is referred
to here as a “go or no-go” decision. There are several methodolo-
gies [5, 20, 19, 23, 25] to assess the performance impact of network
changes. They perform a statistical comparison of performance be-
fore and after the change and output if there is an improvement,
degradation or no impact induced by the change. However, the per-
formance assessment of changes in cellular networks introduces a
relatively unique set of technical challenges because of the strong
dependency of service performance on external factors.

Service performance in cellular networks is influenced by many
external factors including weather (e.g., heavy rainfall introduces
obstruction for radio signal propagation), terrain (mountains, flat
surfaces have different propagation characteristics), foliage changes
(e.g., leaves on trees create wireless signal fading), urban environ-
ments (presence of tall buildings), network load and user popu-
lation densities. The impact of external factors can over-shadow
the performance assessment of changes in operational cellular net-
works. Thus, it is important to carefully account for the exter-
nal factors in order to make accurate inferences on the impact of
changes.



In this paper, we use real-world data ' collected over two years
from operational cellular networks (GSM, UMTS and LTE) and
demonstrate that external factors such as seasonality (because of
foliage), weather changes (strong winds, rainfall, thunderstorms or
extreme events like hurricanes or tornadoes), traffic changes (due
to holidays, major events) and network events (outages and other
maintenance activities) have a significant impact on service per-
formance. Fig. 1 shows an example how strong winds in a region
negatively impacted service performance (increase in the dropped
voice call ratios) and this coincidentally co-occurred with the time
of a configuration change at a network element. Anyone assessing
the performance impact of the change (either manually or using
an automated tool) without the knowledge of the current weather
conditions and its performance impact, would have made incorrect
conclusions. Thus, it is important to ensure that the performance
impact of changes are not over-shadowed by other external factors.

Our approach. We propose a new approach, Litmus, to accu-
rately assess the performance impact of changes in cellular net-
works and to tackle the over-shadowing impact of the external fac-
tors. The key idea is to compare the relative performance before
and after the change at the study group (network elements where
the change is implemented) and the control group (network ele-
ments without the change). Our algorithm learns a statistical de-
pendency structure between the performance at the study and con-
trol groups before the change. The dependency structure captures
how well one group can be used to forecast the other. It then uses
the performance at the control group after the network change to
construct the forecast values for the study group after the change.
The hypothesis is that if there is no performance impact at the study
group, then the dependency structure between the study and control
groups should not change. Changes in the dependency structure are
indicative of a performance impact induced by the network change.

We select the control group using a domain knowledge guided
approach, with the control group having a similarity in certain at-
tributes (e.g., geographic location or software version) with the
study group. The external factor has a higher likelihood of induc-
ing a similar performance impact at both the study and the control
groups (e.g., weather changes will lead to a correlated degradation
in performance across the study as well as the control groups).

The intuition behind study and control group analysis is based on
three observations made using data collected from operational cel-
lular networks. (i) Service performance at geographically nearby
network elements is statistically correlated. (ii) External factors
induce similar performance impact across multiple network ele-
ments. (iii) A performance impacting change at the study group
creates a change in the relative performance between the study and
the control group. By analyzing the relative performance between
the study and the control groups, Litmus can effectively and accu-
rately assess the performance impact of changes at the study group
even in the presence of external factors.

Challenges. We need to address two key challenges: (i) Robust
inference of the relative change in performance between the study
and the control group - we want to avoid unrelated performance
changes in a small number of control group elements to signifi-
cantly and negatively impact the inference. (ii) Selecting network
elements within the control group - an inaccurate selection would
nullify the advantage of study and control group comparison. For
example, when assessing the performance impact of changes at the
study group elements in Northeastern regions of the United States

"We explicitly do not show any service performance numbers in
the paper for proprietary reasons and risk of misuse by marketing.
The observations and inferences still hold.
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that are influenced by foliage, it is important to select the control
group elements from the regions influenced by foliage.

Our contributions.

e Algorithm: We proposed a new spatial regression algorithm in
Litmus for doing a robust performance comparison of the study
group and the control group especially when operationally it is
impossible to guarantee a clean or eventless control group. Our
algorithm is more effective than the study group only analy-
sis [9, 18] and Difference in Differences (DiD) [21, 26].

e Application: We designed a domain knowledge guided con-
trol group selection that better captures the characteristics of
external factors in cellular domain. Litmus is being success-
fully applied in operational cellular networks to assess the per-
formance impact of changes. The output of Litmus is used in
the decision making for a go or no-go for wide-scale deploy-
ment of changes. The “go or no-go” decision for the First
Field Application (FFA) of the change is made by the Engi-
neering and Operations teams based on the performance im-
pacts (improvements or no degradations) induced by the net-
work changes in the field. For example, service performance
improvements observed at all of the FFA locations indicate that
the network change would lead to an overall improvement of
the quality of experience to the end-users and thus should be
rolled out network-wide. Our experience has shown that ex-
ternal factors make the performance assessment in initial field
tests difficult and comparisons between study and control group
can help eliminate (or, reduce) the over-shadowing impact of
external factors.

Paper organization. The rest of the paper is organized as fol-
lows. In Section 2, we provide background information on cellular
service architecture and network changes followed by descriptions
and motivating examples for why inferring the service performance
impact of changes is hard specially in the presence of external fac-
tors. We present the design of Litmus in Section 3. In Section 4, we
present a thorough evaluation of Litmus using data collected from
operational cellular networks (known assessments as well as syn-
thetic injection analysis) and demonstrate that it is more effective
and accurate as compared to the study group only analysis as well
as Difference in Differences [21, 26] approach in assessing the per-
formance impact of changes in the presence of external factors. We
share interesting case study findings in Section 5. We conclude in
Section 6 with a discussion of future research opportunities in the
area of change impact analysis.

2. BACKGROUND AND MOTIVATION

In this section, we first describe the cellular network architecture
for Global System for Mobile Communications (GSM), Univer-
sal Mobile Telecommunications System (UMTS) and Long Term
Evolution (LTE) (Section 2.1). In Section 2.2, we describe data
sets relevant to the rest of the paper. In Section 2.3, we catego-
rize the cellular network changes into high frequency changes to
dynamically deal with changing network and traffic conditions and
low frequency changes to optimize service performance over longer
time-scales. Assessing the performance impact of changes has re-
cently received a lot of attention and we summarize related work in
Section 2.4. Finally, we use real-world data collected from opera-
tional cellular networks to demonstrate the technical challenges in
assessing the impact of changes in cellular networks (Section 2.5).

2.1 Cellular Service Architecture

Fig. 2 shows the architecture for GSM, UMTS and LTE cellu-
lar networks. The cellular networks consist of three domains: User
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Figure 2: Cellular Network and Service Architecture for GSM,
UMTS and LTE.

Equipment (UE), Radio Access Network (RAN) and Core Network
(CN). The UE or mobile devices communicate using the air in-
terface to the RAN network. They can either operate in Packet
Switched (PS) mode where only data services can be accessed,
Circuit Switched (CS) mode where only voice services can be ac-
cessed, or PS/CS mode where the UE is capable of simultaneously
operating PS services and CS services.

Each RAN is subdivided into individual radio network systems
(RNSs), where each RNS is controlled by a controller - Base Sta-
tion Controller (BSC) for GSM, Radio Network Controller (RNC)
for UMTS and evolved NodeB (eNodeB) for LTE. The main func-
tions of the controllers are radio resource control, admission con-
trol, power control, handover control and broadcast signaling. In
LTE, each controller (eNodeB) serves one or more cells, whereas,
in GSM and UMTS, each controller connects to a set of towers
(BTS and NodeB respectively), which each serve one or multi-
ple cells. Generally, each cell tower has multiple transceivers or
sectors. Each sector configurable by the frequency of operation,
antenna tilt and downlink transmission power, determines the cov-
erage area within a region. The UEs communicate via a serving
sector and can hand-off to a neighboring sector (either on the same
cell tower, or a different cell tower on the same radio access tech-
nology, or across technologies).

The core network is responsible for providing switching, routing
and transit for user traffic. It also contains databases and network
management functions. In GSM/UMTS, the core has separate ele-
ments for CS and PS. The main components for the CS core are the
Mobile Service Switching Center (MSC) and Gateway Mobile Ser-
vice Switching Center (GMSC). The MSC processes and tracks all
incoming and outgoing voice calls. It is responsible for all call rout-
ing and billing functions as well as voice mail activity. The GMSC
provides inter-connectivity with external circuit switched networks
and cellular providers. The PS core consists of the Serving GPRS
Support Node (SGSN) and Gateway GPRS Support Node (GGSN).
The SGSN is responsible for transport and delivery of data packets
to/from the UE, mobility management, authentication of the users
and managing the logical link to the UE. The primary role of the
GGSN is to route data from the Internet to the UE and vice versa.

The LTE core consists of the Policy Control and Charging Rules
Function (PCRF), Home Subscriber Server (HSS), Serving Gate-
way (S-GW), Packet Data Network Gateway (P-GW), and the Mo-
bility Management Entity (MME). All user IP packets are trans-
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ferred through the S-GW. The MME is the control node which
processes the signaling information between the UE and the core
network. The P-GW is responsible for IP address allocation for the
UE, as well as QoS enforcement and flow-based charging accord-
ing to the rules from PCRE.

2.2 Data Sets

We now describe the data sets used in the rest of the paper. The
cellular service provider collects a plethora of data from cell towers,
radio network controllers, core switches, routers and servers. The
data sets include performance measurements, call detail records
(CDR), change management logs, and configuration snapshots.

Service performance measurements. Performance counters col-
lected from individual network elements are used to compute ag-
gregate service quality metrics such as voice and data accessibility,
retainability, and data throughput. Accessibility is a measure of
successful call attempts placed by users on the cellular network.
An increase in call attempt failures leads to a lower accessibil-
ity. Retainability is a measure of successful call termination as
issued by the user and not by the network. Network call termi-
nations (also known as dropped calls) could happen due to several
reasons such as radio interference, handover issues (intra or inter
radio access technology), congestion, or radio link failure. Higher
rates of dropped calls lead to lower retainability. Accessibility and
retainability metrics are calculated separately for voice and data
sessions. Data throughput captures the bits / bytes / packets de-
livered to users over the cellular network. We use these service
quality metrics to assess the impact of network changes. They are
also referred to as Key Performance Indicators (KPI).

Network change management logs. The change management
logs contain information about the changes and maintenance ac-
tivities scheduled at the network elements. The cellular network
changes can be either in the form of configuration changes (e.g.,
antenna tilt modifications, radio link failure timers), software up-
grades, topological changes (e.g., re-homes of network equipment),
hardware/firmware upgrades or traffic movements across data cen-
ters. They are often made to improve service performance, intro-
duce new features, plan for big events (e.g., Superbowl), or to re-
duce operational cost. We use the change information to determine
when and where to perform the service performance assessments.

Network configuration. The configuration snapshots are col-
lected on a daily basis and used to automatically infer the topo-
logical structure of the cellular network. The topological structure
is used to identify (i) the causal impact scope of network changes
(e.g., neighboring cell towers), and (ii) the control group elements
within geographical proximity of the study group (e.g., cell towers
sharing the common upstream radio network controllers).

2.3 Cellular Network Changes

Based on our observations of the types of changes in cellular
networks, we categorize them into: (i) high frequency changes, and
(i1) low frequency changes.

High frequency changes. Certain configuration parameters are
dynamically changed based on network and traffic conditions. This
is done by the cellular service providers to ensure rapid responses
to changing network and traffic behaviors. For example, during a
road accident or points of traffic congestion, the cell tower param-
eters can be dynamically adjusted to improve the service perfor-
mance. Antenna tilt and power can be adjusted to balance traffic
between cell towers. Decreasing power on a heavily loaded cell
tower and increasing power on a lightly loaded neighboring cell
tower can balance the load and lead to a better quality of experi-
ence to the end-users. Up-tilting the antenna increases the cover-



age area, while down-tilting the antenna reduces the coverage. We
refer to these parameters as having a high frequency of changes.
These high frequency change parameters are often controlled man-
ually by the engineering teams and have different values at different
locations. Recently there have been initiatives to deploy Self Opti-
mizing Network (SON) [22] solutions that can automatically tune
the network parameters in response to changing network and traffic
conditions and improve service performance.

Low frequency changes. Configuration parameters that are changed

on a longitudinal basis (e.g., once in six months or a year) are re-
ferred to as low frequency changes. Gold standard configuration
parameters have low frequency for their changes and are typically
adapted during major software releases, or new feature roll-outs.
An example of a low frequency gold standard parameter is a radio
link failure recovery timer which would stay stationary over a long
time and only changed with new service requirements or software
loads. Typically, the recommendations for gold standard parameter
changes come from the Planning and Engineering teams in collab-
oration with the equipment vendors. The gold standard parameters
have the rule: One value fits all locations for easy management
across the network.

2.4 Assessing Impacts of Changes

Once the changes are applied in the network, it is important to
carefully identify their service performance impact. During the
testing phase of FFA (First Field Application) changes, performance
assessment plays a very important role in ensuring that the expected
performance impacts (significant performance improvements and
no degradations) are observed in the field. In order to ensure that
the performance impacts of network changes are persistent, a longer
time-scale (e.g., 1-2 weeks) is typically selected for comparing the
performance before and after the network change.

Related work. Mercury [20] compares the performance before
and after the network change on a long-term basis (on the order of
several days) and provides effective ways of conducting a network-
wide assessment of changes. PRISM [19] however, focuses on a
single network element under change and performs a near real-time
performance assessment of network changes. Spectroscope [25]
diagnoses performance changes by comparing two executions be-
fore and after the change. Reitblatt ez al. [23] use per-packet and
per-flow abstractions to ensure consistent behaviors during network
updates. Canini et al. [5] use model checking for OpenFlow appli-
cations to capture subtle bugs during network updates. X-ray [4]
uses differential performance analysis to compare the execution of
two similar operations and explain why their performance differs.
None of the existing approaches focus on the problem of perfor-
mance assessment of changes in the presence of external factors.
They do not explicitly compare the performance at the study group
with that of the control group. By focusing on study group only
analysis, they could inaccurately infer the performance impact of
changes in the presence of external factors. PCA [12, 13, 17, 24],
SSA [10, 14] and compressive sensing [30] detect network-wide
anomalies using unsupervised learning. However, they do not ex-
plicitly use the knowledge of study group versus control group net-
work elements and could result in inaccurate inferences of the im-
pact at the study group. For example, unsupervised learning would
not be able to correctly identify a relative degradation at the study
group compared to control when absolute improvements are ob-
served across both the study and the control groups (Fig. 7(c) in
Section 3.1). Using a supervised learning model is better tailored
to the problem at hand. We believe that we are the first to use a
supervised learning model and study group versus control group
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Figure 3: Seasonal patterns (due to foliage change) in Voice Re-
tainability (daily aggregated) for UMTS cell towers at North-
eastern region of United States using two years of operational
network data.

performance analysis in Litmus to accurately infer the impact of
changes even in the presence of external factors.

Litmus comparison to A/B testing [15, 16]. A/B controlled ex-
periments and testing (also known as split testing, control/treatment
tests) are used in the web domains for making data-driven deci-
sions. Web users are randomly exposed to one of the two variants
of the experiments: control (A) and treatment or study (B). The
user interactions are then recorded and key metrics are compared
to analyze the impact of the treatment or study. In comparison to
Litmus, the applications and domains are different. Study/control
test and assessment are tied together in A/B testing, whereas in our
problem, it is beyond our control when and where to execute the
change. We explicitly focus on assessing the impact of executed
changes. The control group might be subject to other events such
as changes or unplanned outages. Thus, special consideration of ro-
bustness in regression and control group selection criteria is crucial
in our context. It remains an interesting future challenge to design
a change execution plan (under complex and massive operational
constraints as well as foreseeable external factors such as weather,
social events) for more effective impact assessment.

2.5 Why is Assessment Hard?

Assessing the impact of changes in operational cellular networks
is hard because of the open nature of the system and the influence
of external factors on service performance. In this section, using
real-world data collected over two years from operational cellular
networks, we will present illustrative and motivating examples that
demonstrate the challenges of inferring the service performance
impact of network changes in the presence of external factors such
as seasonality, weather changes, traffic pattern changes and net-
work events such as outages and other changes.

Seasonality. There is a significant influence of seasonality on the
service performance metrics such as voice and data accessibility,
retainability, and data throughput. Seasonality is observed at multi-
ple time-scales: usage pattern of end users introduces a time-of-day
effect (e.g., high call volumes at peak hours of the day and low call
volumes at night), and a weekly pattern (weekend versus weekday).
Long-term seasonality at a yearly time-scale is seen in regions with
extreme temperatures. Using two years worth of data collected
from operational cellular networks (GSM, UMTS and LTE), we ob-
serve yearly seasonality across multiple service performance met-
rics. We show daily aggregated voice retainability for UMTS cell
towers in the Northeastern regions of United States in Fig 3. There
is a performance dip from April to August every year because of
leaves budding, and a performance improvement from September
to January because of leaves falling off the trees. Leaves create
obstruction for radio signal propagation resulting in wireless sig-
nal fading. We see a better service performance when there are no
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Figure 4: Performance degradation across multiple Radio Net-
work Controllers (RNCs) due to severe storms and damaging
hail during a tornado.
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The voice retainability during the big event is less than before
because of the dramatic increase in the total number of voice calls

Figure 5: Traffic volumes and service performance for voice
calls during a big event as compared to before.

leaves on the trees. We validate this seasonal trend (well recognized
within the literature [6, 7]) using operational data. Performance as-
sessment thus becomes challenging during time-intervals of impact
due to foliage changes. Note that the overall increasing trends are
likely due to the continuous improvements performed by the carrier
on the network. Seasonal patterns however are not observed in the
Southeastern region because of a lack of foliage change.

Weather changes. Different weather conditions such as rain, fog,
snow and wind affect the voice as well as data sessions. Objects
in the air such as rain, fog or snow have a negative impact on cel-
lular service performance. Severe events such as massive storms,
hail, tornadoes, or earthquakes can cause network outages (e.g.,
tower failures, transport equipments out of service) and perfor-
mance degradation for a longer time-interval. We collected weather
data [1, 2] and compared it to the service performance data. We ob-
served a service performance impact during days with continuous
rainfall and high inches of rain - this is expected and we validated
using real-world data. We further analyzed the severe weather
events for 2012 collected from [1]. Examples of such events in-
clude hurricane Sandy, Midwest tornadoes, Rockies/Southwest Se-
vere storms, and Texas tornadoes. For each event, we observed a
performance impact across multiple cell towers. Fig. 4 shows the
degradation in voice accessibility at multiple RNCs due to severe
storms and damaging hail caused by tornadoes. Thus, if the time-
interval of the storm had overlapped with a network change assess-
ment, deriving conclusions on the performance impact of changes
would become difficult.

Traffic pattern changes. It is well-known that the higher the
traffic volume, the higher the likelihood of traffic being dropped
(congestion scenarios or radio interference). We validate this us-
ing voice and data retainability performance metrics collected from
several cell towers in the operational network. The traffic patterns
can dramatically change during holidays or big events. Fig. 5 shows
the voice retainability and total number of voice calls before and
during a big event aggregated across all cell towers at the loca-
tion of the event. As can be seen, the total number of voice calls
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Figure 6: Performance improvements across a majority of cell
towers due to software upgrade at upstream RNC.

dramatically increase during the event that induces an impact on
the voice retainability (we make similar observations on data ses-
sions). Thus, massive traffic changes can significantly influence the
service performance metrics. It is therefore important to carefully
account for traffic changes when assessing the service performance
impact of network changes.

Network events. Events such as network changes, other mainte-
nance activities or outages close in time for the FFA change under
test can also significantly influence the performance assessment.
Fig. 6 shows the performance improvements in voice retainability
at multiple cell towers due to a software upgrade at an upstream
RNC. This is indicative of a service performance improvement ex-
perienced by the users served by the upgraded RNC. From the per-
spective of impact analysis of the software upgrade at the RNC,
this is a positive outcome. However, if configuration changes were
made on a small number of cell towers (downstream to the up-
graded RNC) around the same time, this would make performance
assessment of the configuration changes at the cell towers difficult
because of the overlapping software upgrade at the RNC. If the
study group cell towers (those undergoing a configuration change)
were analyzed in isolation, then the inference of performance im-
provement would be inaccurate because the root-cause is the soft-
ware upgrade at the RNC and not the configuration change at the
cell towers.

3. Litmus DESIGN

As described earlier, it is important to take overlapping external
factors into account when assessing the performance impact of net-
work changes. We propose a new approach, Litmus, that compares
performance at the study group (network elements that have change
implemented) with performance at the control group (network ele-
ments without the change). Our assumption is that external factors
influence performance at both the study and control groups. By
comparing the relative performance between the study and the con-
trol group before and after the network change, we improve the ac-
curacy of the inference of the performance impact of changes at the
study group by eliminating or reducing the over-shadowing impact
of the external factors. We provide the intuition behind comparing
study versus control group in Litmus in Section 3.1. We propose a
new robust spatial regression algorithm to accurately compare the
performance between the study and control groups before and after
the network change (Section 3.2). We describe design choices for
the selection of the control group in Section 3.3.

3.1 Intuition

We choose to compare the performance at the study group with
that of a control group based on three observations in operational
cellular networks: (i) geographically close network elements (e.g.,
cell towers, radio network controllers) exhibit a high degree of
spatial auto-correlation or statistical dependency in performance
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Figure 7: Illustrative examples of how study group only assess-
ment can lead to incorrect inferences. Looking at the relative
performance between the study and the control group helps in
robust and accurate analysis of impacts.

because of the similarity in radio propagation, terrain (landscape,
buildings), user population densities, and weather patterns, (ii) ex-
ternal factors have the potential to induce similar performance im-
pacts (either improvements, or degradations) at multiple network
elements, and (iii) a performance impacting network change at the
study group induces a relative change in performance between the
study and the control groups.

Fig. 7 provides a few examples of how comparing the relative
performance between the study and the control group before and
after the network change in Litmus provides accurate assessment
of the impacts as compared to study group analysis only. As shown
in Fig. 7(a), a weather event induces a performance degradation at
both the study and the control groups but the network change at
the study group results in a better relative performance at the study
group compared to the control group. Fig. 7(b) shows the perfor-
mance of a sudden traffic pattern change that resulted in a degra-
dation at both the study and the control groups. Study group only
analysis would infer a degradation, but comparing the relative per-
formance between the study and the control groups demonstrates
no relative change at the study group. Finally, in Fig. 7(c), a net-
work change upstream of the study and control groups induces an
improvement across both. But as can be seen, there is a relative
degradation at the study group compared to the control.

Events such as service outages due to sudden weather changes,
traffic pattern changes (e.g.due to road accidents), or network equip-
ment failures are unexpected and not always easy to predict. Fur-
thermore, if they occur around the time of the network change on
the study group, then it becomes challenging to associate the per-
formance impact to the change or other external factors. Even with
predictable factors such as foliage, the change execution might be
outside the control of Engineering and Operations teams because
of market pressure and competition (e.g., rolling out new service
features such as Voice over LTE). These are exactly the scenarios
where Litmus will be helpful and able to conduct a robust assess-
ment of the change.

3.2 Study/Control Group Comparison

Given the time of the change at the study group, our goal is to
compare the relative performance between the study and control
group before and after the change. A simple straightforward ap-
proach is to compare statistical measures such as mean or median
differences before and after the change. If Y3 (5), X (4) are the per-
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formance time-series before the change at study and control group
elements j and i respectively, and similarly, Y, (j), Xo(7) are the
performance time-series after the change, then Difference in Dif-
ferences (DiD) measure used in econometrics [21, 26] evaluates
the metric for each pair of elements in study and control group:

d(3,7) = h(Ya(4)) = h(Ys(5)) = (h(Xa(4)) = h(Xs(7)))
j=1..Mandi=1.N

)

h(-) = mean(-) or median(-)

If there is no change in the relative performance between the
study and the control group, the DiD measure should be near zero.

Why DiD does not work? The challenges with using the DiD
approach are (i) poor selection of some of the control group ele-
ments can lead to poor forecasting, and (ii) sensitivity of the DiD
measure to performance changes in a small set of network elements
in the control group [3]. Such behaviors occur frequently in oper-
ational networks - time-of-day traffic patterns across locations, or
changes in performance caused by other factors unrelated to the
change under test. Thus, a few poorly selected network elements in
the control group can create biased estimates in the DiD measure,
which in turn can lead to incorrect inferences.

We will provide an illustrative example to demonstrate why DiD
fails. Consider a cell tower that is serving a business location as the
study and a cell tower that is serving a lake as one of the control
group. Business locations are busy during the weekdays between 9
AM and 5 PM and lakes are visited by users typically either over the
weekends or during evening times. The weekday/weekend traffic
patterns would thus be quite different across the business and lake
locations. Using the cell tower serving lake as one of the control
group elements would definitely be a bad predictor. DiD does not
take into account bad predictors. Thus, we need to consider robust
models that can automatically take care of bad predictors and is
data-driven. We now outline our robust spatial regression algorithm
to detect changes in the relative performance between the study and
control groups.

Robust spatial regression. Our algorithm learns a statistical de-
pendency structure using a spatial regression between the perfor-
mance at the study and the control groups before the change. The
dependency structure captures how well one group can be used to
forecast the other. Using control group as the predictors, it con-
structs the forecast values for the study group after the change. The
forecast difference is computed by taking the difference between
the observed study group performance and their forecast values.
The forecast difference after the change is compared to the forecast
difference before the change and statistically significant changes in
the two are indicative of a change in relative performance between
study and control group. If there is no performance impact of the
change at the study group, then the forecast difference before and
after the change are statistically indistinguishable.

We incorporate robustness into the learning process through uni-
form sampling on the control group and comparing the forecast
difference results before and after the change for each sampling
iteration. Multiple iterations of forecast difference comparison in-
crease our confidence that a small number of performance changes
in the control group do not significantly influence the outcome of
the study and the control group analysis. Uniform sampling on the
control group helps reduce the impact of poor predictors. If the
study group comprises multiple network elements, we repeat the
process for each network element in the study group and report the
results individually. We also use voting to summarize across mul-
tiple elements in the study group. We now formally describe the
algorithm.



X4, X, are the performance time-series matrices for the control
group before and after the change. The columns represent time-
series for each network element. Y;(j), Yo (j) are the performance
time-series for the j*" network element in the study group before
and after the change. We uniformly sample (without replacement)
k out of N control group elements (k > %). The sampling process
for selecting the control group elements before and after the change
is the same. Let us call the sampled matrices for the control group
X7 and X2. We learn the regression coefficients 3 using time-
series before the change.

Yi(j) = BXy )

Linear regression model is well-studied and nicely fits our pur-

pose. Sparsity regularization is not desirable (e.g., ridge [11], lasso [28]

or [; [8, 29] regression) because we do not want changes in a very
small number of control group elements after the change to signif-
icantly influence the forecast.

We compute the forecast values (Y,)) for the study group time-
series after the change using regression coefficients 3 learned from
equation (2) and sampled control group time-series X after the
change.

Yl (j) = BX3 3)

We aggregate the forecast values by computing the median across
all the sampling steps: median(Y,’(j)). The forecast difference
time-series after the change is given by

YA () = Ya(§) — median(YY (5)) @)

Similarly, the forecast difference time-series before the change

is
V") = Ya(§) — median(Yy (j)) 5)
where, Y,/ (j) = 8X}

We use robust rank-order tests [9, 18, 27] to statistically com-
pare the forecast difference Y. 2/7 () with Y, %/ (§). 1f the fore-
cast difference after the change is significantly greater than before
the change, then we conclude that the study group has a relative
increase as compared to the control group. On the other hand, if
the forecast difference after the change is significantly lower than
before the change, then the study group has a relative decrease as
compared to the control group. No statistical change in the forecast
difference indicates no relative change. We choose robust rank-
order tests because they eliminate the undesirable impact of one-off
outliers in the time-series and accurately identify change signatures
such as level changes, and ramp-up/downs.

3.3 Control Group Selection

Since the performance impact evaluator knows if the impact is
local or within some proximity, he/she selects the control group
candidates outside of its impact scope. The robust spatial regres-
sion analysis can account for a small number of bad members in
the control group, but if a majority (or all) of the control group ele-
ments are poorly selected, then it will lead to inaccurate forecast for
the study group. An example of poor selection of the control group
is cell towers in the Northeastern regions of United States when the
study group is from the Southeastern regions (foliage changes at
Northeastern regions will impact the performance forecast for the
Southeastern regions). We propose two guidelines for the selection
of the control group: (i) they are subject to the same external fac-
tors as the study group, and (ii) they share similar properties with
the study group such as geographical proximity, configuration, or
traffic patterns. The size of the control group plays an important
role in the effectiveness of the forecast for the study group. If the
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OBSERVATION
EXPECTATION| Improvement| Degradation | No impact
Improvement TP FN FN
Degradation FN TP FN
No impact FP FP TN

Table 1: Methodology for labeling the algorithm outcome.

size of the control group is too large, then it will be difficult to
capture the similar impact of external factors and accommodate the
similarity in properties with the study group. On the other hand, if
it is too small, then we will loose the benefits of robust regression
analysis for a few bad control group members. For Litmus eval-
uation as well as operational deployment, we intentionally set the
control group to not be the whole network because external factors
have limited impact (typical size = 10s-100s), keeping the scale
manageable.

We design a domain knowledge guided control group selection.
The knowledge about cellular network domain helps in creating
attributes for selecting the control group. Litmus provides a wide
range of attributes for control group selection:

1. Geographical distance using latitude, longitude and zip code
2. Topological structure of the cellular network

3. Configuration settings such software version, equipment model,
or antenna parameters

4. Terrain using landscape, and buildings
5. Traffic patterns

These attributes were created through interactions with the domain
experts responsible for the change and its impact assessment; hence,
we term our approach domain knowledge guided.

We employ predicates to capture the dependency between the
study and control group. Predicates can either be uni-variate (e.g.,
cell towers within the same zip code), or multi-variate (e.g., cell
towers sharing the common set of upstream RNCs and upstream
RNCs with same OS). The infrastructure for control group selec-
tion is flexible in terms of specifying predicates depending on the
type of change.

4. Litmus EVALUATION

In this section, we present the evaluation of Litmus using data
collected from operational cellular networks. Because of the lack
of complete ground truth information, evaluation using real-world
data is challenging. We address the issue by conducting the evalua-
tion in two steps. First, using examples from real-world network
changes and apriori known assessments by the Engineering and
Operations teams, we quantify the accuracy of our robust spatial
regression algorithm and show it outperforms Difference in Dif-
ferences and analysis using the study group only. Second, we se-
lect performance time-series at cell towers and synthetically inject
changes and case scenarios representative of seasonality, weather
changes, holidays and network events. Synthetic injection provides
a thorough and exhaustive evaluation of the algorithms across sev-
eral scenarios. Thus, a combination of real-world and synthetic
evaluation have boosted our confidence in the effectiveness of the
study/control group analysis and robust spatial regression algorithm
in Litmus.

4.1 Methodology

For evaluation using both known assessments and synthetic in-
jection, we know the outcome of the assessment - either no per-
formance impact, significant performance improvement or degra-
dation. For each algorithm, we label the outcome as true positive



(TP), true negative (TN), false positive (FP) or false negative (FN).
True positives are significant performance impacts accurately iden-
tified by the algorithm. True negatives are the instances that are
correctly identified as not having a performance impact. False pos-
itives are incorrectly identified by the algorithm as having a perfor-
mance impact when no impact is expected. False negatives are the
outcomes the algorithm fails to capture as a significant performance
impact. Table 1 shows how the algorithm outcomes are labeled. For
example, if the expectation of the impact assessment is significant
performance improvement, and the algorithm outputs significant
improvement, then it is a true positive. However, if it either outputs
significant performance degradation or no impact, then it would be
tagged as a false negative. Given TP, TN, FP, FN, we can compute
precision, recall, true negative rate and accuracy as follows: Preci-

. _ TP —_ TP : _ TN
Sion = 75775 Recall = TPIFN® True negative rate = TNTFP®
TP+TN

and Accuracy = TPITNAEPTEN"
Using the above metrics, we compare the three algorithms: (i)

study group only analysis, (ii) Difference in Differences, and (iii)
Litmus robust spatial regression. For study group only analysis,
we compare the study group performance time-series before the
change with after the change. For Difference in Differences, the
difference between study and control group is compared before and
after the change. Finally, for the robust spatial regression algo-
rithm, the forecast differences are compared before and after the
change.

4.2 Evaluation using Known Assessments

In collaboration with Network Engineering and Operations teams,
we collected a list of configuration changes in the production cel-
Iular networks including the expected outcomes and assessments
of impacts performed by other teams. The Network Engineering
and Operations teams have been carrying out the impact assessment
process manually by visually inspecting the time-series before and
after the change at the study group as well as the control group.
This serves as the ground truth information about the performance
impact of the changes at the study groups. For each study group, we
identify network elements in the control group using the geograph-
ical measure (same zip code) for LTE and topological structure for
GSM and UMTS (e.g., NodeBs under the same RNC).

Table 2 summarizes the evaluation results for the three algo-
rithms using known assessment of network changes in operational
environments. The first column (Change Type) describes the type
of the change and the second column (Location) indicates the type
of network element it is applied on. The third column (Impact Ex-
pectation) indicates the Engineering and Operations teams’ expec-
tation of performance impact (e.g., improvement |, degradation |,
or no impact «<). The fourth column (Impact Assessment) is the
summary of the performance assessment manually conducted by
the Engineering and Operations teams. The fifth column (External
Factor) shows the presence of an external factor during the impact
assessment. The sixth and seventh columns contain the number of
elements in the study group and Key Performance Indicators (KPIs)
for conducting the analysis. Columns 8-10 are the results for the
three algorithms: study group only analysis, Difference in Differ-
ences and the robust spatial regression in Litmus. For each change,
we identify the number of TP, TN, FP and FN and then summarize
the precision, recall, true negative rate and accuracy. The control
group was identified using the geographical proximity measure of
same zip code/same technology for 109 out of 313 cases and topo-
logical structure/same technology for the remainder 204 out of 313
cases.

As can be seen from Table 2, the study group only analysis fails
to take into account the expected changes in time-series induced by
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Change Change Impact Study Group Study/Control
Injection Magnitude || Expectation | Only Analysis | Dependency
Analysis

None No True Negative True Negative
Study Yes True Positive True Positive
Control Yes False Negative True Positive
Study, Control | Same No False Positive True Negative
Study, Control | Different Yes False Negative True Positive

Table 3: Case scenarios for synthetic injection of changes in
performance time-series.

external factors such as seasonality, weather, holiday, other network
changes, and foliage. This creates an incorrect inference of the per-
formance impact in several cases. For example, the assessment of
the SON (Self Optimizing Network) feature for automatic load bal-
ancing across cell towers (first row in Table 2) was expected to yield
performance improvement because the load balancer automatically
and dynamically adjusts the load between cell towers depending on
the network and traffic behaviors, resulting in an improved quality
of experience to the end-users. However, since the test in the field
was being carried out in a region that had an impact due to foliage,
the performance assessment of SON was negatively influenced by
an external factor (in this case, foliage). Thus, by only focusing on
the study group, one would inaccurately conclude a performance
degradation because of the SON feature introduction. Since fo-
liage impacts both the study and the control groups, the robust spa-
tial regression algorithm in Litmus accurately detected the relative
performance improvement. Difference in Differences accurately
detected the relative impact in voice retainability and data through-
put, but failed to correctly detect the impact in data retainability.
The time-series patterns in data retainability made the inferences
challenging and could only be correctly identified by Litmus.

The robust spatial regression algorithm in Litmus performed ex-
tremely well on all of the 313 case scenarios, yielding 100% ac-
curacy. Difference in Differences (DiD) had zero false positives
giving 100% precision, but because of false negatives (missed de-
tections of expected performance impact), its accuracy is 84.66%
and recall is 79.49%. DiD’s performance is similar to the robust
spatial regression algorithm in Litmus except for a few cases that
caused false negatives. Even though such cases are rare, they do
exist in operational networks and Litmus provides an even more
robust solution. With the study group only analysis, the metric val-
ues were the lowest (41.53% accuracy, 56.09% precision, 61.14%
recall and 0.98% true negative rate) amongst the three, because of
the high false positives and false negatives created by external fac-
tors.

4.3 Evaluation using Synthetic Injection

Having evaluated the algorithms using known assessment of changes

in production networks, we now turn to thoroughly evaluating them
across different case scenarios and time-series characteristics of the
control group. We select study group performance time-series for
voice and data accessibility, and retainability for UMTS cell towers
from four geographically diverse regions (Northeastern, Southeast-
ern, Western and Southwestern) in the United States. Cell tow-
ers in the Northeastern regions have yearly seasonality due to fo-
liage, whereas other towers have been impacted by regional net-
work changes. We also picked a few study groups which had no
performance impact. The control group network elements are se-
lected using the topological structure.

For each study group and a list of network elements in the control
group, we synthetically injected changes such as level shifts in the
performance time-series. Table 3 summarizes the case scenarios
for the time-series patterns and the output expectations of the study
group only analysis versus study/control dependency analysis. We



Change Location| Impact Impact External Number of Number of Study Group Difference in Litmus
Type Expectation Assessment | factor study group KPIs Only Analysis Differences Robust Spatial
elements (a) (b) Regression

SON load | RNC Data & Voice Re- T Foliage 18 3 36 FN, 18 FP 18 TP, 18 TN, 36 TP, I8 TN
balancing tainability T & data 18 FN

throughput <
Radio link | RNC Voice Retainability T T 3 1 3TP 3TP 3TP
failure timer
Power NodeB Data Throughput T — 1 1 1 TN 1 TN 1 TN
Radio link NodeB Voice Retainability T — Other 25 1 25 FP 25 TN 25 TN

change
Power RNC Data Retainability < — Other 16 2 32 FP 32 TP 32 TP
change

Update new | MSC Voice Retainability T — Seasonality 3 1 3 FP 3TN 3TN
UE types
Data param- | RNC Data & Voice Retain- T 2 3 6 TP 4 TP,2 FN 6 TP
eter ability T
Limit max | RNC Data Throughput T — Holiday 3 1 3 FP 3TN 3TN
power
Access RNC Voice Retainability T T 1 1 1TP 1TP 1TP
threshold
Time to trig- | eNodeB | Data Accessibility T T 1 1 1 TP 1 TP 1 TP
ger
Radio link BSC Voice Retainability T T 1 1 1 FN 1 TP 1 TP
Timer RNC Voice Retainability T T 5 5 20 FP, 5 TP 20 TN, 5 TP 20 TN, 5 TP
changes
State transi- | RNC Voice  Retainability 1 1 1 1 TP 1 TP 1 TP
tion features —
SON neigh- | RNC Data & Voice Retain- T Weather 2 4 8 FN 8 TP 8 TP
bor discov- ability T
ery & load
balancing
Reduce eNodeB | Data  Accessibility, T 30 3 90 TP 90 TP 90 TP
downlink Retainability &
interference Throughput T
Handover RNC Data & Voice Retain- T 19 2 28 FN, 10 TP 28 FN, 10 TP 38 TP

ability T
Inter-system RNC Voice Retainability T T 3 1 3TP 3TP 3TP
Handover
Software eNodeB | Data Retainability T 9 1 9TP 9TP 9TP
Software eNodeB | Radio bearer < 9 1 9 FN 9TN 9 TN
Summary Total of 313 cases 129 TP, 1 TN, 186 TP, 79 TN, 234 TP, 79 TN,

- axb) 101 FP, 82 FN 0 FP, 48 FN 0 FP, 0 FN

Precision = %EFP 56.09 % 100.00 % 100.00 %
Recall = w2t 61.14 % 79.49% 100.00 %
True negative rate = 7oy 0.98 % 100.00 % 100.00 %
Accuracy = gt 41.53 % 84.66 % 100.00 %

Table 2: Evaluation results using known assessments of network changes. The control group was appropriately chosen (in 10s-100s,
not shown). Symbols used for performance improvement, degradation and no impact are T, | and <, respectively.

confirm a strong statistical dependency in the performance time-
series between the study and the control group and thus a synthetic
change injected in either the study or control group would create a
change in the dependency structure. For changes injected in both
study and control group, the magnitude of the injected change de-
termines the outcome of impact. For the same magnitude, we ex-
pect no impact and for different magnitude changes, we do expect
performance impact. The changes injected are representative of the
performance impact due to external factors.

The third column in Table 3 captures the impact expectation and
the last two columns indicate the correct/incorrect inferences of the
algorithms. We also introduced a noise component (level change)
in a small number of control group elements to make the depen-
dency learning challenging. This will help us compare the Differ-
ence in Differences approach with our robust spatial regression al-
gorithm in Litmus. We compare 14 days before the change with 14
days after the change to determine the outcome of the assessment.

Table 4 summarizes the results for the three algorithms. A to-
tal of 8010 case scenarios have been evaluated (TP+TN+FP +FN).
The study group only analysis lacks the ability to account for the
performance impact due to external factors and thus leads to low
precision, recall, true negative rate and accuracy compared to the
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Study Group Difference in Litmus
Only Analysis Differences Robust Spatial
Regression
True positive 4454 5214 5848
True negative 75 828 748
False positive 1935 1182 1262
False negative 1546 786 152
Precision 69.71 % 81.52 % 82.25 %
Recall 74.23 % 86.90 % 97.47 %
True negative rate 373 % 41.19 % 3721 %
Accuracy 56.54 % 75.43 % 82.35 %

Table 4: Evaluation results using synthetic injection.

other two algorithms that compare study group with control. The
robust spatial regression algorithm outperforms Difference in Dif-
ferences because of the robustness to deal with contamination of
the control group. Difference in Differences have an accuracy of
75.43% which is outperformed by our algorithm in Litmus (accu-
racy of 82.35%). Our algorithm has a slightly higher number of
false positives compared to Difference in Differences but maintains
a low false negative (low misses). This is reflected in the true neg-
ative rates (41.19% for Difference in Differences versus 37.21% in
Litmus). However, Litmus has a better recall (97.47%) than Differ-
ence in Differences (86.90%).
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Figure 8: Significant increase in the dropped voice call ratios
due to feature activation at a Radio Network Controller (RNC).
Study/control group analysis in Litmus accurately captured the
impact.

4.4 Summary

Using real-world known assessment of network changes and syn-
thetic injection of changes, we have thoroughly evaluated the three
algorithms across a wide range of case scenarios. We make two
conclusions: (i) Comparing the study group time-series with the
control group is extremely important in accurately inferring the per-
formance impact of changes. Study group only analysis can lead to
incorrect inferences due to performance impacts induced by exter-
nal factors such as seasonality (foliage), weather changes (storms),
traffic pattern changes (holidays) or other network events (outages
or changes). (ii) Using the similarity in performance time-series
between the study and the control group (e.g., geographically close
cell towers or those sharing the same upstream network elements),
we can detect if a network change induces a change in the depen-
dency structure between the study and the control groups. Our ap-
proach is thus robust to external overlapping factors and can accu-
rately assess the impact of changes at the study group.

5. OPERATIONAL EXPERIENCES

We now present our case study experiences in applying Litmus
on operational cellular networks (GSM, UMTS and LTE). Litmus is
being successfully applied to assess the performance impact of net-
work changes and provide inputs to decisions regarding go or no-go
for wide-scale deployment. The case studies highlight the advan-
tage of using the study group and control group dependency anal-
ysis to accurately determine the performance impact of changes.
It is common operational practice to confirm performance impacts
over multiple time-intervals before a decision is made for a wide-
scale roll-out. The assessment time-scales are multiple days, typi-
cally 1-2 weeks, and our algorithm finishes in a few minutes, suffi-
cient for our application. In comparison to the manual assessment
conducted previously by the Network Engineering and Operations
teams, Litmus provides an automated, scalable, easy-to-use and ef-
fective solution.

The first case study demonstrates that our approach does not
miss performance impact captured by the study group only analy-
sis techniques. Case studies 2-4 show that our approach accurately
assesses the performance impact of changes even when there is an
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Figure 9: Foliage induces improvement in voice retainability at
both the study and control group MSCs. The parameter change
at the study group MSCs is thus not the cause for the perfor-
mance improvement. This would be a false positive with the
study group only analysis.

impact due to external factors such as foliage, weather changes, and
holidays.

5.1 Impact of feature activation at RNC to re-
duce start-up times for data

In our first case study, we demonstrate that our approach can
accurately identify the performance impact of a feature activation in
the field. The Engineering teams were testing a new feature release
at a RNC (Radio Network Controller) that was aimed at reducing
the start-up times for data sessions in the UMTS network. They
carefully analyzed multiple service performance indicators before
and after the feature activation.

Using our approach, we compared the service performance met-
rics at the RNC that had the feature activated (study group) with
other RNCs in the region (control group) that did not have the fea-
ture activated. We found that there was an unexpected and persis-
tent impact in voice retainability at the study group. This was a
confirmation of an earlier finding - a dropped voice call issue was
found to be in the core network. The feature has been rolled back
and scheduled to be tested with the new software release.

Fig. 8(a) shows the time-series for the dropped voice call ratios
at the study group RNC where the feature was activated. As we
can see, there is a subtle statistical change in the time-series after
the feature was activated. Fig. 8(b) shows the time-series for other
RNC:s in the region where the feature was not activated. There was
no change in the time-series behavior at the control group. Using
our approach, we determine that the significant increase is indeed
caused by the new feature - the forecast time-series for the study
group RNC was statistically different than the observed time-series.

5.2 Impact of configuration changes at MSC
influenced by foliage

In our second case study, we focus on the configuration changes
at the MSC (Mobile Services Switching Center) in the UMTS net-
work. The changes had been applied in Fall and the expectation of
the Engineering teams was performance improvement in voice re-
tainability metrics. Since the changes were applied at MSCs in the
Northeastern regions of United States, foliage played a significant



Relatively better service performance
at study group compared to control

Hurricane Sandy hil/i Vo

—e—Study group : l“ ,"
- «-Control group E Yy

Voice Accessibility

Relatively better service performance
at study group compared to control

Hurricane Sandy hit/’i ".

—e—Study group VN
-« -Control group E ¥

Voice Retainability

Figure 10: Litmus accurately captured relative improvement
in service performance during hurricane Sandy at the study
group cell towers with SON capabilities compared to the con-
trol group without SON capabilities.

role in influencing the assessment of the performance impact. Be-
cause of the pressure to deliver the new service features, the service
provider could not wait for the foliage effect to disappear. Thus, the
impact assessment had to be conducted during the Fall and with
the impact of foliage on service performance. Fig. 9(a) shows the
voice retainability at the study group MSCs with the configuration
change. If we use the study group only analysis, we would infer
that there are performance improvements because of the change.
However, foliage played a role in improving the voice retainability
metrics at multiple MSCs (both study and control group) across the
Northeastern regions. Fig. 9(b) shows the voice retainability at the
control group MSCs without the configuration change. As can be
seen, only a few of the control group MSCs have improvement due
to foliage. This is due to the geographical location of the MSCs
and different intensities of foliage.

The Engineering teams used Litmus to carefully assess the per-
formance impact of configuration changes at the MSCs and at-
tributed foliage to the performance improvement. Litmus showed
that there was no change in the relative performance (voice retain-
ability) between the study group and control group MSCs. Thus,
the robust spatial regression algorithm in Litmus played an impor-
tant role in the accurate inferences of the performance impact. The
Engineering teams further used Litmus to confirm that there were
no unexpected performance degradations because of the configu-
ration change and decided to keep the configuration change at the
study group MSCs.

5.3 Impact of SON parameter changes at cell
towers during hurricane Sandy

We now use Litmus to assess the performance impact of SON
(Self Optimizing Networks) parameter changes at cell towers dur-
ing hurricane Sandy that affected several areas in the Northeastern
region of United States. The cellular service provider had deployed
SON capabilities for automatically discovering cell tower neigh-
bors (newly added as well as deleted due to failures) and load bal-
ancing across cell towers. These features were deployed well be-
fore Sandy, and not in anticipation of the hurricane. The hurricane
Sandy served as a strong test for the deployed SON capabilities in
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Figure 11: Significant increase in data retainability at study
group RNC:s is due to holidays. The impact is seen at both the
study and the control groups. This would be a false positive
with the study group only analysis.

the operational environments. Not all towers were SON enabled
because the feature testing was on-going. During congestion or
outage scenarios, SON automatically tunes the configuration pa-
rameters at the cell towers and optimizes the service performance.
We had been tasked with assessing how good or bad did SON per-
form during hurricane Sandy.

If we use study group only analysis, clearly several of the service
KPIs noticed an absolute degradation because of the cell tower out-
ages. This is expected because of the significant impact of the hur-
ricane. However, in order to assess the effectiveness of SON, we
need to compare the study group (SON-enabled cell towers) with
the control group (cell towers that did not have SON features acti-
vated). Using the robust spatial regression algorithm in Litmus to
compare the performance of the study group with the control group,
we observed significant relative improvements in service perfor-
mance (voice and data accessibility as well as retainability) at the
study group. Fig. 10 shows that the service performance metrics
for the study group are relatively better than for the control group.

We confirmed with the Engineering teams and SON equipment
vendor that the automatic neighbor discovery and load balancing
features indeed contributed to better relative performance. Litmus
thus concluded that even though there was an absolute degrada-
tion across the cell towers because of the hurricane, SON enabled
cell towers did a good job as compared to those that were not en-
abled. SON dynamically improved the service performance across
multiple cell towers. This further motivated a roll out of the SON
features across the entire network. This case study demonstrated
the effectiveness of comparing the study group with the control
group when assessing the performance impact of changes at the
study group in the presence of major weather events.

5.4 Impact of parameter changes at RNC to
improve cell change success rates

In our final case study, we show that our approach is robust to
the impact due to holidays. A parameter change to improve the cell
change success rates was being tested at a few RNCs. Fig. 11(a)
shows the data retainability at the study group RNCs. Using the
study group only analysis, we found that there are significant in-



creases in data retainability after the change. This actually turned
out to be a false positive because the holiday season was signif-
icantly influencing the performance indicators at all RNCs in the
region (both study and control group). If we had relied on the
study group only analysis, then we would have incorrectly inferred
performance improvements and then recommended to roll out the
parameter change across all the RNCs in the network. Fig. 11(b)
shows that the time-series at the control group RNCs where the pa-
rameter was not changed, also observe a significant increase. It is
thus important to compare the study group with the control group
and assess if there is any relative improvement.

Litmus accurately captured this behavior in the forecast using
our robust spatial regression algorithm and labeled the parameter
change as having no impact. We confirmed this result with the En-
gineering teams - their response was that this finding of Litmus was
very good because they have to be confident about the performance
assessment of a change before they roll it out across the entire net-
work. The decision of the Engineering teams was not to roll out the
parameter change at other RNCs because the change did not con-
tribute to a performance improvement at the study group RNCs.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we focused on the problem of assessing the per-
formance impacts of changes in cellular networks in the presence
of external factors such as seasonality (due to foliage), weather
changes (storms, hurricanes), traffic pattern changes (e.g., during
big events, holidays), and network events such as outages or other
changes. We proposed a new approach, Litmus, to tackle the over-
shadowing impact of the external factors. Litmus uses a robust spa-
tial regression algorithm to detect changes in the relative change in
performance between the study group and the control group before
and after the network change. It thus accurately assesses the per-
formance impacts of network changes at the study group even in
the presence of impacts due to external factors. We systematically
and thoroughly evaluated Litmus using real-world data collected
from operational cellular networks as well as synthetic injection of
changes. The robust spatial regression algorithm outperforms the
study group only analysis and Difference in Differences. Our op-
erational experiences have demonstrated the effectiveness of our
approach. Litmus is now being successfully used as input to deci-
sions regarding go or no-go for wide-scale deployment of changes
in production cellular networks.

The design principles in Litmus are applicable to assessing the
performance impacts of changes in other domains such as multi-
tier cloud services, data center applications. These domains have
complex dependencies across multiple components and network
changes can be influenced by impacts due to many factors. In
the future, we plan to apply Litmus in cloud and data center ser-
vices. It is also interesting to expand the change impact assessment
across different types of devices such as Apple iPad, Nokia Lumia,
or Samsung Galaxy. The large number of combinations of device
attributes (type, model, and version), different baseline and traffic
behaviors across devices depending on popularity and usage, and
dependency of service performance on network events would make
the problem challenging. We plan to extend Litmus to monitor the
impact of network changes on device performance and the impact
of device upgrades on service and network performance.
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