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ABSTRACT
We examine a very large-scale data set of more than 30 bil-
lion call records made by 25 million cell phone users across
all 50 states of the US and attempt to determine to what
extent anonymized location data can reveal private user in-
formation. Our approach is to infer, from the call records,
the “top N” locations for each user and correlate this in-
formation with publicly-available side information such as
census data. For example, the measured “top 2” locations
likely correspond to home and work locations, the “top 3” to
home, work, and shopping/school/commute path locations.
We consider the cases where those “top N” locations are
measured with different levels of granularity, ranging from
a cell sector to whole cell, zip code, city, county and state.
We then compute the anonymity set, namely the number of
users uniquely identified by a given set of “top N” locations
at different granularity levels.

We find that the “top 1” location does not typically yield
small anonymity sets. However, the top 2 and top 3 loca-
tions do, certainly at the sector or cell-level granularity. We
consider a variety of different factors that might impact the
size of the anonymity set, for example the distance between
the “top N” locations or the geographic environment (rural
vs urban). We also examine to what extent specific side in-
formation, in particular the size of the user’s social network,
decrease the anonymity set and therefore increase risks to
privacy. Our study shows that sharing anonymized location
data will likely lead to privacy risks and that, at a mini-
mum, the data needs to be coarse in either the time domain
(meaning the data is collected over short periods of time, in
which case inferring the top N locations reliably is difficult)
or the space domain (meaning the data granularity is strictly
higher than the cell level). In both cases, the utility of the
anonymized location data will be decreased, potentially by
a significant amount.
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1. INTRODUCTION
Decades ago, people used to worry about leaving their

keys or wallets behind when they left their house. Nowa-
days, we worry about leaving our cell phones behind (and
we still check for keys and wallets...) Indeed, cell phones
have becomes an increasingly important part of life and it is
no wonder that nationwide penetration rates trend towards
100% in many developed countries, and are already signifi-
cantly above 100% in several others.

Because they are ubiquitous and because they have be-
come a natural part of daily life (meaning that users are
not expected to behave abnormally when they carry their
phone), cell phones have become a powerful tool to ana-
lyze human behavior, in particular as it relates to physical
places through the study of mobility patterns, and the re-
search interest in this area has increased dramatically over
the past few years [3, 27, 9, 28, 24]. The availability of
mobility and location data also drives a vibrant ecosystem
of location-based services ranging from navigation to prox-
imity advertising (mobile coupons) with a plethora of new
services introduced daily. All those services need access to
some kind of location and mobility data. Cellular operators
collect such location information, in particular Call Details
Records (CDRs) in particular for billing and troubleshoot-
ing purposes. CDRs contain information about every call
carried by the cellular network, including time of the call,
location, and identities of both parties involved in the call.
Thus, they enable the study of human mobility at a very
large scales. With the increasing need or desire to pub-
lish or share CDRs or CDR-like call logs to third parties,
the issue of privacy has become a major concern. The de-
fault approach has often been to anonymize CDRs or other
call logs and replace user identities with random identifiers.
A key question then is: Can these anonymized records be
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shared or published? That is precisely the question we are
trying to answer in this paper.

Privacy breach occurs when users are re-identified from
anonymized data. Past studies have shown that the ma-
jority of US population can be uniquely identified by the
combination of gender, zip-code, and birth-date [25]. The
fraction of identifiable individuals ranges from 87% based on
the 1990 census data [25] to 63% based on the 2000 census
data [7]. In a related study, the medical records of a past
governor of Massachusetts were identified from anonymized
health insurance data because his birthdate, gender and
home address are available through voter’s data [26]. More
recently, Golle and Partridge [8] showed that a fraction of
the US working population can be uniquely identified by
their home and work locations even when those locations
are not known at a fine scale or granularity. Given that the
locations most frequently visited by a mobile user often cor-
respond to the home and work locations, the risk in releasing
locations traces of mobile phone users appears very high.

Our work is inspired by Reference [8] but we look at the
problem from a different perspective. Instead of focusing
on home and work locations, we consider the “top N” lo-
cations visited by each user. It is natural to think of the
top 2 locations as home and work for a large fraction of the
population, but more generally the number N of top pref-
erential locations determines the power of an adversary and
the safety of a user’s privacy. The more top locations an
adversary knows about a target, the easier it is to identify
the target. The fewer top locations a user has, the safer they
are in terms of privacy.

In this paper, we study a data set of 30 billion CDRs from
a nationwide cellular service provider in the United States
which contains location information about 25 million mo-
bile phone users collected over a three-month period. We
consider the risk of releasing location data from such CDRs
with anonymized user identifiers. We identify important fac-
tors that impact the anonymity of released location data,
such as the value of N , the granularity level at which loca-
tions are reported, whether the top locations are ordered or
unordered, the availability of additional social information
about users, and geographical regions. We consider six gran-
ularity levels in this study, namely sector, cell, zip-code, city,
county, and state. To the best of our knowledge, a study at
this magnitude of scale has never happened before.

Our results show that releasing anonymized location data
in its original format, i.e. at the sector level or cell level,
poses serious privacy threats as a significant fraction of users
can be re-identified from the anonymized data. They also
show that different geographical areas have different levels
of privacy risks, and at a different granularity level this risk
may be higher or lower than other areas. In general, we
find that preserving privacy requires that data be published
either at very coarse granularity level, namely city level or
above, or at very short time durations, e.g. a day. Both so-
lutions will compromise the utility of the location data, were
the data to be used for modeling mobility. To cite an ar-
gument from [2]: ”even modest privacy gains require almost
complete destruction of data-mining utility”. The published
data may only be of use to very high-level studies and/or
product developments such as mobile advertisements.

The impact of our work is multi-fold. We provide guide-
lines to cellular operators interesting in publishing or shar-
ing location data. We suggest spatial and time domain

treatments to make the sharing of location data privacy-
preserving. We show that traces collected from different ge-
ographical regions may be treated differently because they
exhibit different levels of anonymity by nature. While our
work may be somewhat discouraging regarding the release
of location data in its original form (namely at a fine granu-
larity such as sector or cell level), we do provide important
guidelines on how location data can be published, even at
the cost of reduced utility. The lessons learned from this
work can also be of reference when other types of location
data is to be published, in particular location data collected
through mobile applications that involve location updates
for example as done with Foursquare [5]. In general, though,
we strongly recommend that the community be extremely
cautious when publishing anonymized location data.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 provides background knowl-
edge on data and techniques used in this study. We conduct
an in-depth study on various factors impacting anonymity
in Section 4 and explore two types of methods to anonymize
location data and discuss their privacy-utility trade-off in
Section 5. Section 6 concludes the paper.

2. RELATED WORK
Our work is inspired by Reference [8]. While [8] relied

on US Census data, we rely on call data from a US cellular
provider. Instead of using reported home and work loca-
tions, we infer the top N preferential locations from the call
data and perform similar tests (as well as many others) as
those in [8]. We show that releasing location data also faces
the threat of re-identification attacks.

Our work is also inspired by the concept of k-anonymity
proposed in [26]. k-anonymity quantifies the degree of pri-
vacy of an anonymized data set, specifically with k-anonymity,
each individual is indistinguishable from at least k − 1 oth-
ers, i.e., is “hiding in crowd of k”. When applied to loca-
tion traces, k-anonymity means that the mobility behavior
of a user has to be similar to that of at least k − 1 oth-
ers. More recent work has shown that k-anonymity fails to
provide strong privacy protection [23] which led to the in-
troduction of l-diversity [20] and t-closeness [15]. We choose
k-anonymity to evaluate the privacy risks of published lo-
cation traces for two reasons. First, despite being unsat-
isfactory, k-anonymity is still widely used in many studies
including [8]. Second, although k-anonymity is not a good
enough metric to ensure privacy, we found it to be a good
enough to evaluate privacy vulnerability.

Location privacy, the risks associated with the release of
location data and the techniques to quantify and mitigate
those risks, have gained much attention in the literature
[11, 10, 12, 14, 1, 13]. A general theme is that reducing the
granularity of location information can help improve privacy
protection. In this paper, we rely on large-scale data to
demonstrate the effect of reducing granularity on the level
of privacy protection, or specifically on the obtainable values
of k for k-anonymity.

Privacy threats with published mobility traces have been
considered in the literature. For example, methods are de-
veloped in [3] to identify mobile users in cellular traces when
sufficient history data is available to characterize the mobile
users a priori. Their study is similar to ours in spirit but with
a fundamental difference. Our work does not assume the
availability of detailed mobility traces, which was required in

146



[3], to generate the transition probability matrix or the sta-
tionary Markov distribution of all visited cells per user. Our
study assumes that an adversary would know the preferred
locations of each user and correlate them for example with
publicly available information about users’ home and work
locations. Reference [18] considers traces obtained from
public transportation systems (cabs and buses). In Refer-
ence [19], the authors propose a technique to anonymize the
commuting data of U.S. workers while satisfying privacy re-
quirements. Differential privacy is described in [4] to provide
privacy guarantees in statistical databases. The technique
works by adding the appropriate amount of noise to the re-
sult of queries, the benefit being that a user’s presence or
absence from the database cannot be determined by queries.
A method is proposed in [16] to connect differential privacy
and k-anonymity by adding a random sampling step before
“safe” k-anonymization. Random sampling or random noise
insertion impacts the utility of data and the tradeoff between
utility and privacy need to be carefully considered [21, 17, 2].
A framework is proposed in [17] for evaluating the change of
utility and privacy for various privacy models and provide
guidelines for choosing the right tradeoff. A good survey of
privacy issues in data publishing can be found in [6].

Human mobility has been shownn to be highly predictable
in [28] and [24]. Both studies rely on cellular network traces
to study the mobility patterns of mobile users. Specifically,
reference [28] shows that the entropy of locations does not
increase much beyond 14 days (meaning that it is enough to
observe users for 14 days to analyze their behavior) whereas
reference [24] shows that with 93% probability one can cor-
rectly predict an individual’s location independent of how
far that person travels among the preferred locations. Re-
lated work based on mobility traces of 100,000 mobile phone
users [9] shows that human mobility is regular in both tem-
poral and spatial domains and with a high probability each
user returns to a few preferred locations. Finally, in another
study of the locations visited by 3G users, the authors of
[27] find that users spend a significant fraction of time in
their top three locations only.

3. BACKGROUND
In this section, we describe the data used in this paper and

relevant background knowledge on privacy and anonymity.

3.1 Dataset
We use the Call Data Records (CDR) from a nation-

wide US cellular provider collected over three entire months,
February, March, and April 2010. Our dataset consists
of about 25 million distinct users and over 30 billion call
records. The users span all fifty states and tens of thou-
sands of base stations.

A call record is created when a call originates or termi-
nates on the cellular network and it contains various fields
of information regarding that call. Table 1 lists several fields
from an example CDR.

We separate the trace into three month-long segments and
study them separately. We process CDRs from each day and
identify the locations visited by each user. We create daily
location lists for each user with all locations and the number
of appearances at that location. Then for each month, we
aggregate the daily location lists into a monthly location list
and order the locations by the frequency of appearances.

Table 1: Selected fields from a sample CDR
Field Value

Mobile ID 987-654-3210
Time of call 2010 02 02 12 33 02

Call duration 300 (seconds)
Start Cell ID 153

location Sector ID 2
End Cell ID 157

location Sector ID 1
Call direction incoming

Caller ID 987-012-3456

The top N locations for each user can be easily identified
from these location lists.

Some mobile users made or received very few calls during
the observation period which made it difficult to infer their
top N locations accurately. Therefore we filtered out those
users who made or received fewer than 30 calls per month,
which still left us with about 20 million users.

We study the location data at various levels of granularity.
The original location data in a CDR represents location in
terms of sectors of cells. There are typically two or three
sectors in a cell (meaning that a sector covers a 120-degree
sector in a cell). With knowledge of the location of each base
station, we can convert the data from one level of granularity
to a coarser level: for example, we aggregate data across all
3 sectors of a cell to get cell-level data from sector data. We
consider six levels of granularity: sector, cell, zip code, city,
county, and state.

Our work differs from past studies in i) the different lev-
els of granularity we consider (past work has mostly focused
on cell-level mobility) and ii) the scale of the data we ana-
lyze. Regarding scale, the work in [3] is based on mobility
data collected from one hundred (100) instrumented smart
phones, in [27] on a trace consisting of 281,394 3G users in
one metropolitan area of 1,900 square miles, in [9] on the
records of 100,000 mobile phone users over a six month pe-
riod, in [28] on call records of two million (2,000,000) mobile
phone users from three large cities collected over a month,
and in [24] on a 3-month-long trace of the most active 50,000
users among a set of 10 million mobile users.

3.2 Anonymization techniques
Anonymization techniques have been developed for both

data query and data publishing. Our work falls in the cate-
gory of data publishing in which the published data contains
information about individuals. For example, Census data
contains birth date, gender, address, and other information
for each individual. These attributes form “quasi-identifiers”
and individuals whose “quasi-identifiers” are the same form
an anonymity set.

Common techniques to achieve privacy-preserving data
publishing are generalization and suppression. Generaliza-
tion replaces precise attribute values with less precise ones
or value ranges. For example, Sweeney [26] uses the first four
digits for zip code instead of all five digits because the lat-
ter, combined with gender and birth date information will
lead to k = 1 for k-anonymity. Suppression is to remove
some (often extreme) cases from the dataset. For example,
if there is only one person using an identifier and the at-
tribute value of that person is very different from others’
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(such as a 3-meter tall human), it would be more difficult to
“generalize” the value than to remove that person from the
published data. In this paper, we consider generalization in
terms of location granularity levels.

4. FACTORS AFFECTING ANONYMITY
In this section, we analyze the dataset described above

and consider the different factors that impact the size of the
anonymity set, i.e. the number of users uniquely defined by
a set of top k preferential locations. We first consider the im-
pact of location granularity in Section 4.1, then the impact
of the distance between top locations in Section 4.2. The
benefit (to an adversary) of extra social knowledge is exam-
ined in Section 4.3 and the anonymity of users in different
geographical regions in Section 4.5. We study anonymity
sets with variable-length quasi-identifiers in Section 4.6 and
examine the stability of location traces in Section 4.7. Fi-
nally we study the preferential locations of a group of known
users with known preferential locations to consider the issue
of ground truth in Section 4.8.

4.1 Impact of location granularity
The location information in CDRs consists of cell ID and

sector ID, and (implicitly) the ID of the switch which created
the CDR. Therefore, we can represent a location using the
format x-y-z, where x is the switch ID, y is the cell ID and
z is the sector ID. This is the finest granularity available for
location data in our study.

Alternatively, we can ignore the sector ID and represent
a location as x-y. This the “cell” granularity level.

We know the zip-code, city, county and state information
of each base station in the network. Therefore, instead of us-
ing the x-y-z or x-y approach, we can use these higher-level
information to represent the location. We refer to those as
the zip code, city, county, and state granularity respectively.

We start by considering the size of the anonymity sets
obtained at different levels of granularity. For each mobile
phone user, we calculate the PDF (probability density func-
tion) of locations visited by this user, and sort the locations
based on the frequency, most visited first. We then map the
user to an anonymity set identified by the top N locations,
at various granularity levels. We choose N to be 1, 2, and 3
in this study.

For example, a user’s location list may look like this: 1-10-
2, 1-11-1, 2-70-3, . . . If we choose N = 1, the quasi-identifier
“1-10-2” identifies the anonymity set with all users whose
most visited location is “1-10-2” (group 1). If we choose
N = 2, the quasi-identifier is “1-10-2, 1-11-1”, and identifies
all users whose top two locations are “1-10-2” and “1-11-1”,
respectively (group 2). Apparently group 2 is a subset of
group 1. Therefore, the more locations are used to identify
an anonymity set, the smaller the anonymity set is. This
is demonstrated in Fig. 1. At each granularity, users are
partitioned into anonymity sets. The size of the anonymity
set, or the k-anonymity value, characterizes how safe that
user is from being re-identified. We sort the users based on
decreasing k-anonymity and plot the maximal k-anonymity
for various fraction of users. The percentiles are calculated
over users rather than anonymity sets.

We note that the position and shape of the top two curves
in Fig. 1(e) (county level) are close to the equivalent curves
in the county sub-figure in Fig. 1 of [8]. The difference be-
tween the two figures is that our data does not have con-

textual meanings as in home/office and only indicates the
relative order of preference. Similarly, the top two curves in
Fig. 1(b) are close to their counterparts in the census tract
sub-figure. This indicates that the size and significance of a
cell is comparable to a census tract.

Table 2: Anonymity set with top 1 location
Location Size of anonymity set

granularity 1st %ile 5th %ile 10th %ile Median
Sector 28 71 111 372
Cell 92 220 331 967

Zip code 184 557 909 3125
City 162 487 874 7638

County 802 2972 6272 55649
State 60139 1.5e+05 2.6e+05 7.2e+05

Table 3: Anonymity set with top 2 locations
Location Size of anonymity set

granularity 1st %ile 5th %ile 10th %ile Median
Sector 1 1 1 2
Cell 1 1 1 9

Zip code 1 1 2 75
City 1 2 6 437

County 2 23 143 15628
State 530 6912 51291 6.8e+05

Table 4: Anonymity set with top 3 locations
Location Size of anonymity set

granularity 1st %tile 5th %tile 10th %tile Median
Sector 1 1 1 1
Cell 1 1 1 1

Zip code 1 1 1 2
City 1 1 1 24

County 1 2 7 3407
State 40 1074 5671 4.6e+05

We summarize the 1st percentile, the 5th percentile, the
10th percentile and the median of users’ k-anonymity values
in Tables 2 through 4, forN = 1, 2, 3, respectively. Entries in
the tables with a “1” indicate the fraction of users which are
uniquely identified i.e., they have 1-anonymity. We find that
more than 50% of the users at the granularity of sector and
cell are uniquely identified by their top 3 locations; between
10% and 50% of the users at the zip code and city levels, and
between 1% and 5% at the county level. When the top two
locations are used, between 10% and 50% users are uniquely
identifiable at the sector and cell levels; more than 5% at the
zip code level and 1% at the city level. In other words, if we
know the cities corresponding to the top two locations for
each user, and given that the total population under study
is 20 million, we can uniquely identify 200,000 users.

We plot the median k-anonymity value (i.e. the median
size of the anonymity set) from the three tables in Fig. 2.
Each curve represents, for a different value of N = 1, 2, 3,
how location granularity changing from very fine level “sec-
tor” to very coarse level “state” affects the median size of
anonymity sets. These curves depicts the radius of uncer-
tainty for anonymity sets formed based on the top N loca-
tions. For N = 1, the radius of uncertainty varies from 372
on the sector level to 7.2e+ 5 on the state level. For N = 2,
it varies from 2 for the sector level to 6.8e+ 5 for the state
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(a) Sector (b) Cell (c) Zip code

(d) City (e) County (f) State

Figure 1: Size of anonymity set when top 1, 2, or 3 locations are revealed for different granularity levels

level. For N = 3, it stays at 1 for sector and cell levels,
goes to 2 for zip code level, and quickly rises to 4.6e+ 5 for
the state level. We note that for all three values of N , the
anonymity set for state level is always above 1e+ 5. This is
because the majority of the population have only one state
in their location lists (we will see this again in Section 5.1).

Figure 2: Median size of anonymity set at various
granularity levels

4.2 Impact of distance
The authors in [8] show that the anonymity level differs

dramatically between individuals whose home and work lo-
cations are in the same region and those whose are not.
Inspired by this observation, we examine the impact on

Figure 3: Distribution of distance between the top
two preferential locations

anonymity of the distance between the top locations. We
focus on the the case of N = 2 (top two locations) since it is
most relevant and straightforward. We group users accord-
ing to the distance between their top two locations. Figure
3 shows the distribution of that distance. We then plot the
median and mean k values for different distances in Fig. 4.
As expected from [8], the longer distance between the top
two locations, the smaller the anonymity set. The figure also
shows that the size of the anonymity set decreases approx-
imately inversely to the distance between the two locations
(the exact fit is y = 224x−1.1 on the figure). This is not
surprising: given a distance d between the locations and a
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granularity level which we represent by a circle of radius
R (thus R would represent the average radius of a cell or
county), the number of non-overlapping circles that fit at
distance d from a specific location is πd/R and the number
of users in a circle is proportional to R/πd. The argument
above makes hypotheses such as uniform user density but
still gives a reasonable explanation for a decrease of the or-
der of 1/d.

Figure 4: Median and mean size of anonymity set
vs. distance between top locations

4.3 Impact of additional social information
We consider the case where more information than just lo-

cation is released from CDRs, specifically information about
the social networks of users. In addition to locations and
associated frequency of visits, the number of calls, the num-
ber of different “friends” each user called, the number of
“friends” that called the user, the total number of “friends”
the user talked to, or the number of calls associated with
each “friend”, might be published as well. We now examine
the risks associated with releasing both location as well as
that additional social information.

In the following, we assume that the adversary has a small
amount of extra information, namely the size of a user’s
social network measured by the number of calls made by
the user in a month. We will assume that the adversary
does not know the exact size of the network but it knows
whether it is large or small. In social context, one might
be able guess this information based on a user’s personality.
This extra information can be represented by a single bit
representing whether the size of a user’s social network is
larger than a predefined threshold.

To determine the threshold, we first study the distribution
of the size of users’ social networks in terms of the number of
“friends” they talk to over the given time period. The nodal
degree of the call graph has a complex distribution [22] with
a long tail. To ease visual representation, we select users
with fewer than 150 friends and plot the degree distribution
in Fig. 5. We observe that about 50% of the users have
social networks with 20 friends or fewer.

Therefore we pick 20 as the threshold and we partition
users into two sets: those who made calls to more than 20
friends and those who did not. We then add an extra bit to
the quasi-identifiers representing this information. For ex-
ample, with“top 2”locations, the quasi-identifier {loc0, loc1}
changes to {loc0, loc1, S} where S is a bit indicating whether

Figure 5: Degree distribution of call graph

the user’s social network is larger than 20 or not. The im-
pact on the size of the anonymity set (in the case of 2 top
locations) is shown in Fig. 6. The blue curves denote the
anonymity sets corresponding to {loc0, loc1} and the red
curves correspond to the anonymity sets corresponding to
{loc0, loc1, S}. We observe that with this extra bit of infor-
mation, the anonymity sets are smaller at every granularity
level. The drop is about 50% in most cases, which demon-
strates that social behavior is usually orthogonal to mobility
behavior and that additional knowledge about the users’ so-
cial patterns is helpful to re-identify those users.

4.4 Unordered top locations
We have so far treated the top N locations as separate

attributes: users with first location loc0 and second location
loc1 are in a different anonymity set than users with first
location loc1 and second location loc0. While for some users,
the top location is usually fixed, for others, the top two
locations can change from time to time. As we will see in
Section 4.8, a user may make most phone calls from home in
a month, and from work in another month. Therefore, the
top N locations can form one attribute regardless of their
order. We use the unordered pair of the top 2 locations as the
quasi-identifier and the size of the corresponding anonymity
set is shown in Fig. 6 (green curves). We see that with
the unordered pair as the identifier, the anonymity sets are
about twice the size of those in the ordered case for finer
granularity levels such as sector, cell, and zip code, while
the difference reduces at coarser levels. At state level, the
difference disappears mainly because the top two locations
of the majority of users are in the same state and ordering
does not matter.

4.5 A study of different geographical regions
We next investigate anonymity sets for users in different

geographical regions. We choose users whose top location
is in four selected states: California, New York, Texas, and
Illinois. Consider first cell- level granularity. Note that we
call a user region-x-based or say the user is in region x if the
user’s top location is in region x. As shown in Fig. 7, the
value of k is much larger in Texas than in the other three
states. California and New York have very similar behav-
iors regarding the k values, while Illinois has slightly higher
k values in the middle of the curve, i.e., for people whose k
rank is between the 40- and 95-percentile. Figure 7 suggests
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(a) Sector (b) Cell (c) Zip code

(d) City (e) County (f) State

Figure 6: Anonymity set with additional social information (red) and with unordered top locations (green)

Figure 7: Size of anonymity set for users with top
location in California (CA), New York (NY), Texas
(TX), and Illinois (IL)

that people in California and New York have very diver-
sified mobility patterns, while people in Texas have much
“synchronized” mobility patterns, i.e., users who live close
to each other tend to work close to each other too.

To better understand the mobility behavior of users in
Illinois, we divide them into two groups: those in the city
of Chicago and the rest. The size of the anonymity set is
depicted in Fig. 8(a). We see that users in Chicago have
much smaller anonymity sets than users in the rest of Illi-
nois. This observation suggests a difference in k-anonymity
caused by urban/rural lifestyles: in urban environments, we

expect users’ lifestyles to be more diversified and hence the
anonymity sets to be smaller. We observe a similar behavior
for Colorado between users in Denver and users elsewhere
in the state.

We then turn to Missouri and California. There are two
large cities in Missouri, Kansas City and St. Louis. We
therefore partition Missouri-based users into three sets, those
based in Kansas City, those based in St. Louis, and the rest.
The size of their anonymity sets are plotted in Fig. 8(b),
showing that users in St. Louis are quite different from the
those in the other areas, whereas users in Kansas City fall
somewhere in the middle. If the distinction comes from the
rural versus urban life styles, this suggests that St. Louis
has more of a urban lifestyle while most areas of the state
including Kansas City (although being the largest city in
Missouri) are of a rural type.

For California, we picked three cities: San Francisco, Sacra-
mento, and Los Angeles. As shown in Fig. 8(c), the anonymity
sets of users in San Francisco and Los Angeles are similar.
The rest of California is less at re-identification risk than
these two cities.

Next we study the anonymity sets of the four states at
other granularity levels. Figure 9 shows the distribution of
k-anonymity at city, county and state levels, respectively.
The result, together with Fig. 7, is rather interesting in the
sense that one state may have higher anonymity (larger k)
at one level, but lower anonymity (smaller k) at another
level. For example, users in California have by far the high-
est anonymity at the county level (Fig. 9(b)), but have the
lowest anonymity at the cell level (Fig. 7). Users in Texas
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(a) Illinois (b) Missouri (c) California

Figure 8: Anonymity set for users with top location in Illinois, Missouri and California (with specific cities)

(a) City (b) County (c) State

Figure 9: Size of anonymity set at different granularity levels for users with top location in California (CA),
New York (NY), Texas (TX), and Illinois (IL)

Table 5: The ratio of same-region commuters in dif-
ferent states at three granularity levels

CA NY TX IL

City 0.20 0.19 0.41 0.21
County 0.75 0.47 0.65 0.62
State 0.96 0.90 0.96 0.89

have higher anonymity than the other states at the cell level,
but lower anonymity than the others at the county level.

This phenomenon can be linked to the fraction of users
who live and work at the same location in each state at dif-
ferent granularity levels. We call these users “same-region
commuters”. If the top two locations are in the same location
region, the anonymity set is much larger than when the two
locations are in different regions [8]. Therefore, the fraction
of same-region commuters directly affects the distribution
of the anonymity sets. Table 5 summarizes the fraction of
same-region commuters on the three levels. At state level,
both California and Texas have 96% of the users as same-
region commuters, which explains why the two curves are so
close to each other and also above the rest in Fig. 9(c). At
county level, 75% of California users are same-region com-

muters, 65% for Texas, and only 47% for New York. Texas
has by far the highest ratio of same-region commuters at city
level and that is why the green curve is far above the others
in Fig. 9(a). The high ratio of intra-city commuters might
be explained by the affordability of real-estate properties.
Houses in Texas are more affordable and users might afford
to live in the same city where they work. We are investigat-
ing housing affordability indices and their relationships to
commuting distance to understand this more clearly.

4.6 Variable-length quasi-identifiers
We have so far only considered a fixed number of top

locations as quasi-identifiers. For example, an anonymity
set can be represented by a sector, {1 − 5 − 1}, two cells,
{1−1, 1−5}, or three cities, {San Francisco, New York City,
Dallas}. Some users mostly visit two locations, for example
home and work; others usually stay at one location, and
yet others may visit three locations frequently. Therefore
the number of “preferred” locations varies between users. In
this subsection, we investigate quasi-identifiers with variable
length, which depend on the number of preferred locations
of each user.

For each user, we sort the preferential locations in de-
creasing frequency and keep adding locations to the quasi-
identifier until the total frequency reaches or exceeds 0.5,
i.e., the user spends at least 50% of their time at these loca-
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Figure 10: Size of anonymity set using variable-
length quasi-identifiers

tions. We call these locations the“preferred”locations of this
user. This way, a user with one preferred location is in an
anonymity set identified by this single location; a user with
two preferred locations will be in an anonymity set identi-
fied by the two locations. If an adversary knows the person’s
life pattern regarding the number of preferred locations and
what the preferred locations are, she can re-identify the per-
son if the associated anonymity set has cardinality one.

Figure 10 shows the size of the anonymity set at the sec-
tor and cell levels using the variable-length quasi-identifier.
The distributions of the two curves are close to their counter
parts with top 2 locations (Fig. 1), while being slightly lower.
This indicates that most people have two preferred loca-
tions while some of them have more. We hence studied the
number of “preferred” locations of users and the results did
confirm that the majority of users have two or three such
locations. The detailed are omitted due to space constraints.

4.7 Similarity of data from two time periods
In this section, we examine whether call logs identify pref-

erential locations in a consistent manner, month after month.
Therefore, we examine the probability that a user appears
at different cells in two consecutive months and calculate
the cosine similarity of the PDF vectors of the two time pe-
riods. The length of the vector is the number of cells in
the network (tens of thousands) and each element in the
vector corresponds to the fraction of time a particular user
appeared in the cell. Cosine similarity between vectors A
and B is calculated as the dot product of A and B divided
by the product of the magnitude of A and the magnitude
of B. A cosine similarity equal to 1 indicates two identical
vectors over the cells.

Figure 11 shows the cumulative density function (CDF)
of the cosine similarity between the months of February and
March, and between the months of February and April, re-
spectively. We find that the cosine similarity between Febru-
ary and April is slightly smaller than between February and
March. However, the closeness of the two distribution curves
suggests that the similarity does not degrade much over one-
month periods. At the same time, we notice that between
75% and 80% of the users have cosine similarity greater than
0.8, which means that the location patterns of most users
revealed by two month-long call logs are similar month over
month. This is in agreement with earlier work in [28].

Figure 11: Cosine similarity between two month-
long location traces

4.8 Ground truth of preferred locations
In order to better understand the role of preferred loca-

tions, we selected a group of 12 subscribers whom we per-
sonally know (and who revealed their exact home and work
locations, all 12 have full-time jobs) and studied the corre-
lation between their top 2 locations (which we assume are
their home and work locations) and their actual home and
work locations. For four of them, their top 2 locations cor-
respond to home and work locations, respectively, for all
three months. For four others, their top 2 locations corre-
spond to work and home locations, respectively, for all three
months. For two others, their top 2 locations correspond to
home and work locations respectively in the first month, but
correspond to work and home locations respectively in the
subsequent two months. The last two (users A and B) both
have a non-home non-work location as their 2nd top location
in one of the months. We refer to these non-home non-work
locations as “other” locations. For user A, the top locations
is always “home” and the second top location is “other” in
the first month, and “work” in the second and third months;
For user B, the top location is always “work”. In the first
month, the 2nd top location is “home”, and in the second
and third months, the 2nd top location is both “other”.

5. POSSIBLE SOLUTIONS
To publish location data without compromising privacy,

either of the following conditions needs to be met: 1) The
traces are at coarse granularity levels so that the anonymity
sets are large enough to preserve privacy, for example the
location granularity is at city level or above; or 2) The traces
are so short that it is difficult to infer the “top N” locations
correctly. The former is a spatial-domain approach while
the latter is a time-domain approach. We investigate the
privacy-and-utility trade-off of both solutions in this section.

5.1 Spatial domain solution
The spatial domain solution refers to the approach by

which location granularity is coarsened to levels that guar-
antee large enough anonymity sets. Section 4 is dedicated
to the privacy implications of this approach. The results re-
vealed the privacy vulnerability of traces at the zip code and
finer granularity levels. For example, with top 3 locations,
85% of the users are identifiable at the sector level, 50% at
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(a) Number

(b) Entropy

Figure 12: Number and entropy of distinct locations
visited by users at different granularity levels

the cell level, and 35% at the zip code level. The results
suggest data release at the city level or above.

In this subsection, we focus on the tradeoff between pri-
vacy (expressed in terms of granularity levels) and utility.
We explore the number and entropy of locations from traces
as a measure of the utility for each granularity level (refer
to [24] for more detailed study of mobility entropy).

Figure 12 shows the cumulative density function (CDF)
of the number and the entropy, respectively, of the locations
visited by each user at the six granularity levels. Notice that
the x-axis is in logarithmic scale in Fig. 12(a). For the six
granularity levels from sector to state, the median of the
number of distinct locations visited decreases from 27, 19,
11, 7, 3, to 1.

The entropy of locations indicates the difficulty in predict-
ing a user’s locations. If a user u visited K locations and
each of these locations appeared xj times, 0 ≤ j ≤ K − 1,

and user u appeared M times in total, i.e.,
∑K−1

j=0 = M , then

the user u appears at location j with frequency xj/M . Let
X be the random variable representing the locations visited
by user u. The entropy of X can be calculated as follows:

H(X) =

K−1∑
j=0

(xj/M)log
1

xj/M
(1)

As shown in Fig. 12(b), the median entropy is 2.97 at the
sector level, 2.51 at the cell level, 1.91 at the zip-code level,

1.24 at the city level, 0.39 at the county level, and 0 at the
state level. This means that more than half the users visited
only one state in a month, which agrees with Fig. 12(a). The
quick drop in entropy indicates that the information con-
tained in the location data reduces significantly at coarser
granularity levels, and a location trace at a coarser granu-
larity level will be a much simpler trajectory than it would
be at finer granularity levels. At the state level, most users
will appear stationary. At the county level, they may look
like ping-pong balls bouncing back and forth between two
points. City-level data do have more information, however,
the utility of such location data is still significantly limited.

5.2 Time domain solution
The time domain solution refers to the approach by which

location traces are truncated into segments of limited dura-
tion which do not accurately reveal the “top N” locations.
We use sector level location to preserve maximum infor-
mation in the spatial domain. Our task is to assess the
risks associated with location traces of various time dura-
tions. We examine, for each user, the extraction of the “top
N” locations from traces of m days starting Feb. 2, 2010,
m = 1, . . . , 27, and whether the extracted “top N” locations
differ from the “top N” locations extracted from the month-
long trace in Feb. 2010.

We compute the fraction of users whose “top N” locations
are correctly identified through the m-day trace over the
range of m and plot it in Fig. 13(a). At the end of the 1st

day, the top location of about half of the users is correctly
identified, the top 2 locations of 15% of the users are cor-
rectly identified, and the top 3 locations of only 3% of the
users are correctly identified. After a week (on Feb. 8),
the percentages are 75%, 45% and 20%. After two weeks
(on Feb. 15), they are 86%, 64% and 40%. This suggests
that when day-, week-, or two-week long sector-level location
traces are published, those fractions of users are at potential
risk of being re-identified.

Figure 13(a) is obtained over the entire set of users. Among
these users, only a fraction of them belong to small anonymity
sets with k = 1, i.e., are uniquely identifiable if their top lo-
cations are revealed. It is important to know how many of
these “re-identifiable” users’ top locations are correctly ex-
tracted from the day, week, or two-week long traces. To do
this, we focus on the set of users who can be re-identified
by the top two locations, which is about 35% of the entire
population (20 million), and examine the top two locations
revealed over the same m-day period (Fig. 13(b)). After the
first day, the top two locations of 13% of users are revealed;
after a week, 40%; and after two weeks, almost 60%. These
fractions serve as an upper bound in the fraction of users
being re-identified because incorrectly extracted top loca-
tions of other users may interfere with the re-identification
of these users.

Let us now assume that we want to publish a day-long
trace. We would like to know exactly how many users will
be re-identified through the top two locations. Users are not
re-identifiable either because the top N locations are incor-
rectly revealed or because of larger k values for k-anonymity.
Therefore, we examine users who are re-identifiable from the
month-long trace, and see how many of them, from the day-
long trace, not only have 1-anonymity but also are the top
two locations correctly extracted. We choose a day, Febru-
ary 2 2010, for this purpose and the fraction of correctly
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re-identified users is 8%, which is significantly lower than
the fraction of users for whom the top two locations are cor-
rectly revealed (13%). Note that this ratio may change for
another day, and if the published day-trace is from a week-
end, the ratio may be even lower because people tend to
have unusual trajectories over weekends [28]. For example,
we repeat the test for Feb. 25 and the ratio is then 7.5%;
it drops to 4.4% on Valentine’s Day( Feb. 14). The ratio
is for 27% the week-long trace (Feb. 2 - Feb. 8) and 34%
for the two-week-long trace (Feb. 2 - Feb. 15). Since the
total “re-identifiable” users constitute 35% of the total users,
fewer than 3% of the total users are re-identified through a
day-long trace (Feb. 2), about 10% are re-identified through
the week-long trace, and about 12% are re-identified through
the two-week-long trace.

These results suggest that the day-long trace is a much
safer choice from the privacy perspective. Overall, a trace
longer than two weeks reveals more than 50% population’s
top two locations and should raise privacy concerns. Two
weeks is also the time period identified by [28] to capture
enough information to create location profiles for mobile
users for paging and localization purposes.

From a utility perspective, if we were to use a mobility
trace, we would like it to reflect the user’s trajectory as much
as possible. We use the same metrics as those in Section 5.1,
namely the number and entropy of locations, to evaluate the
utility. The results are shown in Fig. 14. We find that the
median number of locations visited per user drops from 27
for the month-long trace to 21 for the two-week-long trace
and to 13 for the week-long trace. The median number of
locations is only 7.5 in the day-long trace (Feb. 2), The
median entropy also reduces dramatically from the month-
long trace (2.97) to the day-long trace (1.46), and is 2.44
and 2.73 for the week-long and two-week-long traces, re-
spectively. Both the number and entropy of locations show
significantly reduced utility in the traces of shorter time du-
rations, in particular in the day-long trace. Unfortunately,
the reduced utility is the price to pay for the increased pri-
vacy as discussed above.

5.3 Discussion
The time domain approach is essentially a sampling pro-

cess to introduce noise into the data, which is similar to the
concept of differential anonymity [4]. The spatial domain
approach is essentially a generalization approach which re-
places a data value with a less precise one or a range to
maintain a larger k for k-anonymity. Both approaches are
not mutual exclusive and they can be combined into a “hy-
brid” approach [16]. However, both approaches will signif-
icantly reduce the utility of the location traces. As argued
by Brickell and Shmatikov in [2], “even modest privacy gains
require almost complete destruction of data-mining utility”.
We are afraid the quote applies quite accurately to location
data. Although possible to be released at coarse granularity
or short time durations, the utility of location traces will be
significantly reduced to satisfy privacy constraints.

6. CONCLUSIONS
In this paper we conducted a large scale study on the

risk of re-identification attacks with published location data
obtained through call records. Our study shows that pub-
lishing or sharing anonymized location data will likely lead
to privacy risks and that, at a minimum, the data needs to

(a) Over all users

(b) Over users with 1-anonymity

Figure 13: Fraction of users whose top locations are
correctly extracted

be coarse in either the time domain (meaning the data is
collected over short periods of time of the order of a day,
in which case inferring the top N locations reliably is diffi-
cult) or the space domain (meaning the data granularity is
strictly higher than the cell level). In both cases, the util-
ity of the anonymized location data will be decreased by a
significant amount, which we quantified using information-
theoretic measures.

While our work may be a bit discouraging regarding the
release of location data in its original form (namely at a fine
granularity such as sector or cell level), we believe our re-
sults provide important guidelines on how location data can
be published, even at the cost of reduced utility. In general,
though, we strongly recommend that the community be ex-
tremely cautious when publishing anonymized location data.

We hope this work also provides incentives for researchers
to investigate and develop methods beyond simple anonymiza-
tion that ensure privacy-preserving sharing or publishing of
location data. This is a topic of growing importance since
ever larger amount of location data is being collected and
in great needs to be shared, for example with academic in-
stitutions (for research purposes) and with the providers of
location-based services.
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