Fingerprinting the datacenter:
automated classification
of performance crises

Peter Bodik"3, Moises Goldszmidt3,
Armando Fox', Dawn Woodard+4, Hans Andersen?

Crisis identification is difficult,
time consuming and costly

Frequent SW/HW failures cause downtime

Timeline of a typical crisis

NV
° 3:00AM — detection: automatic, easy
2 W 3:15 AM — identification: manual, difficult
e * takes minutes to hours
4:15 AM — resolution: depends on crisis type
<[l nextday — root cause diagnosis, documentation

Web apps are complex and large-scale
— app used for evaluation: 400 servers, 100 metrics

Insight: performance metrics help
identify recurring crises

Performance crises recur
— incorrect root cause diagnosis

— takes time to deploy the fix
* other priorities, test new code

System state is similar during similar crises
— but not easily captured by fixed set of metrics
— 3 operator-selected metrics not enough

Contribution: crisis identification
as it happens, via classification

1. Fingerprint = compact representation of system
state

— uniquely identifies a crisis
— robust to noise
— intuitive visualization

2. Using fingerprints to identify crises as they happen
— goal: operator receives email about crisis
“Crisis similar to DB config error from 2 weeks ago”

3. Evaluation on data from a real commercial service
deployed on hundreds of servers

— 80% identification accuracy 4

Outline

Definition of performance crises
Crisis fingerprints

Evaluation results

Related work

Conclusion

Definition and examples of
performance crises

Performance crisis = violation of service-level
objective (SLO)
— based on business objectives
— captures performance of whole cluster

— example: >907% servers have latency < 100 ms
during 15-minute epoch

Crises we analyzed
— app config, DB config, request routing errors
— overloaded front-end, overloaded back-end

Fingerprints capture state of
performance metrics during crisis

Metrics as arbitrary time series
— OS, resource utilization, workload, latency, app, ...

I
1: CPU utilization M

E;J 2: workload /\J\d-’“—q-/-

— XX} I XX}

]

o 100: latency ’\Jr\ﬂ"/\':\/\'“
|

1 1: CPU utilization "NI-/‘F“\T/\

’G;J 2: workload

| o

@ /\}\,-/-/\M

g 100: Iatency

l
1: CPU utilization N.,/ww_:/\
2: workload /\Vf\/-’\—\ff

100: Iatency /\/\,/\M

OK CRISIS OK

server
1000

1: select
relevant metrics

2: summarize
using quantiles

3: map into
hot/normal/cold

4: average over
time

Crisis
‘ fingerprint

7

Step 1: Using feature selection
to pick relevant metrics

what would * all 100 metrics = low identification
notwork .3 operator-selected metrics accuracy

Logistic regression with L1 constraints
— fit accurate linear more with only few metrics
— selected metrics that operators didn’t consider

1: CPU utilization m model input

2: workload /\\/\/_,__\/_/_ (all metrics)

100: Iatency W i
L model output
OK CRISIS OK S (binary)

time

Step 2: Summarize selected metrics
across servers using 3 quantiles

o/ CPU utilization 10 °

25t percentile 50t percentile, 95t percentile
median

servers

robust to outliers

can efficiently compute even for datacenter-
sized clusters

what would °* mean, variance
notwork < only median

Step 3: Map metric quantiles
into hot/normal/cold

overloaded back-end

ol

overloaded back-end

Based on historic values

time

Epoch fingerprints
— differentiate among crises “ _I I
— compact DB config error
— intuitive

AR

what would ¢ raw metric values app config error
not work e« time series model I I I

Step 4: Averaging over time

Different crises have different durations

what would ° all epoch fingerprints
not work < 1epoch fingerprint

Crisis fingerprint
— average epoch fingerprints over time
— compare by computing Euclidean distance

epoch fingerprints Il -

3

crisis fingerprint is a vector - -

OK

CRISIS

OK

Crisis identification
in operational setting

Crisis detected automatically via SLO violation

During first hour of crisis ? 2AAA

— update fingerprint of current crisis T———

epochs

— if found similar crisis P, emit label P
else emit ? - “previously-unseen crisis”

When crisis is over
— automatically update relevant metrics, fingerprints
— ideally, operators enter supplied label into crisis DB

12

Outline

Definition of performance crises
Crisis fingerprints

Evaluation results

Related work

Conclusion

System under study

24 x 7 enterprise-class user-facing application at
Microsoft

— 400 machines
— 100 metrics per machine, 15-minute epochs
— operators: “Correct label useful during first hour”

Definition of a crisis
— operators supplied 3 latency metrics and thresholds
— 10% servers have latency > threshold during 1 epoch

19 operator-labeled crises of 10 types
— 9 of type A, 2 of type B, 1 each of 8 more types
— 4-month period

14

Evaluation results

Identification stability = stick to first label
— unstable: 2?A??, AABBB
— stable: 22222, AAAAA, 22AAA

Previously-seen crises:
— identification accuracy: 77%
— identified when detected or one epoch later

For 77% of crises, average time to ID 10 minutes
— could potentially save up to 50 minutes
— more with shorter epochs

Accuracy for previously-unseen crises: 82% .

More results in the paper

Comparison to other approaches
— using all metrics
— 3 operator-specified metrics
— failure signatures [SOSP ‘05]

Updating fingerprints
Sensitivity analysis

Online-clustering approach
— model evolution of fingerprint during crisis
— doesn’t assume 100% correct labeling of crises

16

Closest related work

* Capturing, indexing, clustering, and
retrieving system history, SOSP ’05

— authors: Cohen, Zhang, Goldszmidt, Symons,
Kelly, Fox

* Failure signatures
— signature for individual servers
— build and manage per-crisis classification models
— detailed comparison in the paper

Conclusion

Crisis fingerprint
— compact representation of system state
— scales to large clusters
— intuitive visualization

Use of Machine Learning crucial for metric selection

Correct identification for 80% crises
— on average after 10 minutes
— rigorous evaluation on production data

Selection of relevant metrics used at Microsoft

18

Thank you!

