Fingerprinting the datacenter: automated classification of performance crises

Peter Bodík^{1,3}, Moises Goldszmidt³, Armando Fox¹, Dawn Woodard⁴, Hans Andersen²

> ¹RAD Lab, UC Berkeley ²Microsoft ³Research ⁴Cornell University

Crisis identification is difficult, time consuming and costly

Frequent SW/HW failures cause downtime

×		Timeline of a typical crisis
	3:00 AM	 detection: automatic, easy
RISIS	3:15 AM	 – identification: manual, difficult takes minutes to hours
Ū	4:15 AM	- resolution: depends on crisis type
ð	next day	 root cause diagnosis, documentation
•	↓ _	

Web apps are complex and large-scale – app used for evaluation: 400 servers, 100 metrics

Insight: performance metrics help identify recurring crises

- **Performance crises recur**
 - incorrect root cause diagnosis
 - takes time to deploy the fix
 - other priorities, test new code

System state is similar during similar crises – but not easily captured by fixed set of metrics – 3 operator-selected metrics not enough

Contribution: crisis identification as it happens, via classification

- Fingerprint = compact representation of system state
 - uniquely identifies a crisis
 - robust to noise
 - intuitive visualization
- 2. Using fingerprints to identify crises as they happen
 - goal: operator receives email about crisis
 - "Crisis similar to DB config error from 2 weeks ago"
- 3. Evaluation on data from a real commercial service deployed on hundreds of servers
 - 80% identification accuracy

Outline

- Definition of performance crises
- Crisis fingerprints
- Evaluation results
- Related work
- Conclusion

Definition and examples of performance crises

Performance crisis = violation of service-level objective (SLO)

- based on business objectives
- captures performance of whole cluster
- example: >90% servers have latency < 100 ms during 15-minute epoch

Crises we analyzed

- app config, DB config, request routing errors
- overloaded front-end, overloaded back-end

Fingerprints capture state of performance metrics during crisis

Metrics as arbitrary time series

– OS, resource utilization, workload, latency, app, …

Step 1: Using feature selection to pick relevant metrics

what would • all 100 metrics
not work • 3 operator-selected metrics

Logistic regression with L1 constraints

- fit accurate linear more with only few metrics
- selected metrics that operators didn't consider

Step 2: Summarize selected metrics across servers using 3 quantiles

- robust to outliers
- can efficiently compute even for datacentersized clusters

what would • mean, variancenot work • only median

Step 3: Map metric quantiles into hot/normal/cold

Based on historic values

Epoch fingerprints

- differentiate among crises
- compact
- intuitive
- what would not work
- raw metric values
- time series model

overloaded back-end

DB config error

app config error

Step 4: Averaging over time

Different crises have different durations

- what would all epoch fingerprints
 - not work 1 epoch fingerprint

Crisis fingerprint

- average epoch fingerprints over time
- compare by computing Euclidean distance

epoch fingerprints

crisis fingerprint is a vector

Crisis identification in operational setting

Crisis detected automatically via SLO violation

During first hour of crisis

- update fingerprint of current crisis
- if found similar crisis P, emit label P else emit ? – "previously-unseen crisis"

When crisis is over

- automatically update relevant metrics, fingerprints
- ideally, operators enter supplied label into crisis DB

S

CRISIS

Outline

- Definition of performance crises
- Crisis fingerprints
- Evaluation results
- Related work
- Conclusion

System under study

24 x 7 enterprise-class user-facing application at Microsoft

- 400 machines
- 100 metrics per machine, 15-minute epochs
- operators: "Correct label useful during first hour"

Definition of a crisis

- operators supplied 3 latency metrics and thresholds
- 10% servers have latency > threshold during 1 epoch

19 operator-labeled crises of 10 types

- 9 of type A, 2 of type B, 1 each of 8 more types
- 4-month period

Evaluation results

Identification stability = stick to first label

- unstable: ??A??, AABBB
- stable: ????, AAAAA, ??AAA

Previously-seen crises:

- identification accuracy: 77%
- identified when detected or one epoch later

For 77% of crises, average time to ID 10 minutes

- could potentially save up to 50 minutes
- more with shorter epochs

Accuracy for previously-unseen crises: 82%

More results in the paper

Comparison to other approaches

- using all metrics
- 3 operator-specified metrics
- failure signatures [SOSP '05]

Updating fingerprints

Sensitivity analysis

Online-clustering approach

- model evolution of fingerprint during crisis
- doesn't assume 100% correct labeling of crises

Closest related work

- Capturing, indexing, clustering, and retrieving system history, SOSP '05
 - authors: Cohen, Zhang, Goldszmidt, Symons, Kelly, Fox
- Failure signatures
 - signature for individual servers
 - build and manage per-crisis classification models
 - detailed comparison in the paper

Conclusion

Crisis fingerprint

- compact representation of system state
- scales to large clusters
- intuitive visualization

Use of Machine Learning crucial for metric selection

Correct identification for 80% crises

- on average after 10 minutes
- rigorous evaluation on production data

Selection of relevant metrics used at Microsoft

Thank you!