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Abstract—An increasingly diverse set of applications, such as
Internet games, streaming videos, e-commerce, online banking,
and even mission-critical emergency call services, all relies on
IP networks. In such an environment, best-effort service is no
longer acceptable. This requires a transformation in network
management from detecting and replacing individual faulty
network elements to managing the end-to-end service quality as
a whole. In this paper, we describe the design and development
of a Generic Root Cause Analysis platform (G-RCA) for service
quality management (SQM) in large IP networks. G-RCA con-
tains a comprehensive service dependencymodel that incorporates
topological and cross-layer relationships, protocol interactions,
and control plane dependencies. G-RCA abstracts the root cause
analysis process into signature identification for symptom and
diagnostic events, temporal and spatial event correlation, and
reasoning and inference logic. G-RCA provides a flexible rule
specification language that allows operators to quickly customize
G-RCA and provide different root cause analysis tools as new
problems need to be investigated. G-RCA is also integrated with
data trending, manual data exploration, and statistical correlation
mining capabilities. G-RCA has proven to be a highly effective
SQM platform in several different applications, and we present
results regarding BGP flaps, PIM flaps in Multicast VPN service,
and end-to-end throughput degradation in content delivery net-
work (CDN) service.

Index Terms—Networkmanagement, root cause analysis (RCA),
service quality management (SQM).

I. INTRODUCTION

A N INCREASINGLY diverse set of applications relies on
IP networks. These applications range from entertain-

ment, such as Internet games and streaming videos, to com-
mercial applications, such as e-commerce and online banking,
to even some mission-critical applications, such as emergency
911 over VoIP. For many of these applications, best-effort
delivery is no longer an acceptable mode of operation. The
networking service offered by Internet service providers (ISPs)
must maintain ultrahigh reliability and performance.
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The change of service quality expectations has also trans-
formed the way that ISPs conduct network and performance
management. Network operators have traditionally managed
networks on the basis of individual network elements, for
example, by detecting and replacing faulty network line cards.
Today, managing issues related to end-users’ service quality has
become an increasingly significant part of operators day-to-day
work. This work typically involves such tasks as monitoring
the loss and delay among different sites of a customer virtual
private network (VPN) and identifying (“alarming”), trou-
bleshooting, and fixing any detected performance problems.
As another example, previously network operators primarily

focused on faults and hard failures. Nowadays, their attention
is increasingly drawn to transient problems, as is often the case
with protocol (e.g., BGP) flaps. By their nature, transient prob-
lems “repair” themselves. Therefore, in addition to alarming and
responding to each individual problem, examining them—po-
tentially a large number of them—collectively, classifying their
root causes, and trending them over time can provide operators
with critical insights. This information may help in driving the
corresponding failure modes out of the network and may even-
tually lead to service improvements.
Moreover, as new services (e.g., multicast VPN), new tech-

nologies (e.g., MPLS TE), and new devices (e.g., OC768 line
cards) are introduced into ISP networks at a fast rate, network
operators and hardware vendors often have to learn through
experience about service-impacting issues. Should unexpected
failure modes or performance impairments occur, operators
need to act quickly to understand the problem, diagnose the
root cause(s), and eliminate or mitigate the failure mode to
improve service quality.
Given these new challenges, traditional fault diagnoses and

root cause analysis (RCA) systems [1]–[7] that network oper-
ators have relied on are reaching their limits for the following
four reasons.
First, the narrow view provided by the per-network element

perspective of the traditional systems tends to miss rather
complicated service dependency relationships. For example,
the quality of a VoIP call across the ISP network depends on
the status (congestion level, bit error rate, etc.) of the routers
and links along the network path carrying the traffic, which is
dynamically determined based on the link weights at the time.
In another example, the health of a BGP session connecting to
a peer router depends on the route processor resource on both
routers and the layer-2 line protocol status between them (with
complicated timer/protocol interactions), which in turn depends
on the condition of the layer-1 (e.g., a SONET ring) network
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in between. Capturing such service dependency relationships is
vital for service quality management (SQM).
Second, traditional information-gathering processes (such as

running traceroute or invoking show command on routers) that
are effective at diagnosing problems for large ongoing service
impacting events are unable to cope with minor and transient
service disruptions. RCA for transient failures should only rely
on proactively collected data.
Third, achieving ultrahigh service quality requires going be-

yond break-and-fix operation and single-event troubleshooting.
SQM involves processing and extracting actionable information
from a large number of service impacting events in the aggre-
gate. For example, when analyzing sporadic packet losses ob-
served by probing traffic transmitted between different points
of presence (PoPs) of an ISP network, one should examine the
packet losses over an extended period (e.g., a month) and di-
agnose their root causes. Should link congestion be determined
to be the primary root cause, capacity augmentation is needed
along the corresponding network path. Alternatively, if packet
losses are found to be largely due to intradomain routing recon-
vergence, deploying technologies such asMPLS fast reroute be-
comes a priority.
Finally, in an ever-changing network and service environ-

ment, domain knowledge and operator’s experience may be-
come insufficient. RCA systems that solely rely on expert input
can fail to capture unexpected service dependencies, which un-
fortunately are not unusual in practice due to the variety of hard-
ware/software errors and configuration mistakes that can occur.
An SQM system should allow rapid instantiation of new RCA
tasks based on existing expert knowledge as well as flexible data
exploration and data mining capability to improve operators’
domain knowledge and understanding over time.
In this paper, we introduce our Generic Root Cause Anal-

ysis platform (G-RCA) that is designed to bridge the gap be-
tween ISP operational needs for service quality management
and the state-of-the-art research [1]–[4] or commercially avail-
able [5]–[7] RCA systems. A key feature of G-RCA is a compre-
hensive service dependency model that includes network topo-
logical and cross-layer relationships, protocol interactions, and
routing and control plane dependencies. Thus, network opera-
tors can look for undesirable network conditions that are poten-
tially related to service-impacting problems without specifying
the details of the topology and cross-layer relationships, the pro-
tocol interactions, or routing dependencies.
We also ensure that the service dependency relationships in

G-RCA can be determined using only data that are proactively
collected. For example, network paths can be computed from
BGP and OSPF route-monitoring data, as opposed to requiring
multiple traceroutes.
We implemented G-RCA for a tier-1 ISP network. Our de-

sign decomposes the RCA process into signature identification
for symptom and diagnostic events, temporal and spatial event
correlation, and reasoning and inference logic. Here, symptom
events are the service problems to be analyzed, and diagnostic
events refer to the evidence of a potential root cause. We define
a simple yet flexible rule specification language that allows op-
erators to quickly customize G-RCA into different RCA tools
as new problems need to be investigated and understood. We

integrate into G-RCA data trending, manual data exploration,
and statistical correlation mining capabilities that are tailored
for service quality management. G-RCA has proven to be a
highly effective SQM platform in several different applications.
In particular, using the G-RCA platform, network operators are
able to quickly investigate new service problems, uncover unex-
pected service impacts, and quantify the scale and trend of dif-
ferent factors contributing to service performance issues using
the G-RCA platform.
Our contributions can be summarized as follows.
1) We addressed the need for large-scale service quality man-
agement in IP networks and services and designed an ab-
straction model that incorporates complicated service de-
pendency relationships without exposing unnecessary de-
tails to network operators.

2) We implemented a G-RCA system for an ISP network by
using the data already collected from various logging and
performance monitoring systems. We included in our im-
plementation a library of event definitions (for common
network problems or failure conditions), network topology
and cross-layer conversion utilities, service dependency
inference tools, and a library of dependency relationship
rules to quickly instantiate new RCA applications.

3) We collaborated with network operators in applying
G-RCA in real-world network operations and conducted
troubleshooting and analysis for a wide range of problems
including customer BGP flaps, cross-site VPN PIM ses-
sion flaps, and content delivery network (CDN) service
performance issues.

4) We demonstrated that iteratively applying RCA and statis-
tical correlation tests is an effective way to identify unex-
pected network behavior and build RCA rules.

The rest of this paper is organized as follows. In Section II,
we first discuss the overall architecture of G-RCA, and we
then provide the design details of each component of G-RCA.
Section III describes how we quickly incorporate new RCA
applications into G-RCA. We demonstrate this by incorporating
applications for BGP flaps, throughput drops in CDN service,
and PIM flaps in Multicast VPN. Section IV presents the
operational experience gained by applying G-RCA in SQM of
a tier-1 ISP. Section V discusses related work, and Section VI
concludes the paper.

II. G-RCA ARCHITECTURE

SQM presents a unique set of challenges for ISP networks.
This section presents our design of the G-RCA platform for
SQM. We focus on the following aspects of G-RCA: 1) data
collection and management; 2) the service dependency model;
3) spatial-temporal correlation; 4) reasoning logic; and 5) do-
main knowledge building. The architecture of G-RCA is shown
in Fig. 1.
G-RCA obtains both the symptom events of interest and

the set of diagnostic events via the data collector. For a given
symptom event, G-RCA uses an application-specific diagnosis
graph to identify the relevant diagnostic events. Specifically,
G-RCA determines where and when to look for diagnostic
events based on the location and time of the symptom event.
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Fig. 1. G-RCA architecture.

Once these diagnostic events are identified, G-RCA then ap-
plies reasoning logics to examine all of the different diagnostic
events observed for the given symptom to identify the most
likely explanation(s) of the symptom event. Operators usually
start with an inaccurate and incomplete diagnosis graph and
G-RCA allows them to gradually acquire new knowledge or
learn unexpected network behaviors to improve the diagnosis
graph.
Overall, there are two types of scenarios in which G-RCA is

frequently applied.
1) Troubleshooting individual ongoing network inci-
dences: These incidences may currently be impacting
customers, in which case network operators are under
great pressure to quickly go through a large number of
alarms, logs, and measurement data and identify the
root cause.

2) Investigating past behaviors in order to improve future
network performance:Besides critical faults and service
interruptions, there are many noncritical outages or un-
desirable conditions in the network. Some are very short
in duration, such as a link flap that clears itself before a
human operator can get to it. Some are minor in severity,
such as a router processor becoming temporarily over-
loaded, increasing the risk for protocol malfunction, or
end-to-end monitoring system reporting sporadic packet
losses across the network. These “small” incidences or
service impairments can add up, becoming a chronic
issue and causing customer dissatisfaction. It is critical
for network operators to keep track of a potentially over-
whelming number of “small” network events and ana-
lyze their root causes so operators can prioritize efforts
to improve the network. For example, if link congestion
is determined as the primary root cause for packet losses
reported from end-to-end monitoring systems, capacity
should be added to the corresponding network path. Or if
packet losses are found to be largely due to intradomain
routing reconvergence, perhaps priority should be put on
deploying technologies such as MPLS fast reroute.

A. Data Collection and Management

Understanding service quality issues often requires an in-
tegrated view of different parts of the network. As mentioned

Fig. 2. Spatial model: location types and mapping.

earlier, G-RCA relies on a wide range of proactively collected
information containing alarms, logs, and performance mea-
surement data from various network management systems.
As simple as it sounds, there are tremendous instrumentation
challenges for data management. Moreover, these data come
from many devices and network management systems provided
by different vendors, all reporting different statistics, from
different time zones, and at varying intervals. The same device
may be referenced in different ways by different systems or at
different network layers (by a circuit identifier, an IP address,
or an interface name). The timestamps can be a mixture of
local time (depending on the time zone of the device), network
time as defined by the service provider, and GMT. To facilitate
SQM, one has to look across data sources efficiently. Hence, in
G-RCA, the first optimization is on data integration—G-RCA’s
Data Collector pulls all the data together, normalizes them so
that they can be readily correlated, and stores them in database
tables in real time. The normalization across naming conven-
tions, time zones, and identifiers takes place as data is ingested
into the Data Collector. This hides the data processing com-
plexity from the remaining G-RCA components and eliminates
the need for the operators to be painfully aware of the original
data source details when correlating data. The data sources in
our implementation of G-RCA include layer-1 alarms, router
logs, SNMP MIBs and traps, routing data, router command
logs, end-to-end measurements, and router configurations.
Currently, the Data Collector is collecting around 600 data
sources in total, and the daily data volume is about 7 TB.
Using two data sources (syslog and SNMP) as examples, the
daily numbers of new records for them are tens of millions and
hundreds of millions, respectively.
Expectedly, raw data are typically difficult to work with. In

G-RCA, we introduce the notion of event—an event is a sig-
nature that captures a particular type of network condition. We
associate a location type with each event as it provides a key
piece of information required for modeling service dependency
(in Section II-B). Fig. 2 shows the location types that can be
associated with a single event. A type of event can be extracted
from raw input data through a parsing script, a database query, or



YAN et al.: G-RCA: GENERIC ROOT CAUSE ANALYSIS PLATFORM FOR SERVICE QUALITY MANAGEMENT 1737

TABLE I
COMMON EVENT DEFINITIONS FOR A TIER-1 ISP’S IP NETWORK

somemore sophisticated processing such as through an anomaly
detection program. Specifically, an event definition in G-RCA
is a tuple consisting of (event-name, location type, retrieval
process, additional descriptive information), in which the re-
trieval process points to the actual scripts/queries needed to ob-
tain the matching event instances.
Each event instance consists of an (event-name, event

start-time, event end-time, event location, additional info).
For example, the event definition (link-congestion, interface,
myscript) indicates that the G-RCA Engine will use myscript
to query SNMP traffic counter data to identify links that are
nearly 100% utilized, and output event instances with location
type interface. A corresponding event instance example is
(link-congestion, 2010-01-01 12:30:00, 2010-01-01 12:35:00,
newyork-router1:serial-interface0).
In order for network operators to quickly analyze new ser-

vice problems, G-RCA defines and implements a wide range
of commonly used event signatures. These are included in the
RCA Knowledge Library. For example, various RCA applica-
tions running on the IP backbone network may be interested in
identifying link congestion events. Furthermore, there can be
multiple signatures defined for the same network conditions.
For example, in G-RCA Knowledge Library, a link congestion
event is defined as either a near-100% link utilization in the
SNMP traffic counter or a high number of overflow packets
in the SNMP interface MIB. The number of overflow packets
is a more reliable metric to reflect packet loss as the impact
of link utilization on packet loss depends the network type.
In the backbone network, as traffic is highly aggregated, there
is rarely any packet loss (overflow) even for links with 5-min
average utilizations around 90% level. However, it can be ex-
pected that in the access network where traffic is more bursty,
packet loss can occur with significant lower link utilization mea-
sure, hence impacting TCP performance. Network operators can
pick the event definition that is best suited for the SQM task
under investigation.

Table I lists some common events in G-RCA for the tier-1 ISP
network. Note that any event defined in the Knowledge Library
can be redefined by an application. For example, the event “link
congestion alarm” in Web-hosting data throughput analysis can
be easily redefined as “ link utilization in the SNMP
traffic counter” when needed. At the time of writing this paper,
there are more than 200 common events that are defined in the
G-RCA Knowledge Library.

B. Service Dependency Model

The key to SQM is understanding the service dependency
relationship between a user’s service problem and the under-
lying network devices and protocols supporting the service.
G-RCA uses the model in Fig. 2 to capture such dependencies.
Though it appears simple, this model actually incorporates
topological information (e.g., physical link connecting two
different routers), cross-layer dependency (e.g., layer-1 devices
supporting layer-3 links), logical and physical device associa-
tion (which requires router configuration), and dynamic routing
(e.g., BGP and OSPF routing in determining the path between
source and destination).
The service dependency abstraction is the most powerful

component of G-RCA. By specifying the type of service
problem (e.g., Ingress:Destination1), G-RCA can automati-
cally expand the service dependency to include all network
elements that are associated with the service. However, real-
izing this model in practice is quite challenging. One crucial
aspect to the dependency model is that the relationship is
time-varying—egress points to a destination network can
change upon BGP updates; network paths can change as op-
erators modify link weights; logical to physical mappings can
change with configuration changes; even physical connectivity
can change over time. Associating the right network elements

1In the paper, the notation ”A:B” denotes all locations between points A and
B.
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with a service event at a given time in history requires recon-
structing the “network condition” at the time. G-RCA tackles
this by implementing a range of sophisticated conversion
utilities as follows.
1) A source and destination pair where both are outside
the ISP is first mapped to “Source:Ingress router” and
“Ingress router:Destination.” This mapping is typically
done by looking at the traffic sampling data (e.g., Net-
Flow) to figure the ingress router and sometimes needs
external mapping information. For example, if the traffic
enters the ISP’s network from a data center that is also
under the ISP’s control, the mapping can be easily ob-
tained by looking at the configuration (e.g., the list of
ingress routers that connect to the data center). Then,
in order to map from “Ingress router:Destination” to
“Ingress router:Egress router” and “Egress router:Des-
tination,” G-RCA looks up historical data of BGP ta-
bles to find out the longest prefix match and the network
egress point for the destination. Note that BGP routing
changes are typically not available at all ingress routers,
and only those changes at the BGP route-reflectors are
available. In such cases, approximation is needed. The
reflectors that feed the ingress router with BGP updates
are extracted from the daily archive of router configura-
tions; the BGP decision process at the ingress router is
emulated based on the BGP route changes from its re-
flectors as well as the OSPF distance to available egress
routers, and one best egress router is picked based on
BGP best path selection.

2) Both “Source:Ingress” and “Egress:Destination” can
be mapped to a pair of access router and neighbor’s
IP according to router configuration. The mapping
from “Router: NeighborIP” to “Interface” can also be
acquired by looking at the router configuration. This is
particularly useful for diagnosing some protocol (e.g.,
BGP) events with a neighbor IP that typically belongs
to a router outside the ISP network.

3) Given the ingress router to egress router pair, the logical
link or router level path between them can be computed
via an OSPF [8] routing simulation based on network-
wide link weights from route-monitoring tools such as
OSPFMon [9] (which listens to the flooded messages in
OSPF). In the case of Equal Cost Multipath (ECMP), all
network elements along all paths will be considered.

4) A point-to-point logical link can be associated with its
attached routers by matching the IP addresses of the log-
ical interface to a /30 network.

5) A logical link may be mapped to more than one
physical link for redundancy and capacity purposes
by using techniques such as SONET Automatic
Protection Switching (APS)[10] and Multilink PPP
bundle [11]. This mapping can be obtained from the
router configuration.

6) G-RCA parses daily router configuration snapshots to
infer that a router consists of a set of line-cards, which
comprises multiple interfaces.

7) An external database that keeps track of layer-1 inven-
tory provides G-RCA with the mapping from physical
links to all the layer-1 devices in between.

Fig. 3. Three different expanding options.

These conversion utilities are specific to the ISP network that
we work with. However, we believe similar capability can be
established when applying G-RCA to other networks.

C. Spatial-Temporal Correlation

The most commonly asked question when network operators
perform SQM tasks is what happened in the network at the time
that can be related to the service problem? Breaking this ques-
tion into more rigid and programmable logic, G-RCA defines a
temporal and spatial join rule as follows.
The simple concept “at the same time” can be quite entan-

gled with each networking application. First, there are typi-
cally various delay timers or expiration timers in each network
protocol. Cause and effect rarely follow one another instantly.
Second, there is always inaccuracy and uncertainty in the timing
of network measurements. For example, a router CPU measure-
ment in a 5-min interval (via SNMP) may indicate a CPU over-
load condition within that interval, but not any more precisely.
G-RCA captures the above by defining a time window to allow
symptom event and diagnostic event to be joined (or “at the
same time”).
Specifically, each temporal joining rule consists of six pa-

rameters: the left expansion margin X, right margin Y, and an
expanding option (Start/End, Start/Start, or End/End) for each
of the symptom event and diagnostic event. The margin values
can be positive or negative in seconds, indicating forward shift
or backward shift in time. The expanding option (Fig. 3) spec-
ifies how the time window of an event is expanded. G-RCA
determines a joint event pair when their expanded time win-
dows overlap. Note that typically operators decide the parame-
ters based on their domain knowledge.
For example, consider a diagnosis event “Interface flap”

(Start/End, ) to be correlated with a symptom
event “eBGP flap” (Start/Start, ). Here, 180 is
used to model the cause–effect delay between “eBGP flap” and
“Interface flap.” The default setting for the eBGP hold timer is
180 s. In other words, “eBGP flap” is likely to occur 180 s after
an “Interface flap” event takes place. To model the inaccurate
timestamps in syslog messages, 5 s is used. For an “eBGP flap”
starting at time 1000 and ending at time 2000, its expanded
time interval is . For an “Interface flap” starting at
time 900 and ending at time 901, its expanded time interval is

. The two event instances are considered temporally
joined since the two time intervals overlap.
For a diagnostic event to be correlated with a symptom event

spatially, G-RCA defines the spatial joining rule that consists



YAN et al.: G-RCA: GENERIC ROOT CAUSE ANALYSIS PLATFORM FOR SERVICE QUALITY MANAGEMENT 1739

Fig. 4. Diagnosis graph for BGP flaps root cause analysis.

of three parts: 1) symptom event location type; 2) diagnostic
event location type; and 3) joining level. The first two follow
directly from the event definitions and must be one of the lo-
cation types specified in Fig. 2. The joining level is used to
link symptom event locations with diagnostic event locations.
G-RCA automatically converts the locations of symptom and
diagnostic events into the same “join level” location so that
they can be directly compared. For example, the symptom is an
end-to-end packet loss event that has a location type as “Source:
Destination.” The diagnostic event is a CPU overload event
that has a location type as “Router.” The joining level can be
“Backbone Router-level Path,” which means only CPU over-
load event on the router along the backbone path (not all the
routers on the backbone) will be joining with this end-to-end
packet loss event. As another example, consider the symptom
event of “packet loss on the uplink of an access router”2 with lo-
cation type “Interface.” Consider the diagnostic event of “packet
loss on an ISP access router customer-facing interface” also
with location type “Interface.” If the joining level is “Router,”
two event instances are spatially joined only if they take place on
the same router. The Generic RCA Engine evaluates the built-in
spatial model that ensures the symptom and diagnostic events
are related according to the spatial joining rule specified. With
this capability, when building a new application from G-RCA,
operators are alleviated from the details of routing informa-
tion, network topologies, router configurations, and cross-layer
dependency.
The above defines the temporal and spatial relationship

between a pair of symptom and diagnostic events. For any
RCA application, typically many diagnostic signatures are
investigated as potential root causes. We model this using a
diagnosis graph—an example of a diagnosis graph is shown in
Fig. 4. We refer to each edge in the diagnosis graph (the pair of
symptom and diagnosis events and their temporal and spatial
joining rules) as “diagnosis rule.” Given a diagnosis graph (for
a specific SQM application), G-RCA evaluates the time and

2An uplink is the link that connect an access router to a core network router.

TABLE II
COMMON DIAGNOSIS RULES FOR A TIER-1 ISP’S NETWORK

location conditions and collected data according to the data
retrieval process in the event definition to determine the pres-
ence or the absence of diagnostic signature events.
Similar to the event definition library for frequently used

event signatures, G-RCA also includes a library of diagnosis
rules in G-RCA Knowledge Library in Fig. 1. Some statistical
correlation tests such as [12] can help operators find more
diagnosis rules automatically. Note that even with these statis-
tical correlation tests, domain knowledge is still indispensable
to check if the identified rules are actually meaningful and to
decide the right parameters for the rules. At the time of writing
this paper, there are more than 300 common diagnosis rules
that are defined in the G-RCA Knowledge Library as shown in
Table II.

D. Reasoning Logic

Once data are collected regarding the presence or absence of
diagnostic signature events, the next step is to determine the
root cause of the symptom events based on this “evidence.” This
reasoning logic can be implemented inmany ways. In particular,
G-RCA includes two reasoning engines: rule-based decision-
tree-like reasoning and Bayesian inference.
1) Rule-Based Reasoning Module: In our rule-based rea-

soning module, we allow operators to associate a priority value
for each edge in the diagnosis graph (such as in Fig. 4). The
higher the priority value, the stronger support that the operator
believes the diagnostic event to be the real root cause. After tem-
poral spatial correlation, each symptom event instance is at the
root of the diagnosis graph, and diagnostic event instances are
located at other nodes of the diagnosis graph. The rule-based
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reasoning engine starts from the root, searches through each
node (if there is a diagnostic event instance), and identifies the
leaf node with the maximum priority as the root cause. In the
case of a tie between different leaf nodes, all of them are output
as joint root causes.
Regarding the priorities of root causes, G-RCA relies on the

domain knowledge from operators. In general, the priority as-
signment for the root causes on the same branch is trivial; oper-
ators just need to make sure the deeper root cause has a higher
priority. For example, event Interface flap and event line pro-
tocol flap can both be the root cause of symptom event BGP flap.
Because line protocol flap is typically caused by Interface flap,
the priority for Interface flap is higher. It is more tricky to assign
priorities for the unrelated root causes on different branches. For
example, the priorities for ”Router reboot,” CPU overload, and
Interface flap are purely determined by operators according to
their knowledge about which one is more likely to the real root
cause of BGP flap. If operators are not sure about which root
cause is more likely, they simply use the same priority for all of
them. G-RCA’s Result Browser allows them to exam all poten-
tial root causes ordered by the priority.
2) Bayesian Inference: An alternative to the classic priority

and rule-based reasoning is the Bayesian inference technique,
which has proven successful in many networking applica-
tions [13]–[17]. While it is considerably more complex in
parameter setting (a drawback based on operators feedback),
including Bayesian inference in G-RCA provides several key
advantages. For example, it naturally models unobservable
root cause conditions (i.e., those that do not have strong ob-
servable evidence or signatures) and captures the uncertainty
of diagnostic evidence. Using Bayesian inference also allows
multiple symptom events to be examined together and deduces
a common root cause (or causes) for them—this typically
achieves better accuracy than when each individual symptom
event is diagnosed separately.
We model the root cause analysis problem using a Naive

Bayesian Classifier [18], in which the potential root causes
are the classes, and the presence or absence of the diagnostic
evidence as well as the symptom events themselves are the
features. The likelihood for a particular root cause given the
features observed is

(1)

where is the set of potential root causes. Determining the root
cause is to identify the one producing the following maximum
likelihood ratio:

(2)
in which denotes when the root cause is not .
Suppose operators want to assess the likelihood ratio for a

BGP session flap due to an overloaded router CPU. In this case,
is the a priori probability of an overloaded router CPU in-

ducing BGP session timeout. is the probability
of the presence of evidence (such as SNMP 5-min average CPU

measurement being high, or a BGP hold-timer expiry notifica-
tion observed in router syslog) under such a scenario; it is di-
vided by , which is the chance for the same evi-
dence to appear when the BGP flap is due to other root causes.
Hence, the first term in (2) quantifies how likely is the root cause
without any additional information, and the second term quanti-
fies howmuch confidence you gain or lose from observing or not
observing the set of evidence. When the features are condition-
ally independent, the second term can be decoupled to ,
in which each term quantifies the support of root cause given
evidence .
The parameters ratios: and can be difficult to

configure. These can be trained from classified historical data,
which we can bootstrap using the rule-based reasoning from
Section II-C. Alternatively, we also define a fuzzy type of dis-
crete values. Operators can simply specify the ratios as “Low,”
“Medium,” and “High,” which corresponds to values 2, 100, and
20 000, respectively. Note that the unscaled values are likely to
be fractional numbers less than one as the root causes are rare
events. However, from the operational point of view, it is unde-
sirable to use fractional numbers. According to (2), multiplying
a constant scaling factor does not change the final results. Thus,
instead we use integers like 2, 100, and 20 000. Coarse as they
are, the classification results using these are quite reasonable in
that the performance of the Naive Bayesian classifier is often
not sensitive to the probability parameters [19].
3) Comparison: Interestingly, in our operational practice, we

have found that rule-based reasoning logic is often preferred
over its more sophisticated counterpart—this is because: 1) it
is easier to configure; 2) it gives simple and direct association
between the diagnosed root cause and the evidence(s) for result
interpretation; and (3) it is found to be very effective in most ap-
plications that we have explored. However, there are a few cases
where Bayesian inference is preferred—for example, when the
root cause condition is unobservable (e.g., no direct evidence
can be collected).

E. Domain Knowledge Building

One of the important challenges in SQM is that operators’ do-
main knowledge and operational experience can be unreliable
or incomplete. This implies that the specification of a diagnosis
graph for a new SQM application offered by an operator, espe-
cially the initial version, can be inaccurate and incomplete.
G-RCA assures the accuracy of diagnosis graph by using

the Correlation Tester (see Fig. 1) to check each edge/rule in
the graph. Specifically, for each diagnosis rule, we run the
Correlation Tester to test the statistical correlation between
symptom event and diagnostic event. Regarding the Correlation
Tester, G-RCA implements the statistical correlation algorithm
proposed in NICE [12]. In comparison to other canonical sta-
tistical tests, NICE handles the event autocorrelation structure
very well, which is commonly observed in networking event
series. The diagnosis rule is only considered to be accurate
when it passes the test. The idea is that the number of coin-
cidental correlations should be bounded when examining the
instances of symptom and diagnostic events in bulk. Thus,
when the diagnosis rule is inaccurate, it fails the test due to lack
of statistical correlation between symptom event and diagnostic
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TABLE III
APPLICATION-SPECIFIC EVENTS FOR BGP FLAPS ROOT CAUSE ANALYSIS

event. We also periodically retest each diagnosis rule in the
diagnosis graph to keep the diagnosis rules up to date.
G-RCA addresses this concern regarding incomplete diag-

nosis graph through iteratively using the Correlation Tester
and Result Browser (see Fig. 1). G-RCA first allows operators
to filter out the symptom events with known root causes with
the root cause classification capability provided in the Result
Browser. Second, operators are able to focus on the rest of
symptom events by comparing with other suspected diagnostic
events (regardless if they are not currently defined in the di-
agnosis graph) that occur at about the same time and that are
spatially related to the service problem under investigation. On
one hand, the second step can be done via manual drill-down
and data exploration capability in the Result Browser. The
manual-discovered diagnosis rules need to be tested by the
Correlation Test before incorporating into the diagnosis graph.
On the other hand, operators can also choose to run the Correla-
tion Tester blindly between the symptom events without known
root causes and each type of suspected diagnostic events. Note
that a relation between the symptom events and one type of
suspected diagnostic events might be buried in the noise if we
do not take out the symptom event with known root causes. As
G-RCA emphasizes usability, the newly uncovered diagnosis
rules need to be verified by operators before incorporating
into the diagnosis graph. For example, a large number of BGP
flaps between customer routers and provider edge routers were
found to be due to link flaps between the customer and provider
edge routers, which typically are caused by customer activities.
These BGP flaps could be easily filtered out by the Result
Browser, and operators can concentrate on the rest of the BGP
flaps without known root causes. This has proven tremendously
useful from operational experience. Operators can often spot
the signature of overlooked root causes and add them to the
diagnosis graph. Similarly, instead of focusing on the symptom
events with unknown root cause, one can concentrate on the
symptom events with a particular type of root cause to dig out
deeper root causes. For example, by only looking at the BGP
flaps caused by ”CPU overload,” one may find the deeper root
cause that results in ”CPU overload.”
Through iteratively using the Result Browser and Statistical

Correlation Tester, operators can start with inaccurate and in-
complete domain knowledge and gradually acquire new knowl-
edge or learn unexpected network behaviors exhibited in the
network data, which can then be incorporated into the diagnosis
graph.

III. G-RCA APPLICATIONS

The key advantage of G-RCA in SQM is its capability to
be rapidly customized into different RCA applications in the
ISP’s network. Exisitng RCA applications include various di-
agnostic systems for different types of protocol (e.g., BGP and

PIM) flaps, for network issues detected by periodical probing
traffic sent across the backbone network, and for degrading ser-
vice performance conditions in CDN, DNS, and 3G Cellular
network. In this section, we focus on the following three case
studies—1) customer BGP flaps; 2) end-to-end throughput man-
agement in a CDN service; and 3) network PIM flaps in multi-
cast VPN—to demonstrate the effectiveness of G-RCA.

A. BGP Flaps Root Cause Analysis

In the first case study, we focus on building an RCA tool to
understand the root causes of eBGP [20] session flaps between
customer routers (CRs) and provider edge routers (PERs) in a
tier-1 ISP.
Customer networks exchange routes with the ISP through the

eBGP session— the routes learned from the ISP inform the cus-
tomer network how to route to locations across the Internet and
other sites of the same customer; routes shared from the cus-
tomer network ensure that other sites can reach the sites. If a
session flaps, all routes are withdrawn, and traffic is disrupted.
Although relatively short (on the order of a minute), these flaps
can disrupt applications. For example, VoIP sessions may be
lost, and financial transactions may be interrupted.
We therefore aim to minimize the number of eBGP session

flaps, taking actions to drive avoidable flaps permanently out
of the network. The first step to achieving this is to under-
stand the root cause of the flaps—a particularly challenging
problem across a trust domain (between customer and provider
networks). We achieve this using G-RCA by constructing
application specific events and rules.
1) Application-Specific Configuration: We start by con-

structing our BGP flap-specific events—those events that are
not already included in the common event definitions in the
RCA Knowledge Library (Table I). These new application-spe-
cific events are illustrated in Table III. Note that there are only
three of them, in contrast with seven other events that we reuse
from the Knowledge Library.
After defining the application-specific events, we need to add

a few application-specific diagnosis rules. The complete diag-
nosis graph is depicted in Fig. 4. This combines events and rules
taken from the RCA Knowledge Library (Table II) with BGP
application-specific events (shown as gray boxes) and applica-
tion specific rules (dashed lines). Let us now examine the diag-
nosis graph (Fig. 4) from bottom to top. Layer-1 events such as
fast restoration in optical mesh network and SONET restoration
may cause interface flaps on PERs. Furthermore, interface flaps
may induce BGP hold timer expirations, line protocol flaps, or
even eBGP flaps. If BGP fast external fallover [21] is enabled,
an interface flap can directly trigger an eBGP flap without re-
quiring the BGP hold timer to expire. All the CPU utilization
related events such as “CPU high (average)” and “CPU high
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TABLE IV
ROOT CAUSE BREAKDOWN OF BGP FLAPS

(spike)” can only cause eBGP flaps through BGP hold timer ex-
piration. On the top of this figure, we can see the events “router
reboot” and “customer reset session” could also cause eBGP
flaps.
Finally, we specify priorities for different diagnosis rules for

BGP flaps RCA, as depicted via the numbers on the edges in
Fig. 4. The highest priority is used to determine the most likely
root cause among multiple root causes by the G-RCA Engine.
For example, if a BGP flap joins with both a high CPU event
and a layer-1 flap, the layer-1 flap is identified as the root cause
of this BGP flap as it is associated with a higher priority (180)
edge.
2) Results: In order to demonstrate how effectively G-RCA

can identify the root causes of BGP flaps in the ISP, we ran
the BGP flap RCA tool configured above for more than 600
provider edge routers in different locations, each of which
has several hundred eBGP sessions established with customer
routers. Table IV shows the root cause breakdown generated
by the Result Browser in G-RCA for all the BGP flaps on these
provider edge routers during a month.
This RCA application is now an integral part of the BGPmon-

itoring in the tier-1 ISP. It is used to trend flaps and identify
anomalous behavior that requires investigation (e.g., behavioral
changes after new software upgrades). It is also used by opera-
tions and customer service representatives to provide automatic
analysis of specific customer BGP flaps for rapid responses to
customer inquiries about such events. In the BGP RCA applica-
tion, the average diagnosis time per symptom event is less than
5 s.

B. Root Cause Analysis for CDN Service Impairments

In this case study, we discuss how to build a new RCA ap-
plication for troubleshooting service impairments in the ISP’s
CDN [22]–[25]. The ISP operates a CDN service in which static
Web objects are hosted at several data centers across its network.
Through dynamic DNS binding, HTTP requests are directed to
the “closest” data centers and served from there.
To manage the performance of the CDN service, the

traffic monitor passively observes the end-to-end round-trip
time (RTT) between end-users and CDN servers as Web service
requests arrive.
The primary challenge is to identify the network and service

elements involved in servicing the requests at the precise time
of the performance degradation. This is challenging to achieve

Fig. 5. Diagnosis graph for CDN RTT degradation root cause analysis.

during a real-time event and practically impossible to manually
identify for historical events. However, G-RCA’s spatial model
and proactive data collection enables such determination and is
the key to providing the ability to automatically troubleshoot
these service issues.
1) Application-Specific Configuration: To create the RCA

application for CDN service impairments, we defined the
application-specific events (Table V) and diagnosis rules
(dashed lines in Fig. 5). Note that the majority of the events
and rules could again be drawn from the RCA Knowledge
Library. The most important application-specific event is the
“CDN end-to-end throughput drop” inferred from Keynote
measurements. This event indicates a decrease in average
download throughput and is the input to the RCA application.
Each “CDN end-to-end throughput drop” event is associated
with a start time and a location, which is defined by the CDN
server and client machine (e.g., Keynote agent) pair. In addition
to analyzing the performance event generated from Keynote
measurements, the RCA application also allows operators to
directly enter an event of interest conforming to the above
format. This greatly improves the flexibility of the tool as there
exist many channels to detect a service performance problem
other than Keynote, such as through a customer service call.
After defining the application-specific events, we then need

to add a few application-specific diagnosis rules, which are not
already included in the RCA Knowledge Library (Table II). As
shown in Fig. 5, a few application-specific diagnosis rules and
some other rules from the RCA Knowledge Library together
form a full diagnosis graph for root cause analysis of service
impairments in the CDN. Note that in Fig. 5, application specific
events are shown in gray boxes and application-specific rules
are shown with dashed lines. As with the BGP flaps case study,
priorities (numbers on the edges) for different diagnosis rules
are also defined in Fig. 5.
2) Results: We evaluated this RCA application with all the

RTT degradation events in one month observed between mil-
lions of users and a particular northeast CDN node. Table VI
shows the root cause breakdown generated by the Result
Browser in G-RCA. At a high level, only 25.17% of the RTT
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TABLE V
APPLICATION-SPECIFIC EVENTS FOR ROOT CAUSE ANALYSIS OF ROUND-TRIP TIME INCREASE IN CDN

TABLE VI
ROOT CAUSE BREAKDOWN OF END-TO-END RTT DEGRADATIONS

degradations are identified as caused by either events that hap-
pened within our network (e.g., interface flap, link congestion,
and CDN assignment policy change) or from events that are
visible in our network (such as BGP routing changes announced
by other ISPs). For the rest (majority) of them, we did not find
any evidence from inside our network, which suggests that
those RTT degradations may be caused by other ISPs on the
end-to-end path.
According to the CDN service operations team, this RCA ap-

plication is quite useful in finding the root causes and is much
more rapid than could be achieved by Operations personnel.
As an example event, the RCA application successfully deter-
mined that a given RTT degradation was caused by the failure
of the peering link between our network and the neighboring
ISP. This failure resulted in a routing change, which in turn re-
sulted in traffic experiencing larger delays and degraded TCP
performance. Although the network operations team was al-
ready aware of the peering link failure and working on it, the
CDN service operations team could in parallel repair service
even before the network was repaired by updating the DNS ta-
bles to route impacted users to “closer” CDN nodes as measured
by the new network routing. Thus, the two teams could work in
parallel—with CDN performance being repaired even while the
network issue was still being resolved. Having rapid root cause
analysis throughG-RCA thus enables faster intervention on cus-
tomer-impacting issues and fast service improvement.
In the CDN RCA application, the average diagnosis time per

symptom event is less than 3 min. Most of the delay is incurred
computing interdomain (BGP) routes and intradomain (OSPF)
routes.

C. Root Cause Analysis of PIM Adjacency Change in
Multicast VPN

In the final case study, we describe the use of G-RCA to iden-
tify the root cause of problems within a Tier-1 ISP’s Multicast
VPN (MVPN) service. For each MVPN customer, all PERs
at which the customer attaches to the provider network main-
tain Protocol-Independent Multicast (PIM) Neighbor adjacen-
cies with each other using a Hello protocol. The loss of PIM
neighbor adjacencies, which is reported via syslog, is often a
good indicator of service-related problems. However, not all
such changes are indicative of an actual problem (e.g., some are

Fig. 6. Diagnosis graph for PIM adjacency change root cause analysis.

due to customer disconnects). Due to the sheer volume of these
messages (thousands per day), manual analysis to determine the
root cause of each event to determine those which are indicative
of an actual problem is infeasible.
1) Application-Specific Configuration: A G-RCA applica-

tion to determine the root cause of PIM neighbor adjacency
changes within theMVPN service was created. The resulting di-
agnosis graph is shown in Fig. 6. The kinds of root cause events
that were determined to have caused PIM neighbor adjacency
changes include router configuration changes, problems on the
provider–customer link, routing changes within the ISP back-
bone, and problems on the PER uplinks to the backbone net-
work. Since the application was able to reuse many of the events
and rules in the RCA Knowledge Library, we only needed to
add three multicast-specific events (Table VII) and seven mul-
ticast-specific diagnosis rules (dashed lines in Fig. 6). For ex-
ample, we reused many events and rules regarding the path
changes between a pair of PERs and the unstablities on the
provider–customer link. Actual development time was no more
than 10 h. Without G-RCA, building a root cause analysis tool
for this problem would have required months of development
and may not have happened in practice.
2) Results: The PIM RCA application has proved to be

extremely useful in classifying root causes of PIM adjacency
losses and in guiding operators and engineers to a better
understanding of actual MVPN performance in the network,
allowing them to focus their effort on those issues that require
their attention. Running the G-RCA PIM application on a
day’s worth of events required about 1–2 h. For each day, the
application is currently able to identify the root causes for
more than 98% of PIM neighbor adjacency changes. We expect
that with additional attention to those remaining unclassified
events, the G-RCA PIM application will determine root causes
for more than 99% of the events.
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TABLE VII
APPLICATION-SPECIFIC EVENTS FOR ROOT CAUSE ANALYSIS OF PIM ADJACENCY CHANGE IN MULTICAST VPN

TABLE VIII
ROOT CAUSE BREAKDOWN OF PIM ADJACENCY LOSSES

In order to demonstrate how effectively G-RCA can identify
the root causes of PIM adjacency losses in the ISP, we ran
the PIM RCA application configured above for all the PIM
neighbor adjacency changes observed in 2 weeks on more than
600 provider edge routers. Table VIII shows the root cause
breakdown generated by the Result Browser in G-RCA.
In the PIM RCA application, the average diagnosis time per

symptom event is similar to the BGP RCA application, which
is typically less than 5 s.

IV. OPERATIONAL EXPERIENCE ON IMPROVING DOMAIN
KNOWLEDGE

The main challenge in creating G-RCA applications is iden-
tifying the diagnosis rules. Domain knowledge typically pro-
vides a solid starting point, but our experience indicated that
collating domain knowledge across potentially many domain
experts can be surprisingly challenging. Domain knowledge is
often distributed across multiple experts—no one expert un-
derstands the entire domain. These experts often have trouble
thinking of the relevant rules when “put on the spot,” or they
are so busy fighting issues in the network that it is difficult to
obtain their attention for long enough to obtain the information.
In other cases, the network operator’s domain knowledge may
be wrong either because the relationships between events are
extremely complex and not well understood, or because the net-
work is not behaving as designed (as in Section III-A.2).We thus
found it extremely critical to provide mechanisms integrated in
G-RCA to facilitate diagnosis rule learning.

A. Learning Diagnosis Rules via Manual Iterative Analysis

With G-RCA, the individual responsible for creating an
RCA application can follow an iterative process to identify new
diagnosis rules. For example, in the PIM case, domain experts
use data exploratory tools [26] to manually inspect unexplained
neighbor adjacency changes and determine root cause(s). Once
a new root cause was identified, it was codified in the RCA
application, which was then run to identify all those events that
could be explained by the augmented set of rules and, more
importantly, those that were still unexplained. The domain
experts would then further sample remaining unexplained PIM
flaps searching for new signatures that could be incorporated.

The PIM application developer thus continually whittled down
the number of unexplained flaps by iteratively incorporating
new rules and examining those that fell outside the scope of
the new rules. By using G-RCA’s Result Browser, which made
individual event analysis easy, the PIM application devel-
oper rapidly identified new diagnosis rules for the application
and therefore revealed the anomalous behaviors discussed in
Section III-C.2.

B. Learning Diagnosis Rules via Statistical Correlation Test

Although the manual iterative analysis was effective in the
PIM application, we used a more “intelligent” approach to ana-
lyzing BGP flaps. We illustrate this here by discussing our ex-
periences in analyzing BGP flaps that were related to high CPU
events.
Table IV illustrated that a significant portion of BGP flaps

occurred at the same time as CPU overload was observed on
the router. A naive assumption may be that these BGP flaps
were in fact induced by high router CPU load. However, further
inspection cast doubt on this assumption.
With the integrated data drilling-through functionality imple-

mented in the Result Browser of G-RCA, it is easy for operators
to explore additional information such as syslog messages and
workflow logs that appear on the same router or location as the
event being analyzed. Equipped with the powerful GUI, oper-
ators revealed via manual drilling-down that not all BGP flaps
with a high CPU signature are actually due to CPU overload on
PERs. In most cases, the high CPU utilization is likely caused
by BGP flaps that are triggered from the customer side. Specifi-
cally, a large amount of routing computation on PER in response
to the BGP flaps produces high CPU utilization.
With this cyclic causal relationship—“BGP flap causes

CPU overload” and “CPU overload causes BGP session
timeout”—evidence-based diagnosis systems including our
RCA tool hit their limit. We needed further refined signatures
such as searching for other potential causes of the high CPU
events to identify those that were not BGP-flap-induced and
could thus explain BGP flaps.
Rapid manual inspection of events through G-RCA’s Result

Browser worked well in some situations, but our experience
demonstrated that it does not work effectively if looking for rel-
atively rare explanations among a sea of events. Instead, we took
a different approach (Fig. 7), using G-RCA’s correlation tester
module to examine the statistical correlation between CPU-re-
lated BGP flaps and other types of events on the same PER.
Specifically, we created a time series from all CPU-related BGP
flaps as defined by ourG-RCA application—those BGP flaps as-
sociated with BGP hold timer expiries, but where there was no
evidence of link failures that could explain the flap, and which
joined with one of the high CPU signatures. We then executed
a statistical correlation test [12] between this time series and
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Fig. 7. Interaction between generic RCA engine and correlation tester.

831 other time series created fromworkflow logs, and 2533 time
series from syslog messages.
We fed three months worth of data into the correlation tester

to analyze the CPU-related BGP flap. Of the 3361 time series,
80 time series exhibited significant statistical correlation with
our CPU-related BGP flaps. A rapid examination of these
events by domain experts revealed that many of them were
readily explained and/or incorporated into our existing appli-
cation rules. For example, these CPU-related BGP events were
strongly correlated with BGP notifications—a generic message
logged for any BGP flap. However, the statistical correlation
test did reveal some unexpected correlations. For example, the
result revealed that certain provisioning activities (as derived
from workflow logs) are strongly correlated with CPU-related
BGP flaps. Drilling into individual cases, we identified a small
number of incidents where unrelated provisioning activities on
some routers appear to have caused customer BGP sessions to
flap, an unexpected router software behavior. As a result, 10
such incidents were sent to the router vendor for further inves-
tigation; the vendor has since implemented software changes
to eliminate this issue.
It is worth noting that the prefiltering of BGP flaps by their

root causes as diagnosed by the Generic RCA Engine made a
significant difference here. When we fed all BGP flaps to the
correlation tester module, the correlation with provisioning ac-
tivity was no longer statistically significant. By instead focusing
on a small subset of the BGP flaps, the correlation “signal” is
amplified, revealing the hidden issue. Thus, the interaction be-
tween G-RCA engine and the Correlation Tester is crucial to
revealing subtle issues.

C. Learning Unobservable Root Causes via Bayesian
Inference Engine

Thus far, all examples have been based on rule-based rea-
soning. We now demonstrate the power of Bayesian inference
engine in the G-RCA. In particular, we show how the inference
engine can identify a line-card problem as the root cause, which
is not readily detectable using rule-based reasoning: A line-card
problem is an unobservable root cause as no logs or alarms for
line-card issues were incorporated into the RCA tool at the time
of our analysis. The configuration for inference engine is shown
in Fig. 8. Three virtual root cause events are defined as “CPU
High Issue,” “Interface Issue,” and “Line-card Issue.”

Fig. 8. Bayesian inference configuration for BGP flaps RCA application.

We ran both the rule-based reasoning engine and the Bayesian
inference engine using one month of eBGP flaps on a PER that
has several hundred eBGP sessions. While most of the results
are consistent with each other, there are 133 eBGP flaps that the
rule-based reasoning engine diagnoses as “Interface flap”-in-
duced. However, the Bayesian inference engine identifies these
same flaps as “Line-card Issue”-caused. By manually drilling
down into these 133 eBGP flaps (on 125 different eBGP ses-
sions) using G-RCA’s Result Browser, we find that all of them
are associated with the same line-card and are within 3 min.
This is a strong indication for a line-card-related problem. This
was later confirmed by network operators, who actually pointed
us to a line-card crash signature that was not incorporated into
G-RCA’s Knowledge Library at the time, and we confirmed that
the linecard in question indeed crashed.
Since Bayesian inference easily allows analysis across mul-

tiple symptom event instances, the common root cause of these
133 eBGP flaps was successfully inferred.

V. RELATED WORK

Many existing network management systems such as [1]–[7]
work on the basis of individual network elements such as
routers, line-cards, and interfaces. In contrast, G-RCA fo-
cuses on issues related to end-users’ service quality such as
throughput degradation among different sites of a customer
VPN. In addition, most of the existing network management
systems focus on faults and hard failures that require imme-
diate investigation, while G-RCA has its primary focus on
classifying and trending the root causes of a large number of
historical transient events. This provides operators with critical
information that would help in driving the corresponding
failure mode out of the network and eventually lead to service
improvements.
A large body of recent work has focused on root cause anal-

ysis of network-layer faults without direct evidence from the
lower layer in large ISPs such as SCORE [27], Shrink [16],
and [28]. Shared Risk Link Group (SRLG) was proposed to
model the cross-layer dependency, where a group of network
layers entities depends on the same physical-layer entity. With
the concept of SRLG, finding the root cause of network-layer
faults becomes a minimal set cover problem in a bipartite graph
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in SCORE [27] and [28]. Shrink enhanced them by incorpo-
rating Bayesian network to model inaccurate measurements and
SRLG information. While G-RCA is designed for more general
root cause analysis problems, G-RCA could actually incorpo-
rate SCORE-like algorithms to infer what is happening if there
is no direct evidence.
Machine learning and statistical methods have been widely

applied in mining relationships among events. NICE [12]
proposed a novel statistical correlation approach with circular
permutation test for learning correlation between two event
time series. While CORDS [29] employs chi-squared analysis
to mine correlations, SPIRIT [30] uses Principal Component
Analysis. More sophisticated and computationally expensive
techniques such as Hidden Markov Chain [31] and association
rule mining [32], [33] have also been proposed to mine rela-
tionships among multiple-event time series. Although G-RCA
focuses on identifying the root cause of each individual event
of interest, these techniques are actually complementary to
G-RCA for mining more rules.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described G-RCA, a generic root cause anal-
ysis platform for service quality management in large IP net-
works. G-RCA is an ideal platform for SQM in a “constantly
changing” network environment. First, it captures the layered
network model in its knowledge library in the form of diag-
nosis rules. These rules can be reused by various RCA appli-
cations. Its generic RCA engine implements the common logic
found in various RCA tasks such as temporal/spatial correla-
tion, rule-based reasoning, and Bayesian inference. In addition,
the generic RCA engine also implements a network location
model, which models various network locations and the map-
pings among them. Thanks to the Knowledge Library and RCA
engine, new RCA applications can be quickly incorporated into
G-RCA via simple configuration. Second, domain knowledge
in existing RCA applications can be refined by the interaction
between the RCA engine and the Correlation Tester, which is
important for a dynamic network environment. Third, in order
to analyze a large number of service quality issues and clas-
sify/trend their root causes, it proactively collects all types of
data from different sources and normalize them in real time.
Our work can be extended in several directions. First, we plan

to make the temporal joining rules less sensitive for robust root
cause analysis and deal with the cyclic causal relationship in di-
agnosis rules. Second, we plan to refine the inference algorithm
and simplify its configuration to further improve its usability.
Third, we want to support real-time root cause applications. Fi-
nally, wewill workwith network operators to extend theG-RCA
platform into other networks and services such as cellular data
network, IPTV, and VoIP.
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