
Detailed Diagnosis in Enterprise Networks

Srikanth Kandula Ratul Mahajan Patrick Verkaik (UCSD)
Sharad Agarwal Jitendra Padhye Paramvir Bahl

Microsoft Research

ABSTRACT

By studying trouble tickets from small enterprise networks, we
conclude that their operators need detailed fault diagnosis. �at
is, the diagnostic system should be able to diagnose not only
generic faults (e.g., performance-related)but also application speci�c
faults (e.g., error codes). It should also identify culprits at a �ne gran-
ularity such as a process or �rewall con�guration. We build a sys-
tem, called NetMedic, that enables detailed diagnosis by harnessing
the rich information exposed by modern operating systems and ap-
plications. It formulates detailed diagnosis as an inference problem
that more faithfully captures the behaviors and interactions of �ne-
grained network components such as processes. �e primary chal-
lenge in solving this problem is inferring when a component might
be impacting another. Our solution is based on an intuitive technique
that uses the joint behavior of two components in the past to estimate
the likelihood of them impacting one another in the present. We �nd
that our deployed prototype is e�ective at diagnosing faults that we
inject in a live environment. �e faulty component is correctly identi-
�ed as the most likely culprit in of the cases and is almost always
in the list of top �ve culprits.

Categories and Subject Descriptors

C. [Performance of systems] Reliability, availability, serviceability
General Terms

Algorithms, design, management, performance, reliability
Keywords

Enterprise networks, applications, fault diagnosis

1. INTRODUCTION
Diagnosing problems in computer networks is frustrating. Mod-

ern networks have many components that interact in complex ways.
Con�guration changes in seemingly unrelated �les, resource hogs
elsewhere in the network, and even soware upgrades can ruin what
worked perfectly yesterday. �us, the development of tools to help
operators diagnose faults has been the subject of much research and
commercial activity [, , , , , , ,].

Because little is known about faults inside small enterprise net-
works, we conduct a detailed study of these environments. We reach
a surprising conclusion. Aswe explain below, existing diagnostic sys-
tems, designed with large, complex networks in mind, fall short at
helping the operators of small networks.

Our study is based on trouble tickets that describe problems re-
ported by the operators of small enterprise networks. We observe
that most problems in this environment concern application speci�c
issues such as certain features not working or servers returning error
codes. Generic problems related to performance or reachability are
in a minority. �e culprits underlying these faults range from bad
application or �rewall con�guration to soware and driver bugs.

We conclude that detailed diagnosis is required to help these op-
erators. �at is, the diagnostic system should be capable of observing
both generic as well as application-speci�c faults and of identifying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$5.00

culprits at the granularity of processes and con�guration entries. Di-
agnosis at the granularity of machines is not very useful. Operators
oen already knowwhichmachine is faulty. �ey want to knowwhat
is amiss in more detail.

Existing diagnostic systems fall short because they either lack de-
tail or require extensive domain knowledge. �e systems for large en-
terprises, such as Sherlock [], target only performance and reacha-
bility issues and diagnose at the granularity of machines. �ey essen-
tially sacri�ce detail in order to scale. Other systems, such as Pinpoint
for online services [] and SCORE for ISP networks [], use exten-
sive knowledge of the structure of their domains. Extending them to
perform detailed diagnosis in enterprise networks would require em-
bedding detailed knowledge of each application’s dependencies and
failure modes. �e range and complexity of applications inside mod-
ern enterprises makes this task intractable.

Can detailed diagnosis be enabled with little application speci�c
knowledge? By developing a system called NetMedic, we show that
the answer is yes. �e two keys to our solution are: i) framing de-
tailed diagnosis as an inference problem that ismuch richer than cur-
rent formulations [, , ,]; and ii) a novel technique to estimate
when two entities in the network are impacting each other without
programmed knowledge of how they interact.

Our formulation models the network as a dependency graph of
�ne-grained components such as processes and �rewall con�gura-
tion. While dependency graphs have been used previously [, , ,
], our formulation is di�erent. One di�erence is that it captures
the state of a network component using many variables rather than
a single, abstract variable that denotes overall health. Di�erent vari-
ables capture di�erent aspects of component behavior. For instance,
the variables for a process may include its resource consumption, re-
sponse time for its queries, and application-speci�c aspects such as
fraction of responses with error codes. Another di�erence is that our
formulation allows for components impacting each other in com-
plexways depending on their state; existing formulations assume that
faulty components hurt dependent components irrespective of the
nature of the failure. �ese di�erences are necessary for observing
and diagnosing a rich set of failure modes. For instance, whether or
not a faulty process hurts other processes on the same machine de-
pends on its resource consumption. For correct diagnosis, the model
must capture the behavior of the process in detail as well as allow for
both possibilities.

�e goal of diagnosis in our model is to link a�ected components
to components that are likely culprits, through a chain of dependency
edges. �e basic primitive required is inferring the likelihood that
the source component of a dependency edge is impacting the desti-
nation. �is inference is challenging because components interact in
complex ways. And because we want to be application agnostic, we
cannot rely on knowing the semantics of individual state variables.

Our insight is to use the joint behavior of the components in the
past to estimate impact in the present. We search in the history of
component states for time periods where the source component’s
state is “similar” to its current state. If during those periods the des-
tination component is oen in a state similar to its current state, the
chances are that it is currently being impacted by the source compo-
nent. If not, it is likely that the source component in its current state
is not impacting the destination component.

Our system, NetMedic, builds on this insight to identify likely
culprits behind observed abnormal behaviors in the network. �e

Observed symptom Identi�ed cause

�e browser saw error codes when accessing
some of the pages on the Web server even
though they had correct permissions.

A soware update had changed the Web server’s con�guration. In the new con�guration, it was
not correctly processing some required scripts. �e operator was aware of the update but not of
the con�guration change.

An application was observing intermittently
high response times to its server.

An unrelated process on the server’s machine was intermittently consuming a lot of memory.

Some of the clients were unable to access a
speci�c feature of a Web-based application.

�e �rewall con�guration on a router along the path was blocking https tra�c that was required
for that feature. �e operator did not know when or how the �rewall con�guration had changed.

�e mail client (Outlook) was not showing
up-to-date calendar information.

A remote folder on the client machine was unmounted during a defragmentation operation. �e
operator did not know that defragmentation could lead to the unmounting of a remote folder.

None of the clients in the network could send
email.

�e con�guration of the client was overriden with incorrect mail server type. �e probable cause
of the change was a bug in the client soware that was triggered by an overnight update.

 Database server refused to start. �e server was miscon�gured. �e operator did not know how that happened.

An application client was getting RPC errors
when contacting the server.

A low-level service (IPSec) on the client machine was intercepting application tra�c. �e oper-
ator did not know how the service got turned on or that it could interfere with the application.

�e clients were experiencing poor perfor-
mance to a database server.

Another client was generating too many requests.

 �e network latency between hosts was high. A buggy process was broadcasting UDP packets at a high rate.

�e database server was returning errors to a
subset of the clients.

A port that was being used by the problematic clients had been blocked by a change in �rewall
con�guration on the server machine. �e operator was not aware of the con�guration change.

Table . Example problems in our logs.

rich information on component states needed for detailed diagno-
sis is already exported by modern operating systems and applica-
tions [,]. NetMedic takes as input simple templates (e.g., a ma-
chine depends on all active processes) to automatically build the de-
pendency graph amongst components. It implements history-based
reasoning in a way that is robust to idiosyncrasies of real-world data.
It uses statistical abnormality detection as a pruning step to avoid
being misguided by components that have not changed appreciably.
And it uses simple learning techniques to extract enough relevant in-
formation about state variables to compete favorably with a scheme
that uses domain knowledge.

We evaluate our approach by deploying NetMedic in two environ-
ments, including a live environment with actively used desktops. In
this environment, NetMedic built a dependence graph with roughly
 components and edges, with each component populated
by roughly state variables. By injecting faults drawn fromour trou-
ble tickets, which comprise both fail-stop andperformance problems,
we �nd that in almost all casesNetMedic places the faulty component
in the list of top �ve causes. In of them, the faulty component is
the top identi�ed cause. Compared to a diagnostic method based on
current formulations, this ability represents a �ve-fold improvement.
We show that NetMedic is more e�ective because its history-based
technique correctly identi�esmany situations where the components
are not impacting each other. Additionally, this ability requires only
a modest amount of history (- minutes).

2. PROBLEMS IN SMALL ENTERPRISES
To understand what plagues small enterprise networks, we ana-

lyze trouble ticket logs from an organization that provides technical
support for such networks. �e logs indicate that the network sizes
vary from a few to a few hundred computers. To our knowledge, ours
is the �rst study of faults in such networks.

Our logs span an entire month (Feb ’) and contain K cases.
A case documents the information related to a problem, mainly as
a free form description of oral or electronic conversation between
the operator of the small enterprise network and the support person-
nel. Most cases spanmultiple conversations anddescribe the problem
symptoms, impact, and the culprit if identi�ed. A case also contains
other information such as when the network was behaving normally
and any recent changes that in the operator’s knowledge may have
resulted in the abnormality.

Since the logs contain only faults for which operators contacted
an external support organization, they may not be representative of
all problems that occur. �ey are likely biased towards those that op-
erators struggle to diagnose independently and need help with.

We randomly selected . of the cases and read themmanually.
We decided to read the cases to get detailed insights into the nature of
the problems and also because the unstructurednature of the logs de-
�ed our attempts at automatic classi�cation. We discarded cases that
were incomplete, contained internal communication between sup-
port personnel, or contained non-faults such as forgotten passwords.
Our analysis is based on the remaining cases. While these cases
represents a small fraction of the total, we �nd that the resulting clas-
si�cation is consistent even when we use only a randomly selected
half of these cases.

We �rst describe example cases from our logs and then provide a
broader classi�cation of all that we read.

2.1 Example problems
Table shows ten problems in our logs that we �nd interesting.

Our intent is to provide concrete descriptions of a diverse set of prob-
lems rather than being quantitatively representative. We see that the
range of symptoms is large and consists of application-speci�c errors
as well as performance and reachability issues. �e range of underly-
ing causes is large as well and consists of bugs, con�guration changes,
overload, and side-e�ects of planned activities.

While it may be straightforward to design point solutions to each
of these problems, it is challenging to design a comprehensive system
that covers all of them. �e design and implementation of such a
system is a goal of our work.

2.2 Classification results
Table classi�es the cases that we read along three dimensions

to understand the demands on a diagnostic system—the fault symp-
toms that it should detect and the culprits that it should identify.

�e �rst dimension captures whether the fault impacted an indi-
vidual application or the entire machine (i.e., many applications on
it). It does not relate directly to the underlying cause. For instance,
the machine category includes cases where a faulty application im-
pacted the entire machine. �e data shows that most of the problem
reports refer to individual applications and hence monitoring ma-
chine health alone will miss many faults. To detect these faults, a
diagnostic system must monitor individual applications.

�e second category is based on how the fault manifests. We see
that application-speci�c defects account for a majority of the cases.
�ese include conditions such as the application servers returning
error codes, features not working as expected, and a high number
of failed requests. �e prevalence of such symptoms indicates the
need to track application-speci�c health. Unlike the more generic
symptoms, it is unclear how a diagnostic system can track application

. What was impacted
An application (.)
Entire machine (.)

. Symptom
Application-speci�c faults (.)
Failed initialization (.)
Performance (.)
Hang or crash (.)
Unreachability (.)

. Identi�ed cause
Other con�guration (.)
Application con�guration (.)
Soware bug (.)
Driver bug (.)
Overload (.)
Hardware fault (.)
Unknown (.)

Table . A classi�cation of the problems in our logs.

healthwithout knowing application semantics or requiring help from
the application. We show later how we handle this issue.

�e �nal category shows the root causes of the faults. In of
the cases, the application con�guration was incorrect. �e biggest
cause, however, was some other con�guration element in the envi-
ronment on which the application depends. We de�ne other con-
�guration quite broadly to include the lower-layer services that are
running, the �rewall con�guration, the installed devices and device
drivers etc. For of the faults, the underlying cause could not be
identi�ed but recovery actions such as a reboot �xed some anyway.

Unlike other settings [, ,], it appears from the logs that in
most cases incorrect con�guration was not a result of mistakes on
the part of the operators. Rather, con�guration was overwritten by
a soware update or a bug without their knowledge. In many other
cases, the con�guration change was intentional but the operators did
not realize the e�ects of that change.

2.3 Discussion
Statistics aside, the overall picture that emerges from the logs is

that small business networks are very dynamic. �ey undergo fre-
quent changes, both deliberate (e.g., installing new applications, up-
grading soware or hardware) as well as inadvertent (e.g., triggering
of latent bugs, automatic updates). Each change impacts many com-
ponents in the network, some of which may be seemingly unrelated.

Detecting individual changes is rather easy. Applications and op-
erating systems today expose plenty of low-level information, for in-
stance,Windows Vista exposes over di�erent aspects of a process’s
current behavior. However, complex interactions and unknown se-
mantics make it hard to use this information to identify the reasons
behind speci�c abnormalities of interest to operators.

While our study is based on small enterprise networks, we believe
that the kinds of problems it reveals also plague large enterprises. Ex-
isting diagnostic systems for large enterprises such as Sherlock [] are
not capable of diagnosing such faults. In order to scale, they focus on
coarser faults such as a DNS server failing completely. Our work asks
whether the detailed faults that we observe in our logs can be diag-
nosed if scalability is not a prime concern. If our techniques can be
scaled, they will bene�t large enterprises as well. We discuss how to
scale NetMedic in §.

3. PROBLEM FORMULATION
Wenow formulate the diagnosis problem in away that helps oper-

ators with the kinds of issues that we uncover in our logs. Our goal is
to build a system that can narrow down the likely causes responsible
for a wide range of faults such as poor performance, unreachability,
or application speci�c issues. �is ability is the �rst and perhaps the
hardest aspect of troubleshooting. Once the operators have identi�ed

Generic variables
 processor time

 user time
io data bytes/sec
thread count
page faults/sec
page �le bytes
working set

Application variables
current �les cached

connection attempts/sec
�les sent/sec

get requests/sec
put requests/sec
head requests/sec

not found errors/sec

Table . Example variables in Web server state. In all there are
generic and application speci�c variables.

the true culprit using our system, they can proceed to repairing the
fault. Automatic repair is not our goal in this work.

We want our system to have the following two properties.
. Detail: �e system should be able to diagnose both applica-

tion speci�c and generic problems. Further, it should identify likely
causeswith asmuch speci�city as possible. If a process is responsible,
it should identify that process rather than the hostingmachine. If ap-
plication con�guration is responsible, it should identify the incorrect
con�guration rather than simply blaming the application.

�e need for detailed diagnosis clearly stands out in our logs.
Most faults are application-speci�c. �e callers oen knew which
machine was faulty but did not know what aspect was faulty.

. Application agnosticism: �e system should rely on minimal
application speci�c knowledge. Enterprises run numerous applica-
tions across the board. It is intractable for a general diagnostic system
to contain knowledge of every possible application.

�ese two properties are con�icting. How can application speci�c
faults be detected without application knowledge? For instance, the
straightforward way to detect that an application client is receiving
errormessages is through knowledge of the protocol. Detecting faults
that are not re�ected in protocol messages may require even more
application knowledge. We layout the problem and explain how we
reconcile these con�icting goals below.

3.1 Our inference problem
�ere are several approaches that one might consider to diagnose

faults in a computer network. To be able to diagnose a wide range of
faults, we take an inference-based approach rather than, for instance,
a rule-based approach (§). However, our goals require a richer net-
work model than current inference models. We �rst describe our
model and then explain how it di�ers from existing models.

We model the network as a dependency graph between compo-
nents such as application processes, host machines, and con�gura-
tion elements. �ere is a directed edge between two components if
the source directly impacts the destination. �e dependency graph
may contain cycles–in particular, two componentsmay be connected
by edges in both directions. Our system automatically constructs the
dependency graph.

�e state of a component at any given time consists of visible and
invisible parts, of which only the former is available to us. For in-
stance, the visible state of an application process includes generic as-
pects such as its processor usage and some application-speci�c as-
pects. �e invisible state may include values of program variables
and some other application-speci�c aspects. Table shows a subset
of the variables that form theWeb server process’s visible state in our
prototype. We represent visible state using multiple variables, each
corresponding to a certain aspect of the component’s behavior. �e
set of variables di�ers across components. �e diagnostic system is
unaware of the semantics of the variables.

Given a component whose visible state has changed relative to
some period in the past, our goal is to identify the components likely
responsible for the change. In other words, we want to identify the
causes underlying an observed e�ect. Each identi�ed causes has the
properties that: i) its visible state changes can explain the observed
e�ect; ii) its visible state changes cannot be explained by visible state
changes of other components.

Server

CvictimCprolific

Machineserver

MachineCVMachineCP

[High load]

[Normal load][Normal load]

[Normal outbound request rate]

[High response time]

[High outbound request rate]

[High response time]

[High inbound request rate]

Figure . Illustration of Problem in Table . �e rectangles are
processes and the ellipses are host machines. �e relevant state of
the components is shown in brackets.

For instance, consider Figure , which illustrates Problem of Ta-
ble . Both clients experience high response times because Cprolific is
overwhelming the server. Suppose we want to diagnose why the re-
sponse time is high for Cvictim. Although the load on Server leads to
high response times, we want to identify Cprolific as the culprit, since
Cprolific is responsible for both Server’s high load and Cvictim’s high re-
sponse times, and its behavior cannot be explained by other visible
factors. It may have been externally impacted, but lacking further
visibility, the diagnosis will identify it as the culprit.

We do not assume that the e�ect being diagnosed represents a
deterioration. �us, our system can be used to explain any change,
including improvements. �is agnosticism towards the nature of
change and the lack of knowledge of the meaning of state vari-
ables lets us diagnose application-speci�c behaviors without applica-
tion knowledge. If applications export their current experience, e.g.,
number of successful and failed transactions, the system treats these
experiences as part of the state of the application process and diag-
noses any changes in them. We assume that the state variables are
well-behaved—small changes in component behaviors lead to rel-
atively small changes in variable values and signi�cant behavioral
changes are detectable using statistical methods. We �nd that this
assumption holds for the state variables exported by the components
in our prototype.

3.2 Limitations of existing models
Existingmodels [, ,] di�er fromour formulation in three im-

portant ways thatmakes themunsuitable for detailed diagnosis. First,
they use a single variable to represent component health. However, if
exposing and diagnosing a rich set of failure modes is desired, com-
ponent state must be captured in more detail. One might be tempted
to abstract away the detail and just present a faulty-or-healthy status
for each component, but some types of component failures impact
other components while others do not. For instance, an application
process has the ability to hurt other processes on the same machine,
but typically, it hurts them only when it consumes a lot of resources
and not otherwise. To correctly determine if a process is impacting
others, its state must be captured in more detail.

In principle, a component with multiple variables is logically
equivalent to multiple components with a variable each. In prac-
tice, however, the di�erence is signi�cant. Dividing a component
into constituent variables forces us to consider interactions within
those variables. Given the internal complexities of components and
that there can be hundreds of variables, this division signi�cantly in-
creases the complexity of the inference problem. Further, as we will
show, keeping a multi-variate component intact lets us extract useful
information from the collective behavior of those variables.

Second, existing models assume a simple dependency model in
which a faulty component hurts each dependent component with
some probability. Turning again to the faulty process example above,
we can see that whether a component impacts another depends in a
more complex way on its current state.

Finally, existing models do not allow circular dependencies by
which two components have a direct or indirect mutual dependence.
When viewed in detail, circular dependencies are commonplace. For
instance, processes that run on the same machine are mutually de-
pendent, and so are processes that communicate.

SD

STa

STe

STd

STc

STb

DTa

DTe

DTd

DTc

DTb

1
Identify time periods

when the state of S

was similar to Snow

2 Recover the state of D

during those time periods

3

Check how similar

those states of D

are to Dnow

T
im

e

SnowDnow

Figure . Computing the weight of the edge from S to D.

4. USING HISTORY TO GAUGE IMPACT
Solving our inference problem requires us to estimate when a

component might be impacting another. �e primary di�culty in
this estimation is that we do not know a priori how components in-
teract. Our lack of knowledge stems from application agnosticism.
Even if we had not chosen an application-agnostic approach, it ap-
pears unrealistic to embed detailed knowledge of component inter-
action into the design of the diagnostic system. For instance, there
is no general way to specify how network path congestion impacts
application processes because the impact varies across applications.

One could use time to rule out the possibility of impact along cer-
tain dependency edges. A component that is currently behaving nor-
mally is likely not impacting one that is currently abnormal. For in-
stance, in Figure , because the host machine of Cvictim is behaving
normally, we can rule it out as a possible culprit. However, time-
based elimination is limited because it cannot deduce what is impact-
ing what. Returning to the example, we see that both clients as well as
Server andMachineserver are abnormal. Time-based elimination alone
cannot tell which of these might be the culprit. Instead, we must use
a more precise analysis based on the states of various components.

Our level of detail makes the challenge more daunting. Com-
ponent states include many variables (e.g., some applications ex-
pose over �y variables in our implementation); it is not uncommon
for at least some variables to be in an abnormal state at any time.
Amidst this constant churn, we need to link observed e�ects to their
likely causes, while ignoring unrelated contemporaneous changes
and without knowing a priori either the meanings of various state
variables or the impact relationship between components.

We address this challenge using a novel, history-based primitive.
�is primitive extracts information from the joint historical behavior
of components to estimate the likelihood that a component is cur-
rently impacting a neighbor. We use this estimated likelihood to set
edge weights in the dependency graph. �e weights are then used
to identify the likely causes as those that have a path of high impact
edges in the dependency graph leading to the a�ected component.

We provide in this section the intuition underlying our history-
based primitive; we explain in §. how exactly it is implemented in a
way that is robust to the real-world complexities of component states.
In Figure , assume that the current state of the source component S
is Snow and of the destination D is Dnow. We want a rough estimate
of the probability that S being in Snow has driven D into Dnow. We
compute this by searching through the history for periods when the
state of S was “similar” to Snow. Informally, similarity of state is a
measure of how close the values are for each variable. We quantify
it in a way that does not require the knowledge of the semantics of
the state variables and appropriately emphasizes the relevant aspects
of the component’s behavior. �e edge weight is then a measure of
how similar to Dnow is the state of D in those time periods. If we do
not �nd states similar to Snow in the history, a default high weight is
assigned to the edge.

Intuitively, if D’s state was oen similar toDnow when S’s state was
similar to Snow, the likelihood of S being in Snow having driven D into
Dnow is high. Alternately, if D was oen in dissimilar states, then the
chances are that Snow does not lead to Dnow.

�is reasoning is reminiscent of probabilistic or causal infer-
ence [,]. But because component states are multi-dimensional,
real-valued vectors, we are not aware of a method from these �elds

Generate

dependency graph

Diagnosis

a) Compute abnormality

b) Compute edge weights

c) Rank likely causes

Dependency

templates

Capture

component states

Component types,

data sources

Time period to

diagnose, historical

time range, affected

components (optional)

Dependency

graph

Ranked list of likely causes

for each affected component

Component

states

Figure . �e work-�ow of NetMedic.

that we can directly apply. Crudely, what we are computing is the con-
ditional probability Prob(D = Dnow|S = Snow) and assuming that it re-
�ects causality. Conditional probability in general does not measure
causality, but we �nd that the assumption holds frequently enough in
practice to facilitate e�ective diagnosis. Further,we do not infer com-
plex probabilistic models to predict the conditional probability for
each pair of S-D states; suchmodels typically require a lot of training
data. Instead, we estimate the required probability on demand based
on whatever historical information is available.

Consider how our use of history helps in Figure . �e estimated
impact from Server to Cvictim will be high if in the past time periods
when Server had high inbound request rate,Cvictim had high response
time along with normal outbound request rate. �e estimated impact
from Server toCprolific will be low if during those time periods, Cprolific

had normal outbound request rate. On the other hand, the estimated
impact from Cprolific to Server will be high if Cprolific never had high
outbound request rate in the past or if Server had high inbound re-
quest rate whenever it did. �is way, we obtain a high impact path
through Server from Cprolific to Cvictim, without the need for interpret-
ing client and server state variables.

Whether the weight is correctly determined for an edge depends
of course on the contents of the history. We �nd that estimating
the correct weight for every edge is not critical. What is important
for accurate diagnosis is an ability to correctly assign a low weight
to enough edges such that the path from the real cause to its e�ects
shines through. We show later that our method can accomplish this
using only a modest amount of history.

5. DESIGN
�e work�ow of NetMedic is depicted in Figure . Its three main

functional pieces capture the state of network components, generate
the dependency graph, and diagnose based on component states and
the dependency graph. We describe each piece below.

5.1 Capturing component state
�ere are many ways to partition a network into constituent com-

ponents. Our partitioning is guided by the kinds of faults that appear
in our logs—components in our current design include application
processes, machine, and network paths, as well as con�guration of
applications, machine, and �rewalls. �e machine component bun-
dles the hardware and the OS.

In addition, we also include a virtual component, called NbrSet
(short for Neighbor set). A NbrSet represents the collective behav-
ior of communication peers of a process. Its state variables represent
information such as tra�c exchanged and response time aggregated
based on the server-side port. In the presence of redundant servers
(e.g., for DNS), it helps model their collective impact on the client
process. Similarly, it models the collective impact of all the clients for
a server process. Using a NbrSet instead of individual dependencies
allows us to model the dependencies more accurately [].

�e granularity of diagnosis is determined by the granularity of
the modeled components. For instance, using the full network path
as a component implies that culprits will not be identi�ed at the level

Machine CPU utilization, memory usage, disk usage, amount
of network and other IO

Process
Generic variables: CPU utilization, memory usage,
amount of network and other IO, response time to
servers, tra�c from clients
Application speci�c variables: Whatever is available

NbrSet State relevant to communication peers, e.g., inbound
and outbound tra�c, response time

Path Loss rate and delay
Con�g All relevant key-value pairs

Table . Example state variables that NetMedic captures.

of individual switches. Our framework, however, can be extended to
include �ner-grained components than those in our current design.
NetMedic periodically captures the state of each component as a

multi-variable vector. State is stored in one-minute bins. �e bin size
represents a trade-o�—bigger bins have lower overhead of capturing
component state but limit our ability to diagnose short-lived faults.
�e value of a variable represents some aspect of the component be-
havior during that time bin. �enumber of variables and theirmean-
ings vary across components. Table shows a subset of aspects that
are currently included for each component type.

A process is identi�ed by its complete command line, rather than
the process ID. Such identi�cation ensures that across machine re-
boots and process restarts, process instanceswith the same command
line (e.g., c : \mssql\bin\sqlservr.exe− ssqlexpress) are considered to
be the same functional component [].

Process state is a union of two parts. �e �rst part captures
generic, application-independent aspects such as resources con-
sumed and tra�c exchanged. We maintain tra�c information per
port and also log which other processes this process communicates
with, which is used for dependency graph generation. �e second
part of process state consists of application speci�c variables and re-
�ects di�erent aspects of current application experience such as frac-
tion of failed requests, number of requests of a certain type, etc. In-
cluding it in the process state lets us diagnose application speci�c ab-
normalities without application knowledge.

We describe in § how various component state variables are cap-
tured, includinghowapplication-speci�c variables are capturedwith-
out application knowledge.

5.2 Generating the dependency graph
We model the network as a dependency graph among compo-

nents in which there is an edge from a component to each of its di-
rectly dependent components. We automatically generate this graph
using a set of templates, one template per component type. Figure
shows the set of templateswe have currently de�ned. A template has a
component type in the center, surrounded by other component types
that impact it directly. Edges in the real dependency graph corre-
spond to edges in the templates. For instance, if the template for a
machine shows that it depends on its processes, we introduce an edge
from each of its processes to it.

�e templates in Figure can be easily interpreted. �ey show
that a machine depends on its processes and its con�guration. An
application process depends on its con�guration, its NbrSet, its host
machine, and the con�guration of the machine. While a process re-
lies on other processes on the machine because of resource sharing,
we donot include that dependencydirectly in the templates. For non-
communicating processes, that dependency is indirect, mediated by
the machine. We currently ignore inter-process interaction that does
not involve exchanging IP packets (e.g., through shared memory).
IP communication is captured using NbrSet. �eNbrSet of a process
depends on local and remote �rewall con�gurations, the processes
it is communicating with and the network paths. Finally, a network
path between two machines depends on all machines that inject traf-
�c into it and the amount of other tra�c, that is, tra�c from hosts
outside the monitored network.

In our current templates, con�guration components do not de-
pend on anything else. If con�guration changes explain the e�ect be-
ing diagnosed, we identify the con�guration component as the cul-
prit, without attempting to identify what changed the con�guration.
Extending NetMedic to remember what modi�ed the con�guration
can enable such identi�cation if needed [].

We can see from the templates that the resulting dependency
graphs can be quite complex with a diverse set of dependencies and
many cycles, e.g., Process → NbrSet of Process → Process →
NbrSet of Process → Process. �e next section describes how we
perform an accurate diagnosis over this graph.

5.3 Diagnosis
Diagnosis takes as input the (one-minute) time bin to analyze and

the time range to use as historical reference. �is time range does not
need to be contiguous or adjacent to the time bin of interest. We only
assume that it is not dominated by the fault being diagnosed. For
instance, if a con�guration fault occurs at night but its e�ect is ob-
served the next morning, NetMedic needs historical reference before
the fault (e.g., the previous morning) to diagnose the e�ect. Option-
ally, the operator can also specify one or more a�ected components
whose abnormal behavior is of interest. If le unspeci�ed, we identify
such components automatically as all that are behaving abnormally.
�e output of the system is a ranked list of components that are im-
pacting each a�ected component of interest. �ere is a separate list
for each a�ected component.

Diagnosis proceeds in three steps (Figure). First, we determine
the extent towhich various components and variables are statistically
abnormal. Second, we compute weights for edges in the dependency
graph. �ird, we use edge weights to compute path weights and pro-
duce a ranked list of likely culprits.

5.3.1 Computing abnormality
Given historical values of a variable, we want to detect how ab-

normal its value is at the time of diagnosis. For purposes that will
become clear later, we need a �ne-grainedmeasure of abnormality in
addition to a simple binary decision as to whether a variable is ab-
normal. While the semantics of some variables may be known, most
have application-speci�c, undocumented semantics. Our goal is not
to cra a perfect detector but to design a simple one that works well
in practice without knowing semantics before hand.

For abnormality computation, we assume that the values of the
variable approximate the normal distribution. Per the central limit
theorem, this is a reasonable assumption because the values of our
variables tend to be sums or averages (e.g., memory usage) over the
sampling time bin. If µ and σ are the variable’s mean and standard
deviation over the historical time range, the abnormality of value v at
the time of diagnosis is |erf(v−µ

σ
√

2
)|, where erf(.) is the error function.

�e formula is double the probability of seeing values between µ and
v in a normal distribution with parameters µ and σ. It ranges from
to , and the higher end of the range corresponds to values that are
far from the mean, i.e., towards the tails of the normal distribution.

Given the abnormality for each variable, the abnormality of a
component is the maximum abnormality across its variables.

�e abnormality values computed above are used in two ways.
�ey can be used directly, for instance, as multiplicative factors. �is
usage is robust to the exact method for computing abnormality as
long as the �rst order trend of the variable values are captured such
that less likely values have higher abnormality.

�e abnormality values are also used to make a binary decision
as to whether a variable or component is abnormal. For this deci-
sion, we use a threshold of .. Like all binary decisions of abnor-
mality, we face a trade-o� between �agging a non-existent abnor-
mality andmissing a real one. We prefer the former because our edge
weight computation assumes that normally behaving components do
not impact others. �us, declaring potentially abnormal components

Process 1 Process K

Machine

Machine config

Machine
Application

process

Machine config

Application config

NbrSet

Nbr 1 firewall Nbr K firewall

Local firewall

Nbr 1 process

Path to Nbr 1

Nbr K process

Path to Nbr K

NbrSet
Path

Machine 1 Machine K

Other Traffic

Figure . �e templates used by NetMedic to automatically gener-
ate the dependency graph.

as normal is less desirable than the other way around. Our chosen
threshold re�ects this preference.

5.3.2 Computing edge weights
Let S and D be the source and destination of a dependency edge.

If either S or D is behaving normally, it is unlikely that S is impacting
D and we assign a low weight to the edge. �e exact value of the edge
weight is not critical in this case. However, since computing path
weights involves multiplying edge weights, edge weights of zero are
brittle in the face of errors. Hence, we use an edge weight of . in
our experiments.

If both S and D are abnormal, we use their joint historical behav-
ior to determine the edge weight. Let Snow and Dnow be their respec-
tive states during the time bin of diagnosis. We �rst divide the his-
torywhere both components co-exist intoKequal-sized chunks, each
consisting of one or more time bins. Within each chunk we identify
the time bin in which S was in a state most similar to Snow . We then
compute how similar on average D was to Dnow during those times.
More precisely:

E(S → D) =
∑

K
k=1(1−|Dtk −Dnow|)×wk

∑
K
k=1 wk

, ()

where tk is the time bin in chunk kwhere the state of S wasmost sim-
ilar, and |Dtk −Dnow | is the di�erence between the two state vectors.
�e di�erencing of two states (explained below) produces a number
between and .

�e term wk is a relative weighting factor for di�erent chunks.
We specify wk = 1−|Stk −Snow| if |Stk −Snow| ≤ δ; it is otherwise.
�is speci�cation places a higher weight on historical states that are
more similar. And it excludes chunks of time where the most similar
source state di�ers bymore than δ. Because historical states that di�er
more already have a lower weight, the main reason for this cuto� is
to avoid computing the probability based on dissimilar states alone.
Our experiments use a relaxed δ of 1/3.

Dividing the history into K disjoint chunks and looking for the
most similar state in each helps base the weight computation on a
diverse set of time windows. Alternately, we could pick K time bins
where the source state was most similar. But this method could bias
results to temporally close bins that may be dependent, leading to a
less e�ective factoring out of other aspects that impact the destina-
tion state. We �nd that even small values of K su�ce for accurate
diagnosis. We use K = min(10,number of time bins in history) for ex-
periments in this paper.

When no usable historical information exists, e.g., because of in-
su�cient history or because similar source states do not exist, we as-
sign a high weight of . to the edge. �is assignment assumes that
a fault is more likely to stem from a component that was not seen
in a similar state previously. It has the desired behavior of assuming
impact rather than exonerating possibly responsible components.

�e basic procedure for di�erencing states: When computing
state di�erences, our intent is to get a robust measure of how dif-
ferently a component is behaving at di�erent points in time. State

di�erences are based on di�erences in the values of individual vari-
ables. �e di�erence between two state vectors with L variables is
∑

L
i=1 |di|/L, where di is the di�erence of the i-th variable normalized

by the observed range. �at is, di = (vi
tk
−vi

now)/(vi
max−vi

min), where

vi
tk
and vi

now are the values of the variable at the two time bins, and

vi
max and vi

min are themaximumandminimumvalues observed across
all time. Normalization means that the di�erence for each variable is
between and . It ensures that a variable does not dominate because
its values are drawn from a bigger range.

Con�guration components are handled di�erently for computing
state di�erences. �e di�erence is zero if the values of all variables
are identical. It is one otherwise. For con�guration components, any
change in the value of even a single variable could represent a signif-
icant functional shi. We thus err on the side of deeming every such
change as signi�cant.

Robust weight assignment with unknown variable semantics:
�e procedure above is a starting point; while it works well in some
cases, it is not robust to the presence of a large and diverse set of vari-
ables in component states. �e underlying problem is that it equally
emphasizes all variables, irrespective of the fault being diagnosed,
the uniqueness of the information represented by that variable, or
whether the variable is relevant for interactionwith the neighbor un-
der consideration. Equal emphasis on all variables dilutes state di�er-
ences, which hinders diagnosis. For instance, even when a runaway
process is consuming of the CPU, its state may appear similar
to other times if the vast majority of its state variables are unrelated
to CPU usage.

If we knew variable semantics, we could pick and choose those
that matter to the fault being diagnosed. We now describe exten-
sions to the basic procedure that create a similar e�ect without re-
quiring knowledge of variable semantics. �e simplest of our exten-
sions leverages the abnormality of variables and the others are based
on automatically inferring the relevant properties of state variables.

a) Weigh variables by abnormality: Instead of treating the variables
equally, we use abnormality of a variable as the relative weight in the
state di�erence. �is weighting biases the state di�erence towards
variables related to the e�ect currently being diagnosed. For instance,
while diagnosing an e�ect related to CPU usage, the abnormality of
aspects related to CPU usage will be higher.

b) Ignore redundant variables: We ignore variables that represent
redundant information with respect to other variables of the compo-
nent. �is extension helps prevent an over-representation of certain
aspects of the component’s behavior. For instance, our machines ex-
port used as well as available memory, each in units of bytes, kilo-
bytes, and megabytes. If we include all six variables, the state dif-
ferences will be biased towards memory-related aspects, making it
harder to diagnose other aspects.

To discover variables that are not redundant, we want to look for
independent components []. Instead of running a full-blown inde-
pendent component analysis, we approximate via a simple heuristic
that works well in our setting. We compute linear correlation be-
tween pairs of variables in the component and then identify cliques
of variables such that the Pearson correlation coe�cient between ev-
ery pair of variables is above a threshold (0.8). We select one variable
to represent each clique and deem others to be redundant.

c) Focus on variables relevant to interaction with neighbor: Among
the remaining variables, we ignore those that are irrelevant to inter-
action with the neighbor under consideration. For instance, while
considering the impact of a machine on an application process, we
exclude variables for error codes that the process receives from a peer
process. By reducing the noise from irrelevant variables, this exclu-
sion makes weight assignment more robust.

We infer whether a variable is relevant to interaction with the
neighbor by checking if it is correlated to any of the neighbor’s vari-
ables. Speci�cally, we compute the linear correlation between this

variable and each variable of the neighbor. We consider the variable
relevant if the Pearson correlation coe�cient is greater than a thresh-
old (0.8) for any neighbor variable. Linear correlation does not cap-
ture all kinds of relationships but is easy to compute and works well
for the kinds of variables that we see in practice.

�e state di�erence for non-con�guration components aer ap-
plying these three extensions is (∑L

1 |di| ·ai · ri)/(∑L
1 ai · ri), where L and

di are as before and ai is abnormality of the variable. �e term ri is
a binary indicator that denotes if the i-th variable is included in the
computation. It is if the variable is relevant to interaction with the
neighbor and represents non-redundant information.

d) Account for aggregate relationships: Some variables in machine
state (e.g., CPU usage) are sums of values of process variables. Simi-
larly, some variables in server process state (e.g., incoming tra�c) are
sums of values across its client processes. We discover and account
for such relationships when computing state di�erences. �e follow-
ing discussion is in the context of a machine and its processes. �e
same procedure is used for server and its client processes.

If the variable values of di�erent components were synchronized
in time, discovering aggregate relationships would be easy. �e sum
of the values of appropriate process variables would be exactly the
value of a machine variable. But because variables values may be
sampled at di�erent times, the sum relationship does not hold pre-
cisely. We thus use an indirect way to infer which machine variables
are aggregates. We instantiate virtual variables whose values repre-
sent the sum of identically named process variables; one virtual vari-
able is instantiated per name that is common to all processes. Even
though we do not know their semantics, variables have names (e.g.,
“CPUusage”), and a name refers to the same behavioral aspect across
processes. We then check if any machine state variable is highly cor-
related (with coe�cient> .) with a virtual variable. If so, we con-
clude that the machine variable is an aggregate of the corresponding
process variables.

We use aggregate relationships in several ways. First, we replace
the variable value in the machinewith that of the virtual variable, i.e.,
sum of values of the corresponding process variable. Second, when
computing the edge weight fromamachine to its process, we subtract
the contribution of the process itself. Speci�cally, as a pre-processing
step before searching for similar machine states, the value of each
aggregate variable in the machine state at each time bin is reduced
by the value of its corresponding process variable. �e remaining
process is as before.

Such pre-processing lets us compute the state of the process’s en-
vironment without its own in�uence. Without it, we may not �nd a
similarmachine state in history andhence falsely assign a highweight
for the machine-to-process edge. Consider a case where a runaway
process starts consuming CPU. If such an event has not hap-
pened before, we will not �nd similar machine states in the history
with CPUusage. Instead, by discounting the impact of the pro-
cess, we will likely �nd similar machine states and �nd that it is only
the process that is behaving di�erently. �ese �ndings will correctly
lead to a low weight on the machine-to-process edge.

Finally, when estimating the impact of a process on the machine,
if similar process states are not found, we assign weight based on the
contribution of the process. �at is, we do not use the default high
weight. For each aggregate variable, we compute the fraction that the
process’s value represents in the aggregate value. �emaximum such
fraction is used as the weight on the edge. �is modi�cation helps by
not blaming small processes just because they are new. Arrival of new
processes is common, and we do not wish to impugn such processes
unless they also consume a lot of resources.

5.3.3 Ranking likely causes
We now describe how we use the edge weights to order likely

causes. �e edge weights help connect likely causes to their observed
e�ects through a sequence of high weight edges. However, unlikely

E

BC D

A

H

H H

LH

L

Figure . An example dependency graph. �e labels on edges de-
note whether the computed weight was high (H) or low (L).

causesmay also have high weight edges leading to the e�ects of inter-
est.�ese include those that lie along paths from responsible causes
but may also include others if weights on those edges overestimate
the impact.

As an example, consider the dependency graph in Figure . For
simplicity, we show whether the edge weight is high (H) or low (L)
instead of numeric values. Assume that we set out to diagnose the
abnormal behavior of the component labeled E and that the real cul-
prit C is impacting it through B. Accordingly, C is connected to E

through a path of high weight edges, but so are B andD (via the path
D-B-E). Let us further assume that C is also hurting A and that the
high weight from D to B is erroneous.

Our goal is to rank causes such thatmore likely culprits have lower
ranks. A compact representation of our ranking function is shown
in Figure . �e rank of a component c with respect to an a�ected
component of interest e is based on the product of twomeasures, and
componentswith larger products are ranked lower. �e �rst measure
I(c→e) is the impact from c to e. �e second measure S(c) is a score
of the global impact of c.

Together, the two measures help achieve our goal. �e impact
I(c→e) from one component to another is the maximum weight
across all acyclic paths between them, where path weight is the geo-
metric mean of edge weights. Per this measure, in Figure , B, C, and
D have high impact on E but A has a low impact. �e score S(c) of a
component is the weighted sum of its impact on each other compo-
nent in the network, where the abnormality of the component is used
as the weight. Components that are highly impactingmore abnormal
components will have a higher score. Per this measure, in Figure , C
will have a lower rank than B andD, despite the inaccurateweight on
the D−B edge because it has high impact to many abnormal nodes.
Of course, in any given situation whether the real culprit gets a low
rank depends on the exact values of edges weights and component
abnormalities. We �nd in our evaluation that real culprits have low
ranks the vast majority of the time.

6. IMPLEMENTATION
We have implemented NetMedic on the Windows platform. Our

implementation has two parts—data collection and analysis. �e �rst
part captures and stores the state of various components. �e second
part uses the stored data to generate the dependency graph and con-
duct diagnosis.

�e main source of data is the Windows Performance Counter
framework []. Using this framework, the operating system (OS)
and applications export named counters and update their values.
Each counter represents a di�erent aspect of the exporter’s behavior.
“Performance” is a misnomer for this framework because it exposes
non-performance aspects as well. �e OS exports many machine-
wide counters such as processor and memory usage. It also exports
generic process-level aspects such as resource consumption levels. In
addition, many processes export application-speci�c counters. See
Table for some counters exported by the Web server.
NetMedic reads the values of all exported counters periodically.

We do not interpret what a counter represents but simply make each
counter a state variable of the component to which it belongs. While
most counters represent values since the last time they were read,
some represent cumulative values such as the number of exceptions
since the process started. We identify such counters and recover their
current behavior by subtracting the values at successive readings.

�e Performance Counter interface does not tell us which pro-
cesses in the network are communicating with each other. We use

Rank(c→e) ∝ (I(c→e) ·S(c))−1

I(c→e) = max(weight W(p) of acyclic paths p from c to e)
1 if c = e

W(p) =
(

∏
n
j=1 E(ej)

)
1
n
where e1 · · ·en are edges of the path,

E(·) is edge weight
S(c) = ∑e∈C I(c→e) ·Ae where C is set of all components,

Ae is the abnormality of e

Figure . Our methodology for ranking causes.

a custom utility that snoops on all socket-level read and write calls.
�is snooping yields the identity of the calling processes along with
the IP addresses and ports being used on both ends. It lets us con-
nect communicating processes and measure how much tra�c they
exchange. We also estimate response times from these socket-level
events as the time di�erence between read and write calls. Including
these response times as a variable in the process state lets us diagnose
faults that delay responses even if the application does not expose this
information as a counter.

We measure path loss rate and delay by sending periodic probes
to machines with which a monitored machine communicates. For
paths that go outside the monitored network, we measure the part
up to the gateway.
NetMedicmonitors machine, �rewall, and application con�gura-

tion stored in the Windows registry as well as �les. We read all rel-
evant information once upon start and register callbacks for future
changes. Machine con�guration includes information about running
services, device drivers, and mounted drives. Application con�gura-
tion may be spread over multiple locations. Currently, the list of lo-
cations for an application is an input to NetMedic, but we plan to au-
tomatically infer where application con�guration resides using so-
ware package managers and by tracking application read calls [].

Our data collectors are light-weight. In our deployment, the av-
erage processor usage due to data collection is under . �e exact
usage at a given time depends on the level of activity on the machine.
�e amount of data transmitted for analysis is under bytes per
second per machine. From these overheads and our experience with
data analysis, we believe that the current version of NetMedic can
scale to -machine networks, which su�ces for small enterprises.
See § for a discussion on scaling NetMedic further.

While the data collection part of our system knows the meanings
of some variables (e.g., tra�c exchanged), we do not use that infor-
mation in the analysis. Treating variables with known and unknown
meanings identically greatly simpli�es analysis. It also makes analy-
sis platform-independent and applicable to a range of environments
with di�erent sets of known variables. All that is required to port
NetMedic to a di�erent environment is to implement data collection
on non-Windows machines. Much of the needed information is al-
ready there, e.g., in syslog or the proc �le system [] in Linux. De-
veloping a Linux prototype is part of our future work.

7. EVALUATION
Wenow evaluateNetMedic to understand howwell it does at link-

ing e�ects to their likely causes. We �nd that NetMedic is highly ef-
fective. Across a diverse set of faults it identi�es the correct compo-
nent as the most likely culprit (§.) in over of the cases. �is
ability only slights degrades in the face of simultaneously occurring
faults (§.). In contrast, a coarse diagnosis method performs rather
poorly—only for of the faults, is it able to identify the correct
component as the most likely culprit. We show that the e�ectiveness
of NetMedic is due to its ability to cut down by a factor of three the
number the edges in the dependency graph for which the source is
deemed as likely impacting the destination (§.). We also �nd that
the extensions to the basic procedure for edge weight assignment sig-
ni�cantly enhance the e�ectiveness of diagnosis (§.) and a modest
amount of history seems to be su�cient (§.).

Evaluation Platforms: We have deployed our prototype in two en-
vironments. �e primary one is a live environment. �e deployment
spans ten client machines and a server machine inside an organiza-
tion. �e clients are actively used desktops that belong to volunteers
and have all the noise and churn of regularly used machines.

Because we are not allowed to instrument the real servers in this
environment, we deploy our own. As is common in small enterprises,
our server machine hosts multiple application servers, including Ex-
change (email), IIS (web) and MS-SQL (database). Co-hosted appli-
cation servers are challenging for diagnostic systems as application
interactions are more intertwined. �e server processes already ex-
port several application speci�c counters.

We implemented custom client processes to communicate with
our application servers. �e existing client processes on the desktops
communicate with the real servers of our organization, and we could
not experiment with them without disrupting our volunteers. Our
clients export application speci�c counters similar to those exported
by real clients, such as number of successful and failed requests, re-
quests of various types, etc.

Our second environment consists of three clients machines and
a server. Because this environment is completely dedicated to our
experiments, it is a lot more controlled. We do not consider it to be
a realistic setting and unless otherwise stated, the results below are
based on the �rst environment. We present some results from the
controlled setting to compare howNetMedic behaves in two disparate
environments with di�erent workloads, applications etc.

Methodology: Ideally, we would like to diagnose real faults in our
deployment but are hindered by the inability to monitor real servers.
We are also hindered by ground truth, which is required to under-
stand the e�ectiveness of diagnosis, being oen unavailable for real
faults. Hence, most of the results below are based on faults that we
inject. We do, however, present evidence thatNetMedic can helpwith
faults that occur in situ (§.).

We inject the diverse set of ten faults shown in Table . We stay
as close to the reported fault as possible, including the kind of appli-
cation impacted. For instance, for Problem , we miscon�gure the
IIS server such that it stops serving ASPX pages but continues serv-
ing HTML pages. Similarly, to mimic Problem , we made an email
client depend on information on a mounted drive.

Except for the experiments in §., wherewe injectmultiple faults
simultaneously, each fault is injected by itself. We inject each fault at
least times, at di�erent times of the day (e.g., day versus night),
to verify that we can diagnose it in di�erent operating conditions.
Cumulatively, our experiments span a month, with data collection
and fault injection occurring almost non-stop.

For diagnosis, we specify as input to NetMedic a one minute win-
dow that contains a fault. We did not specify the exact e�ect to diag-
nose; rather NetMedic diagnoses all the abnormal aspects in the net-
work. Unless otherwise speci�ed, for each fault we use an hour-long
history. �e historical period is not necessarily fault-free. In fact, it
oen contains other injected faults as well as any naturally occurring
ones. We do this for realism. In a live environment, it is almost im-
possible to identify or obtain a fault-free log of behavior.

Acoarse diagnosismethod: Weknowof no detailed diagnosis tech-
niques to compare NetMedic against. To understand the value of de-
tailed history-based analysis of NetMedic, we compare it against a
Coarse diagnosis method that is based loosely on prior formulations
that use dependency graphs such as Sherlock and Score [,]. �is
method uses the same dependency graph as NetMedic. But unlike
NetMedic, it captures the behavior of a component with one variable
that representswhether the component is behaving normally.�e de-
termination regarding normal behavior ismade in the same way as in
NetMedic. Also unlike NetMedic, Coarse has simple component de-
pendencies. A component impacts a neighboring component with a
highprobability (of .)whenboth of themare abnormal. Otherwise,
the impact probability is low (.). �e exact values of these proba-

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(a) Live environment

20

30

40

50

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

10

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(b) Controlled environment
Figure . E�ectiveness of Coarse and NetMedic for each fault.

bilities are not signi�cant, as long as one is high and the other is low.
Once these edgeweights are assigned, the causes are ranked in aman-
ner that is similar toNetMedic. Keeping the rankingmethod the same
for Coarse lets us focus the evaluation in this paper on our method
for inferring impact among neighbors. We omit results that show that
our ranking method outperforms several other alternatives.

Metric: Our metric to evaluate diagnosis is the rank assigned to the
real cause for each anticipated e�ect of a fault. For each fault, we re-
port the median and the maximum rank assigned across its multiple
e�ects. For instance, for Problem , allWeb clients that browse ASPX
pages are expected to be a�ected. We study the rank assigned to the
con�guration of Web server for each such client. �e median rank
represents average case behavior, i.e., what an operator who is diag-
nosing a randomly chosen e�ect of the fault would experience. �e
maximum rank represents the worst case.

What should the rank be for the diagnosis to be useful to an op-
erator? Clearly, lower ranks are better, with a rank of one being per-
fect. However, even the ability to place the real cause within the top
few ranks helps administrators avoid many potential causes that they
would otherwise have to consider (close to in our deployment).

7.1 Dependency graph properties
We brie�y describe the dependency graph constructed across the

eleven machines in our live environment. �e exact numbers vary
with time but the graph has close to a components and
edges. With roughly processes per machine, most of the nodes
in the graph correspond to processes. Correspondingly, the vast ma-
jority of the edges are between components on the same machine,
such as edges between machines and processes. Edges that connect
components on di�erent machines (e.g., due to communicating pro-
cesses) are a much smaller fraction. Hence, the dependency graph
is highly clustered, with clusters corresponding to machines and the
graph size grows roughly linearly with the number of machines. �is
linear growth in graph complexity makes it easier to scale NetMedic
to larger networks.

Each component provides a rich view of its state in our deploy-
ment. Processes have state variables on average, roughly half of
which are generic variables representing resource usagewhile the rest
are application speci�c and vary with the application. IIS server, for
instance, exports application-speci�c variables. Machines have
over a hundred variables in their state. �us, there are plenty of vari-
ables that are already exported by real applications and operating sys-
tems for detailed diagnosis to be possible. But the sheer scale of this
observable state makes understanding variable semantics daunting.
NetMedic’s ability to be application agnostic allows diagnosis to work
even as new applications emerge or variable semantics change.

7.2 Effectiveness of diagnosis
Figure (a) shows the e�ectiveness ofNetMedic andCoarse across

all faults injected in the live environment. �e lines connect the me-
dian ranks and the error bars denote the maximum ranks. �e two
curves are independently sorted based on the median rank.

40

60

80

100

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

0

20

0 10 20 30 40 50

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

% abnormal components

(a)

40

60

80

100

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

Coarse
NetMedic

0

20

0 10 20 30 40 50

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

% high weight edges

(b)
Figure . (a) CDF of the percentage of components that are ab-
normal during a fault. (b) CDF of the percentage of edges that are
assigned a high weight in the dependency graph.

We see that for of the faults the median rank of the correct
cause is one with NetMedic. �at is, NetMedic frequently places the
real culprit at the top of the list of likely causes. For all cases except
one, the median rank of the correct cause is �ve or lower. �e max-
imum ranks are oen close to the median ranks, representing good
worst-case behavior as well. �ese results suggest that NetMedic can
help operators diagnose such faults in their networks.

In contrast, diagnosing these faults with Coarse would likely be
a frustrating exercise. �e correct cause is assigned a rank of one in
fewer than of the cases. For over of the cases, the correct
cause has a median rank of more than ten.

We examined cases where NetMedic assigned a median rank
greater than three to the correct cause. We �nd that these oen cor-
respond to performance faults, which include Problems , and in
Table . �e side-e�ects of these faults lead to abnormality in many
components in the network. For instance, a process that hogs the
CPU disturbs many other processes on its machine, each of which
can appear abnormal. A fewof the victim components can get ranked
lower than the correct cause if there is insu�cient history to correctly
determine the direction of impact. Diagnosis of non-performance
faults, which tend to be more prevalent (§.) turns out to be easier
as they disturb fewer components in the network.

Let us consider now the results from the controlled environment
shown in Figure (b). We reduce the y-axis range for this graph be-
cause the environment has fewer components. We see that NetMedic
e�ectively diagnoses faults in this setting as well.

Interestingly, Coarse performs much better in this setting. In the
live environment, for the worst of the cases, itsmedian rank is
or higher. Here, themedian rank is or higher, a sharp improvement
even aer accounting for the di�erence in the numbers of compo-
nents. �us, in going from the controlled to the more dynamic and
realistic setting, the ability of Coarse degrades sharply. �is degrada-
tion stems from the fact that the live environment hasmore abnormal
components. Because of its simplistic component states and depen-
dency models, Coarse cannot e�ectively infer which components are
impacting each other, and many components get ranked lower than
the real culprit. NetMedic, on the other hand, shows no such degra-
dation in our experiments and appears better equipped towards han-
dling the noise in real environments. �e next section investigates in
more detail why the methods di�er.

7.3 Why NetMedic outperforms Coarse?
NetMedic outperforms Coarse primarily because at the level of de-

tail that we observe at, components are oen abnormal. As a result,
Coarse assigns a high weight to many edges and ends up erroneously
connecting many non-responsible components to the observed ef-
fects. By looking at component states in detail and allowing for com-
plex dependencies,NetMedic assigns a lowweight tomany edges even
when both end points are abnormal simultaneously.

Figure (a) shows the CDF of the percentage of components that
are abnormal during the periods covering various faults. We see that
this percentage is quite high (-).

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Basic

NetMedic

HandPicked

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(a)

38

55

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Basic

Abnormality
NetMedic

4 1
5

0

20

80 95

R
a
n
k
 o
f
co
rr
ec
t
ca
u
se

Cumulative % of faults

(b)
Figure . Value of NetMedic’s extensions to the basic procedure.

Figure (b) shows the CDF of the percentage of edges in the de-
pendency graph that are assigned a high weight (> 0.75) by each
scheme. We see that this percentage is - for Coarse and -
 for NetMedic, which represents reduction by a factor of . �is
reduction in likely spurious high-weight edges leads to fewer possible
causes being strongly connected to the a�ected component, resulting
in fewer false positives and lower ranks for real causes.

Simply changing the requirement for deeming a component as ab-
normal (e.g., using a higher abnormality threshold or requiringmore
state variables to be abnormal)may reduce false positives. But we �nd
that doing so can hurt. It runs the risk of excluding the real culprit
from the list altogether; the culprit or a component on the path from
it to the e�ect of interest may appear normal.

7.4 Benefit of extensions
We now study the value of the extensions to edge weight assign-

ment by comparing them to two other methods. �e �rst is the basic
procedure, without the extensions. For the second method, instead
of automatically inferring relationships between variables, we hand
code them, based on our knowledge of what each variable represents.
Given that the number of variables is quite large,we hard code knowl-
edge of only those that are relevant for diagnosing the faults that we
inject. Beyond programming these relationships, the rest of the pro-
cedure stays the same. Comparison with this “HandPicked” method
quanti�es any reduction in diagnostic e�ectiveness due to our desire
to be application agnostic and treating these variables as opaque.

Figure (a) shows the diagnostic e�ectiveness of all three meth-
ods. Comparing the basic procedure with Coarse in Figure (a) re-
veals that itmore frequently assigns a rank of one to the correct cause.
�is frequency is versus the of Coarse. But overall, the ba-
sic procedure is quite fragile. In fact in the worst of the cases, it
assigns a higher rank to the correct cause than Coarse.

�e extensions help make the basic idea practical—an fre-
quency of assigning a rank of one to the correct cause and a signif-
icant reduction in the ranks of the correct cause for half the faults.
Closer examination reveals that such faults oen correspond to per-
formance issues. As mentioned previously, performance faults have
more side e�ects than con�guration faults. �e extensions are better
able to si through this noise.

Figure (a) also shows that the performance of NetMedic is close
to HandPicked. �us, the extensions extract enough semantic infor-
mation for our task to not require embedding knowledge of variable
semantics into the system.

To investigate inmore detail, we separately consider the extension
that weighs variables based on their abnormality values and the other
three extensions that infer variable relationships. Figure (b) shows
the median rank for th and th percentile of the faults with the
basic procedure, with only the abnormality extension, andNetMedic,
which includes all extensions. We see that both factoring in abnor-
mality and variable relationships are useful.

7.5 Multiple simultaneous faults
We now study the ability of NetMedic to diagnose multiple, si-

multaneously occurring faults. In a dynamic network, simultane-

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

Figure . E�ectiveness of Coarse, NetMedic
when diagnosing two simultaneous faults.

0

5

10

15

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

5 min

30 min

60 min

90 min

Figure . NetMedic’s e�ectiveness
when using di�erent history sizes.

5

10

15

20

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Coarse

NetMedic

0

5

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

Figure . �e ranks assigned to abnormal
processes in the absence of injected faults.

ous faults are possible and it is desirable that the diagnostic system
correctly match each e�ect to its own likely cause. Here, we inject
two faults simultaneously. With basic faults, there are unique
fault pairs. Of these, fault pairs “interfere” in that they impact the
same application processes. We inject the non-interfering pairs
and evaluate our ability to link each e�ect to its underlying cause.

Figure shows that with NetMedic the median rank for the
correct cause is one for over of the cases. Compared to the
single-fault case, there is some degradation in diagnosis e�ectiveness,
speci�cally in the maximum rank, which represents the worst case
operator experience. �ere is no deterioration in the median rank,
which represents the average case. �ese results suggest that even in
the presence of multiple faultsNetMedic can oen oen link an e�ect
to its correct cause.

In contrast, Coarse does signi�cantly worse. �e median rank is
one for only of the cases. Curiously, compared to the single-fault
results in Figure (a), Coarse appears to do better in the x-range of
-. It is not the case thatCoarse is better at diagnosing multiple-
fault cases than single-fault cases. �e seemingly better performance
is a result of the fact that the two sets of experiments have di�erent
fault type mixtures; the double-fault scenarios have a higher fraction
of faults for which Coarse has modest performance.

7.6 Impact of history
Next, we study the impact of the size of the history on the e�ec-

tiveness of NetMedic. Figure shows results with using – min-
utes of history. We see that using or minutes performs as well
as our previous experiments that use minutes of history. Using
 minutes of history performs signi�cantly worse; of the faults
havemedian ranks above . Based on these results we conclude that
 minutes of historical data su�ces for most faults. Recall that this
history does not need to be fault-free and our experiments use history
that contains other faults.

Preliminary evidence suggests that using history from more dy-
namic periods (e.g., day versus night) helps discount spurious con-
nections between components better. Investigating the nature of his-
tory that works best in various settings is a subject of ongoing work.

7.7 In situ behavior
Weconclude our evaluationwith evidence thatNetMedic can help

with naturally occurring faults as well. Consider a common scenario
for a process: plenty of available resources on the host machine, the
network appears normal, and the relevant con�guration elements
have not changed recently. If the process appears abnormal in this
scenario, a good diagnostic method should blame the process itself
for this abnormality rather than, for instance, other processes. We
evaluate NetMedic on exactly this scenario, i.e., on ruling out impact
among components that happen to be abnormal simultaneously. We
focus this analysis on interactions within monitored desktops since
we could not monitor the real servers in our organization.

Figure shows the rank assigned by Coarse and NetMedic to ab-
normal processes. �is data is based on a �ve hourmonitoring period
during which none of our own clients are running. We randomly se-

lect ten one-minute intervals to diagnose anduse -minute long his-
tory for each. In of the cases, NetMedic blames the process itself
for its abnormality while Coarse does so for only of the cases. Our
monitored desktops are not resource constrained during most of this
monitored period. �e inferences of NetMedic are more consistent
than Coarse for this setting.

We manually examine many cases in which NetMedic assigns a
high rank to an a�ected process. In nearly all of them, the top ranked
cause is a virus scanning process or a sync utility process. In our
deployment environment, such processes oen hog resources over
short durations and NetMedic appears to correctly blame these pro-
cesses rather than the a�ected process.

8. SCALING NetMedic
While motivated by problems inside small enterprises, NetMedic

can also help large enterprises that su�er similar problems if it can
be scaled up. �ere are two challenges in scaling NetMedic; we be-
lieve that both are surmountable and addressing them is part of our
future work. �e �rst challenge is to carry out diagnosis-related
computation over large dependency graphs. �e primary bottleneck
in this computation is calculating component abnormality and edge
weights. �ese calculations are parallelizable as they can be done in-
dependently for each edge and component. In fact, they can also be
distributed to themachines that are beingmonitored because the vast
majority of dependency edges are between components on the same
machine (e.g., between a process and its host machine). Further, the
calculation of individual edge weights can be sped up through fast
correlation methods []. Once the edge weights are computed, the
remaining calculations are those that underlie ranking likely causes.
�ese calculations are akin to those of Sherlock [] in their simplicity
and can thus scale to very large graphs.

�e second challenge in large deployments is that of data col-
lection, storage and retrieval. For this challenge, we can leverage
the large body of existing work on managing data that is similar to
ours. �is body includes methods for very-lightweight data collec-
tion [,], for e�cient data compression [,], and for searching
(compressed) history for similar states [, ,].

9. RELATED WORK
Diagnosing faults in computer networks is hard and has thus wit-

nessed much commercial and research activity. We divide related
work into four broad categories.
Inference-based: �ese systems identify the faulty component
based on a model of dependencies among components [, ,].
Because they target large-scale networks, the focus of existing sys-
tems is scalable analysis with simple models. NetMedic provides de-
tailed diagnosis in small business networks and di�ers in both the
challenges that it overcomes (e.g., unknown variable semantics) and
in the way it models components and dependencies.
Rule-based: �ese systems, which are also known as expert sys-
tems, diagnose based on a set of pre-programmed rules [, , ,].
�eirmain limitation is a lack of generality: they only diagnose faults

for which they have been pre-programmed. Because building a rule
database that covers a large fraction of possible faults in a complex
network is di�cult, we chose an inference-based approach.
Classi�er-based: �ese systems train o�ine on healthy and un-
healthy states, and when current system state is fed they try to de-
termine if the system is unhealthy and the likely cause [,]. It is
unclear how such schemes fare on faults not present in the training
data and extensive training data is hard to get. Some systems attempt
to overcome the “unknown fault” limitation of learning approaches
by training on data from multiple networks [,]. A recent exam-
ple is NetPrints, which detects home router con�gurations that are
incompatible with applications. �is approach is enabled by the fact
that the set of compatible router con�gurations is much smaller than
the number of sharing networks. It may not, however, generalize to
more complex con�gurations or to other kinds of faults. For instance,
it is di�cult to diagnose performance faults using information from
other networks because performance is a complex function of the
speci�c hardware, soware, and topology used by a network.
Single-machine: While we focus on diagnosing faults across ma-
chines in a network, there is extensive work on diagnosing faults
within individual machines [, , , ,]. NetMedic borrows
liberally from this body of work, especially in the light-weight yet
extensive data gathering, con�guration monitoring and the use of
system history. However, cross-machine diagnosis presents unique
challenges and single-machine diagnosis methods oen do not di-
rectly translate. Like NetMedic, Strider [] uses historical state dif-
ferences. It represents a machine with a single vector that contains
allWindows registry entries and detects faulty entries by di�erencing
this vector across time and across other similar machines. NetMedic
considers a broader andnoisier input (e.g., application performance),
includes component interactions in its analysis, and detects a wider
range of faults. It also does not rely on controlled, repeated executions
of the troubled application to infer which state variables are relevant.

10. CONCLUSIONS
NetMedic enables detailed diagnosis in enterprise networks with

minimal application knowledge. It was motivated by what to our
knowledge is the �rst study of faults in small enterprises. It combines
a rich formulation of the inference problemwith a novel technique to
determinewhen a componentmight be impacting another. In our ex-
periments, it was highly e�ective at diagnosing a diverse set of faults
that we injected in a live environment.

Modern operating systems and applications exportmuch detailed
information regarding their behavior. In theory, this information can
form the basis of highly e�ective diagnostic tools. In reality, the tech-
nology was lacking. One class of current systems uses the seman-
tics of this information to diagnose common faults based on pre-
programmed fault signatures []. Another class focuses exclusively
on certain kinds of faults such as performance that do not require
this information []. Even in combination these two classes of tech-
niques are unable to diagnose many faults that enterprise networks
su�er. �e techniques developed in our work are a step towards �ll-
ing this void. �ey enable diagnosis of a broad range of faults that are
visible in the available data, without embedding into the system the
continuously evolving semantics of the data.

Acknowledgments: We are grateful to Parveen Patel for his assis-
tance with implementing data collection in NetMedic and to our col-
leagues who let us deploy NetMedic on their desktops. We also thank
our shepherd, Darryl Veitch, Alex Snoeren, and the SIGCOMM re-
viewers for helping improve the presentation of this paper.

11. References

[] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. Padmanabhan, and
G. Voelker. NetPrints: Diagnosing home network miscon�gurations
using shared knowledge. In NSDI, .

[] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM, Aug. .

[] S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson. Lightweight,
high-resolution monitoring for troubleshooting production systems.
In OSDI, .

[] S. Brugnoni, G. Bruno, R. Manione, E. Montariolo, E. Paschetta, and
L. Sisto. An expert system for real time fault diagnosis of the Italian
telecommunications network. In IFIP, .

[] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic Internet services. In DSN,
June .

[] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In ICAC, .

[] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase.
Correlating instrumentation data to system states: a building block
for automated diagnosis and control. In OSDI, .

[] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing
historical information in sensor networks. In SIGMOD, .

[] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error
guarantees. In SIGMOD, .

[] J. Gray. Why do computers stop and what can be done about it? In
Sym. on Reliability in Distributed Soware and Database Systems,
.

[] Gteko, Inc. http://www.gteko.com.
[] W. Hamscher, L. Console, and J. de Kleer, editors. Readings in

model-based diagnosis. Morgan Kaufmann Publishers Inc., .
[] D. Heckerman. Learning in Graphical Models, chapter A tutorial on

learning with Bayesian networks. MIT Press, .
[] A. Hyvarinen and E. Oja. Independent component analysis:

Algorithms and applications. Neural Networks, (-), .
[] H. Jagadish, A. Mendelzon, and T. Milo. Similarity-based queries. In

PODS, .
[] G. Khanna, M. Cheng, P. Varadharajan, S. Bagchi, M. Correia, and

P. Verissimo. Automated rule-based diagnosis through a distributed
monitor system. IEEE Trans. Dependable & Secure Computing, .

[] R. Kompella, J. Yates, A. Greenberg, and A. Snoeren. IP fault
localization via risk modeling. In NSDI, .

[] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
miscon�guration. In SIGCOMM, .

[] Microso operations manager product overview.
http://technet.microso.com/en-us/opsmgr/bb.aspx.

[] Performance counters (Windows).
http://msdn.microso.com/en-us/library/aa(VS.).aspx.

[] Open view, HP technologies inc. http://www.openview.hp.com.
[] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet

services fail, and what can be done about it. In USITS, .
[] J. Pearl. Causality : Models, Reasoning, and Inference. Cambridge

University Press, .
[] I. Popivanov and R. Miller. Similarity search over time-series data

using wavelets. In ICDE, .
[] �e /proc �le system. http://www.faqs.org/docs/kernel/x.html.
[] D. Ra�ei and A. Mendelzon. Similarity-based queries for time series

data. In SIGMOD, .
[] Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving con�guration

management with operating system causality analysis. In SOSP, .
[] C. Verbowski et al. Flight data recorder: monitoring persistent-state

interactions to improve systems management. In OSDI, .
[] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic

miscon�guration troubleshooting with PeerPressure. In OSDI, Dec.
.

[] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang, and C. Yuan.
STRIDER: A black-box, state-based approach to change and
con�guration management and support. In LISA, .

[] A. Whitaker, R. Cox, and S. Gribble. Con�guration debugging as
search: Finding the needle in the haystack. In OSDI, Dec. .

[] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed
and robust event correlation. IEEE Communications Mag., .

[] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast
correlation-based �lter solution. In ICML, .

http://www.gteko.com
http://technet.microsoft.com/en-us/opsmgr/bb498244.aspx
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx
http://www.openview.hp.com
http://www.faqs.org/docs/kernel/x716.html

	Introduction
	Problems in small enterprises
	Example problems
	Classification results
	Discussion

	Problem formulation
	Our inference problem
	Limitations of existing models

	 Using history to gauge impact
	Design
	Capturing component state
	Generating the dependency graph
	Diagnosis
	Computing abnormality
	Computing edge weights
	Ranking likely causes

	Implementation
	Evaluation
	Dependency graph properties
	Effectiveness of diagnosis
	Why NetMedic outperforms Coarse?
	Benefit of extensions
	Multiple simultaneous faults
	Impact of history
	In situ behavior

	Scaling NetMedic
	Related Work
	Conclusions
	References

