
USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 307

X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production
Software

Mona Attariyan†∗, Michael Chow†, and Jason Flinn†

University of Michigan† Google, Inc.∗

Abstract
Troubleshooting the performance of production software
is challenging. Most existing tools, such as profiling,
tracing, and logging systems, reveal what events oc-
curred during performance anomalies. However, users of
such tools must infer why these events occurred; e.g., that
their execution was due to a root cause such as a specific
input request or configuration setting. Such inference of-
ten requires source code and detailed application knowl-
edge that is beyond system administrators and end users.

This paper introduces performance summarization, a
technique for automatically diagnosing the root causes
of performance problems. Performance summarization
instruments binaries as applications execute. It first at-
tributes performance costs to each basic block. It then
uses dynamic information flow tracking to estimate the
likelihood that a block was executed due to each poten-
tial root cause. Finally, it summarizes the overall cost of
each potential root cause by summing the per-block cost
multiplied by the cause-specific likelihood over all ba-
sic blocks. Performance summarization can also be per-
formed differentially to explain performance differences
between two similar activities. X-ray is a tool that im-
plements performance summarization. Our results show
that X-ray accurately diagnoses 17 performance issues in
Apache, lighttpd, Postfix, and PostgreSQL, while adding
2.3% average runtime overhead.

1 Introduction
Understanding and troubleshooting performance

problems in complex software systems is notoriously
challenging. When a system does not perform as ex-
pected, system administrators and end users have few
options. Explicit error messages are often absent or
misleading [58]. Profiling and monitoring tools may
reveal symptoms such as heavy usage of a bottleneck
resource, but they do not link symptoms to root causes.
Interpretation of application logs often requires detailed
knowledge of source code or application behavior that
is beyond a casual user. Thus, it is unsurprising that up
to 20% of misconfigurations submitted for developer
support are those that result in severe performance
degradation [58] (the authors of this study speculate that
even this number is an underestimate).

∗This work was done when Mona Attariyan attended Michigan.

Why is troubleshooting so challenging for users? The
most important reason is that current tools only solve half
the problem. Troubleshooting a performance anomaly
requires determining why certain events, such as high
latency or resource usage, happened in a system. Yet,
most current tools, such as profilers and logging, only
determine what events happened during a performance
anomaly. Users must manually infer the root cause from
observed events based upon their expertise and knowl-
edge of the software. For instance, a logging tool may
detect that a certain low-level routine is called often dur-
ing periods of high request latency, but the user must then
infer that the routine is called more often due to a specific
configuration setting. For administrators and end users
who do not have intimate knowledge of the source code,
log entries may be meaningless and the inference to root
causes may be infeasible.

In this paper, we introduce a new tool, called X-ray,
that helps users troubleshoot software systems without
relying on developer support. X-ray focuses on attribut-
ing performance issues to root causes under a user’s
control, specifically configuration settings and program
inputs. Why these causes? Numerous studies have re-
ported that configuration and similar human errors are
the largest source of errors in deployed systems [10, 11,
24, 25, 30, 32, 34, 58], eclipsing both software bugs and
hardware faults. Further, errors such as software bugs
cannot be fixed by end users alone.

X-ray does not require source code, nor does it require
specific application log messages or test workloads. In-
stead, it employs binary instrumentation to monitor ap-
plications as they execute. It uses one of several metrics
(request latency, CPU utilization, file system activity, or
network usage) to measure performance costs and out-
puts a list of root causes ordered by the likelihood that
each cause has contributed to poor performance during
the monitored execution. Our results show that X-ray of-
ten pinpoints the true root cause by ranking it first out of
10s or 100s of possibilities. This is ideal for casual users
and system administrators, who can now focus their trou-
bleshooting efforts on correcting the specific input and
parameters identified by X-ray.

X-ray introduces the technique of performance sum-
marization. This technique first attributes performance
costs to very fine-grained events, namely user-level in-
structions and system calls executed by the application.

1

308 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Then, it uses dynamic information flow analysis to asso-
ciate each such events with a ranked list of probable root
causes. Finally, it summarizes the cost of each root cause
over all events by adding the products of the per-event
cost and an estimate of the likelihood that the event was
caused by the root cause in question. The result is a list
of root causes ordered by performance costs.

As described so far, performance summarization re-
veals which root causes are most costly during an en-
tire application execution. For severe performance is-
sues, such root causes are likely the culprit. However,
some performance issues are more nuanced: they may
occur only during specific time periods or affect some
application operations but not others. Hence, X-ray pro-
vides several scoping options. Users may analyze perfor-
mance during specific time periods, or they may look at
a causal path such as a server’s processing of a request.

X-ray also supports nuanced analysis via two ad-
ditional summarization modes. In differential perfor-
mance summarization, X-ray compares the execution of
two similar operations and explains why their perfor-
mance differs. For example, one can understand why
two requests to a Web server took different amounts of
time to complete even though the requested operations
were identical. Differential performance analysis identi-
fies branches where the execution paths of the requests
diverge and assigns the performance difference between
the two branch outcomes to the root causes affecting the
branch conditionals. Multi-input differential summariza-
tion compares a potentially large number of similar op-
erations via differential analysis and outputs the result as
either a ranked list or a graphical explanation.

X-ray is designed to run in production environments.
It leverages prior work in deterministic replay to offload
the heavyweight analysis from the production system
and execute it later on another computer. X-ray splits its
functionality by capturing timing data during recording
so that the data are not perturbed by heavyweight anal-
ysis. X-ray’s replay implementation is flexible: it allows
insertion of dynamic analysis into the replayed execu-
tion via the popular Pin tool [28], but it also enables low-
overhead recording by not requiring the use of Pin or in-
strumentation code during recording.

Thus, this paper contributes the following:
• A demonstration that one can understand why per-

formance issues are occurring in production soft-
ware without source code, error and log messages,
controlled workloads, or developer support.

• The technique of performance summarization,
which attributes performance costs to root causes.

• The technique of differential performance summa-
rization for understanding why two or more similar
events have different performance.

• A deterministic replay implementation that enables
both low-overhead recording and use of Pin binary

instrumentation during replay.
Our evaluation reproduces and analyzes performance

issues in Apache, lighttpd, Postfix, and PostgreSQL. In
16 of 17 cases, X-ray identifies a true root cause as the
largest contributor to the performance problem; in the re-
maining case, X-ray ranks one false positive higher than
the true root causes. X-ray adds only an average over-
head of 2.3% on the production system because the bulk
of its analysis is performed offline on other computers.

2 Related work
Broadly speaking, troubleshooting has three steps: de-

tecting the problem, identifying the root cause(s), and
solving the problem. X-ray addresses the second step.

Profilers [8, 13, 29, 35, 42, 45, 53], help detect a per-
formance problem (the first step) and identify symptoms
associated with the problem (which assists with the sec-
ond step). They reveal what events (e.g., functions) incur
substantial performance costs, but their users must man-
ually infer why those events executed. Unlike X-ray, they
do not associate events with root causes.

Similarly, most tools that target the second step (iden-
tifying the root cause) identify events associated with
performance anomalies but do not explain why those
events occur. Many such tools observe events in multi-
ple components or protocol layers and use the observed
causal relationships to propagate and merge performance
data. X-trace [22] observes network activities across pro-
tocols and layers. SNAP [59] profiles TCP statistics and
socket-call logs and correlates data across a data center.
Aguilera et al. [1] infer causal paths between applica-
tion components and attribute delays to specific nodes.
Pinpoint [15, 16] traces communication between mid-
dleware components to infer which components cause
faults and the causal paths that link black-box compo-
nents. These tools share X-ray’s observation that causal-
ity is a powerful tool for explaining performance events.
However, X-ray distinguishes itself by observing causal-
ity within application components using dynamic binary
instrumentation. This lets X-ray observe the relationship
between component inputs and outputs. In contrast, the
above tools only observe causality external to application
components unless developers annotate code.

Other tools build or use a model of application per-
formance. Magpie [7] extracts the component control
flow and resource consumption of each request to build
a workload model for performance prediction. Magpie’s
per-request profiling can help diagnose potential perfor-
mance problems. Even though Magpie provides detailed
performance information to manually infer root causes,
it still does not automatically diagnose why the observed
performance anomalies occur. Magpie uses schemas to
determine which requests are being executed by high-
level components; X-ray uses data and control flow anal-
ysis to map requests to lower-level events (instructions

2

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 309

and system calls) without needing schemas from its user.
Cohen et al. [19] build models that correlate system-

level metrics and threshold values with performance
states. Their technique is similar to profiling in that it cor-
relates symptoms and performance anomalies but does
not tie anomalies to root causes.

Many systems [14, 20, 60, 61] tune performance by
injecting artificial traffic and using machine learning to
correlate observed performance with specific configura-
tion options. Unlike X-ray, these tools limit the num-
ber of options analyzed to deal with an exponential
state space. Spectroscope [46] diagnoses performance
changes by comparing request flows between two execu-
tions of the same workload. Kasick et al. [26] compare
similar requests to diagnose performance bugs in paral-
lel file systems. All of the above systems do not monitor
causality within a request, so they must hold all but a
single variable constant to learn how that variable affects
performance. In practice, this is difficult because minor
perturbations in hardware, workload, etc. add too much
noise. In contrast, X-ray can identify root causes even
when requests are dissimilar because it observes how re-
quests diverge at the basic-block level.

Several systems are holistic or address the third step
(fixing the problem). PeerPressure [54] and Strider [55]
compare Windows registry state on different machines.
They rely on the most common configuration states being
correct since they cannot infer why a particular configu-
ration fails. Chronus [56] compares configuration states
of the same computer across time. AutoBash [50] allows
users to safely try many potential configuration fixes.

X-ray uses a taint tracking [33] implementation pro-
vided by ConfAid [6] to identify root causes. ConfAid
was originally designed to debug program failures by
attributing those failures to erroneous configuration op-
tions. X-ray re-purposes ConfAid to tackle performance
analysis. X-ray might instead have used other methods
for inferring causality such as symbolic execution [12].
For instance, S2E [17] presented a case study in which
symbolic execution was used to learn the relationship be-
tween inputs and low-level events such as page faults and
instruction counts. Our decision to use taint tracking was
driven both by performance considerations and our de-
sire to work on COTS (common-off-the-shelf) binaries.

X-ray uses deterministic record and replay. While
many software systems provide this functionality [2,
18, 21, 23, 36, 49, 52], X-ray’s implementation has the
unique ability to cheaply record an uninstrumented exe-
cution and later replay the execution with Pin.

3 X-ray overview
X-ray pinpoints why a performance anomaly, such as

high request latency or resource usage, occurred. X-ray
targets system administrators and other end users, though
its automated inference should also prove useful to devel-

opers. Most of our experience to date comes from trou-
bleshooting network servers, but X-ray’s design is not
limited to such applications.

X-ray does not require source code because it uses
Pin [28] to instrument x86 binaries. X-ray users spec-
ify which files should be treated as configuration or in-
put sources for an application. X-ray also treats any data
read from an external network socket as an input source.
As data from such sources are processed, X-ray recog-
nizes configuration tokens and other root causes through
a limited form of binary symbolic execution.

An X-ray user first records an interval of software
execution. Section 6.5 shows that X-ray has an average
recording overhead of 2.3%. Thus, a user can leave X-
ray running on production systems to capture rare and
hard-to-reproduce performance issues. Alternatively, X-
ray can be used only when performance issues exhibit.
X-ray defers heavyweight analysis to later, deterministi-
cally equivalent re-executions. This also allows analysis
to be offloaded from a production system. Because X-ray
analysis is 2–3 orders of magnitude slower than logging,
we envision that only the portions of logs during which
performance anomalies were observed will be analyzed.

For each application, an X-ray user must specify con-
figuration sources such as files and directories, as well as
a filter that determines when a new request begins.

For each analysis, an X-ray user selects a cost metric.
X-ray currently supports four metrics: execution latency,
CPU utilization, file system usage, and network use. X-
ray also has a flexible interface that allows the creation
of new metrics that depends on either observed timings
or the instructions and system calls executed.

A user also specifies which interval of execution X-
ray should analyze. The simplest method is to specify
the entire recorded execution. In this case, X-ray returns
a list of root causes ordered by the magnitude of their
effect on the chosen cost metric. In our experience with
severe performance issues, examining the entire execu-
tion interval typically generates excellent results.

However, some performance issues are nuanced. An
issue may only occur during specific portions of a pro-
gram’s execution, or the problem may affect the process-
ing of some inputs but not others. Therefore, X-ray al-
lows its users to target the analysis scope. For instance, a
user can specify a specific time interval for analysis, such
as a period of high disk usage.

Alternatively, X-ray can analyze an application as it
handles one specific input, such as a network request. X-
ray uses both causal propagation through IPC channels
and flow analysis to understand which basic blocks in
different threads and processes are processing the input.
It performs its analysis on only those basic blocks.

A user may also choose to compare the processing of
two different inputs. In this case, X-ray does a differen-
tial performance summarization in which it first identi-
fies the branches where the processing of the inputs di-

3

310 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

verged and then calculates the difference in performance
caused by each divergence. We expect users to typically
select two similar inputs that differ substantially in per-
formance. However, our results show that X-ray provides
useful data even when selected inputs are very dissimilar.

Finally, a user may select multiple inputs or all inputs
received in a time period and perform an n-way differen-
tial analysis. In this case, X-ray can either return a ranked
list of the root causes of pairwise divergences over all
such inputs, or it can display the cost of divergences as a
flow graph. We have found this execution mode to be a
useful aid for selecting two specific requests over which
to perform a more focused differential analysis.

Executions recorded by X-ray can be replayed and an-
alyzed multiple times. Thus, X-ray users do not need to
know which cost metrics and analysis scopes they will
use when they record an execution.

4 Building blocks
X-ray builds on two areas of prior work: dynamic in-

formation flow analysis and deterministic record and re-
play. For each building block, we first describe the sys-
tem on which we built and then highlight the most sub-
stantial modifications we have made to support X-ray.

4.1 Dynamic information flow analysis
4.1.1 Background

X-ray uses taint tracking [33], a form of dynamic
information flow analysis, to determine potential root
causes for specific events during program execution. It
uses ConfAid [6] for this purpose.

ConfAid reports the potential root cause of a program
failure such as a crash or incorrect output. It assigns a
unique taint identifier to registers and memory addresses
when data is read into the program from configuration
files. It identifies specific configuration tokens through
a rudimentary symbolic execution that only considers
string data and common (glibc) functions that compare
string values. For instance, if data read from a configura-
tion file is compared to “FOO”, then ConfAid associates
that data with token FOO.

As the program executes, ConfAid propagates taint
identifiers to other locations in the process’s address
space according to dependencies introduced via data and
control flow. ConfAid analyzes both direct control flow
(values modified by instructions on the taken path of a
branch depend on the branch conditional) and implicit
control flow (values that would have been modified by in-
structions on paths not taken also depend on the branch
conditional). Rather than track taint as a binary value,
ConfAid associates a weight with each taint identifier
that represents the strength of the causal relationship be-
tween the tainted value and the root cause. When Conf-
Aid observes the failure event (e.g., a bad output), it out-
puts all root causes on which the current program con-

trol flow depends, ordered by the weight of that depen-
dence. ConfAid employs a number of heuristics to esti-
mate and limit causality propagation. For instance, data
flow propagation is stronger than direct control flow, and
both are stronger than indirect control flow. Also, control
flow taint is aged gradually (details are in [6]).
4.1.2 Modifications for X-Ray

One of the most important insights that led to the de-
sign of X-ray is that the marginal effort of determining
the root cause of all or many events in a program execu-
tion is not substantially greater than the effort of deter-
mining the root cause of a single event. Because a taint
tracking system does not know a-priori which interme-
diate values will be needed to calculate the taint of an
output, it must calculate taints for all intermediate val-
ues. Leveraging this insight, X-ray differs from ConfAid
in that it calculates the control flow taint for the execu-
tion of every basic block. This taint is essentially a list of
root causes that express which, if any, input and configu-
ration values caused the block to be executed; each root
cause has a weight, which is a measure of confidence.

We modified ConfAid to analyze multithreaded pro-
grams. To limit the scope of analysis, when X-ray eval-
uates implicit control flow, it only considers alternative
paths within a single thread. This is consistent with Conf-
Aid’s prior approach of bounding the length of alternate
paths to limit exponential growth in analysis time. We
also modified ConfAid to taint data read from external
sources such as network sockets in addition to data read
from configuration files. Finally, we modified ConfAid
to run on either a live or recorded execution.

X-ray uses the same weights and heuristics for taint
propagation that are used by ConfAid. We performed a
sensitivity analysis, described in Section 6.4, on the ef-
fect of varying the taint propagation weights—the results
showed that the precise choice of weights has little effect
on X-ray, but the default ConfAid weights led to slightly
more accurate results than other weights we examined.

4.2 Deterministic record and replay
X-ray requires deterministic record and replay for two

reasons. First, by executing time-consuming analysis on
a recording rather than a live execution, the performance
overhead on a production system can be reduced to a few
percent. Second, analysis perturbs the timing of applica-
tion events to such a large degree that performance mea-
surements are essentially meaningless. With determinis-
tic replay, X-ray monitors timing during recording when
such measurements are not perturbed by analysis, but it
can still use the timing measurements for analysis during
replay because the record and the replay are guaranteed
to execute the same instructions and system calls.
4.2.1 Background

Deterministic replay is well-studied; many systems
record the initial state of an execution and log all non-

4

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 311

deterministic events that occur [2, 9, 21, 36, 49, 52, 57].
They reproduce the same execution, possibly on another
computer [18], by restoring the initial state and supplying
logged values for all non-deterministic events.

X-ray implements deterministic record and replay by
modifying the Linux kernel and glibc library. It can
record and replay multiple processes running on one or
more computers. For each process, X-ray logs the order
of and values returned by system calls and synchroniza-
tion operations. It also records the timing of signals.

To record and replay multithreaded programs, one
must also reproduce the order of all data races [44]. X-
ray uses profiling to detect and instrument racing instruc-
tions. We execute an offline data race detector [51] on
recorded executions. This race detector follows the de-
sign of DJIT+ [41]; it reports all pairs of instructions that
raced during a recorded execution without false positives
or false negatives. X-ray logs the order of the racing in-
structions during later recordings of the application. If
no new data races are encountered after profiling, deter-
ministic replay of subsequent executions is guaranteed.
In the rare case where a new race is encountered, we
add the racing instructions to the set of instrumented in-
structions on subsequent runs. Since the vast majority of
data races do not change the order or result of logged
operations [51], X-ray can often analyze executions with
previously unknown data races. X-ray could also poten-
tially search for an execution that matches observed out-
put [2, 36].
4.2.2 Modifications for X-ray

X-ray has a custom replay implementation because of
our desire to use Pin to insert binary instrumentation into
replayed executions. The simplest strategy would have
been to implement record and replay with Pin itself [37].
However, we found Pin overhead too high; even with
zero instrumentation, just running applications under Pin
added a 20% throughput overhead for our benchmarks.

To reduce overhead, X-ray implements record and re-
play in the Linux kernel and glibc. Thus, Pin is only used
during offline replay. This implementation faces a sub-
stantial challenge: from the point of view of the replay
system, the replayed execution is not the same as the
recorded execution because it contains additional binary
instrumentation not present during recording. While Pin
is transparent to the application being instrumented, it is
not transparent to lower layers such as the OS.

X-ray’s replay system is instrumentation-aware; it
compensates for the divergences in replayed execution
caused by dynamic instrumentation. Pin makes many
system calls, so X-ray allocates a memory area that al-
lows analysis tools run by Pin to inform the replay kernel
which system calls are initiated by the application (and
should be replayed from the log) and which are initiated
by Pin or the analysis tool (and should execute normally).

X-ray also compensates for interference between re-

sources requested by the recorded application and re-
sources requested by Pin or an analysis tool. For in-
stance, Pin might request that the kernel mmap a free
region of memory. If the kernel grants Pin an arbitrary
region, it might later be unable to reproduce the effects
of a recorded application mmap that returns the same re-
gion. X-ray avoids this trap by initially scanning the re-
play log to identify all regions that will be requested by
the recorded application and pre-allocating them so that
Pin does not ask for them and the kernel does not return
them. X-ray also avoids conflicts for signal handlers, file
handles, and System V shared memory identifiers.

Finally, the replay system must avoid deadlock. The
replay system adds synchronization to reproduce the
same order of system calls, synchronization events, and
racing instructions seen during recording. Pin adds syn-
chronization to ensure that application operations such
as memory allocation are executed atomically with the
Pin code that monitors those events. X-ray initially dead-
locked because it was unaware of Pin locking. To com-
pensate, X-ray now only blocks threads when it knows
Pin is not holding a lock; e.g., rather than block threads
executing a system call, it blocks them prior to the in-
struction that follows the system call.

5 Design and implementation
X-ray divides its execution into online and offline

phases. The offline phase is composed of multiple re-
played executions. This design simplifies development
by making it easy to compose X-ray analysis tools out
of modular parts.

5.1 Online phase
Since the online phase of X-ray analysis runs on a pro-

duction system, X-ray uses deterministic record and re-
play to move any activity with substantial performance
overhead to a subsequent, offline phase. The only on-
line activities are gathering performance data and log-
ging system calls, synchronization operations and known
data races.

X-ray records timestamps at the entry and exit of
system calls and synchronization operations. It mini-
mizes overhead by using the x86 timestamp counter and
writing timestamps to the same log used to store non-
deterministic events. The number of bytes read or written
during I/O is returned by system calls and hence captured
as a result of recording sources of non-determinism.

5.2 First offline pass: Scoping
The first offline pass maps the scope of the analysis

selected by an X-ray user to a set of application events.
While X-ray monitors events at the granularity of user-
level instructions and system calls, it is sufficient to iden-
tify only the basic blocks that contain those events since
the execution of a basic block implies the execution of
all events within that block.

5

312 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

A user may scope analysis to a time interval or to the
processing of one of more inputs. If the user specifies a
time interval, X-ray includes all basic blocks executed
by any thread or process within that interval. If the user
scopes the analysis to one or more inputs, X-ray identi-
fies the set of basic blocks that correspond to the process-
ing of each input via request extraction.
5.2.1 Request extraction

Request extraction identifies the basic block during
which each request (program input) was processed. For
the applications we have examined to date, inputs are re-
quests received over network sockets. However, the prin-
ciples described below apply to other inputs, such as
those received via UI events.

Since the notion of a request is application-dependent,
X-ray requires a filter that specifies the boundaries of in-
coming requests. The filter is a regular expression that X-
ray applies to all data read from external sockets, which
we define to be those sockets for which the other end
point is not a process monitored by X-ray. For instance,
the Postfix filter looks for the string HELO to identify in-
coming mail. Only one filter must be created for each
protocol (e.g., for SMTP or HTTP).

Request extraction identifies the causal path of each
request from the point in application execution when the
request is received to the point when the request ends
(e.g., when a response is sent). X-ray supports two meth-
ods to determine the causal path of a request within pro-
cess execution. These methods offer a tradeoff between
generality and performance. Both are implemented as
Pin tools that are dynamically inserted into binaries.

The first method is designed for simple applications
and multi-process servers. It assumes that a process han-
dles a single request at a time, but it allows multiple
processes to concurrently handle different requests (e.g.,
different workers might simultaneously process different
requests). When a new request is received from an ex-
ternal socket, X-ray taints the receiving process with a
unique identifier that corresponds to the request. X-ray
assumes that the process is handling that request until the
process receives a message that corresponds to a different
request or until the request ends (e.g., when the applica-
tion closes the communcation socket). A new taint may
come either from an external source (in which case, it
is detected by the input data matching the request filter),
or it may come from an internal source (another process
monitored by X-ray), in which case the request taint is
propagated via the IPC mechanism described below.

The second method directly tracks data and control
flow taint. When a request is received from an external
socket, X-ray taints the return codes and data modified
by the receiving system call with the request identifier.
X-ray propagates taint within an address space as a pro-
cess executes. It assigns each basic block executed by the
process to at most one request based on the control flow

taint of the thread at the time the basic block is executed.
Untainted blocks are not assigned to a request. A block
tainted by a single identifier is assigned to request cor-
responding to that identifier. A block tainted by multiple
identifiers is assigned to the request whose taint identi-
fier has the highest weight; if multiple identifiers have
the same weight, the block is assigned to the request that
was received most recently.

Comparing the two methods, the first method has
good performance and works well for multi-process
servers such as Postfix and PostgreSQL. However, it is
incapable of correctly inferring causal paths for mul-
tithreaded applications and event-based applications in
which a single process handles multiple requests concur-
rently. The second method handles all application types
well but runs slower than the first method. X-ray uses the
second method by default, but users may select the first
method for applications known to be appropriate.

Request extraction outputs a list of the basic blocks
executed by each request. Each block is denoted by a
<id, address, count> tuple. The id is the Linux iden-
tifier of the thread/process during recording, address is
the first instruction of the block in the executable, and
count is the number of instructions executed by the pro-
cess prior to the first instruction of the basic block. Thus,
count differentiates among multiple dynamic executions
of a static basic block. Since deterministic replay exe-
cutes exactly the same sequence of application instruc-
tions, the count of each block matches precisely across
multiple replays and, thus, serves as a unique identifier
for the block during subsequent passes.
5.2.2 Inter-process communication

Replayed processes read recorded data from logs
rather than from actual IPC channels. X-ray establishes
separate mechanisms, called side channels, to communi-
cate taint between processes and enforce the same causal
ordering on replayed processes that was observed dur-
ing the original recording. For instance, a process that
blocked to receive a message on a socket during record-
ing will block on the side channel during replay to re-
ceive the taint associated with the message.

Side channels propagate taint from one address space
to another. X-ray supports several IPC mechanisms in-
cluding network and local sockets, files, pipes, signals,
fork, exit, and System V semaphores. During replay,
when a recorded system call writes bytes to one of these
mechanisms, X-ray writes the data flow taint of those
bytes to the side channel. X-ray merges that taint with
the control flow taint of the writing thread. Even mecha-
nisms that do not transfer data (e.g., signals) still transfer
control flow taint (e.g., the control flow of the signal han-
dler is tainted with the control flow taint of the signaler).

When replay is distributed, one computer acts as the
replay master. Processes running on other computers reg-
ister with the master; this allows each replay process to

6

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 313

Figure 1. Example of performance summarization

determine which sockets are external and which connect
to other replay processes. For simplicity, all side chan-
nels pass through the master, so replay processes on other
computers read to and write from side channels by mak-
ing RPCs to a server running on the master.
5.2.3 Attributing performance costs

During the first pass, X-ray also attributes perfor-
mance costs to all events (application instructions and
system calls executed) within the chosen scope. As a per-
formance optimization, all events within a single basic
block are attributed en masse because all are executed if
the block is executed.

Recall that X-ray users may currently choose latency,
CPU utilization, file system use, or network throughput
as cost metrics. The latency of each system call and syn-
chronization operation is recorded during online execu-
tion. X-ray attributes the remaining latency to user-level
instructions. From the recorded timestamps in the log, it
determines the time elapsed between each pair of sys-
tem calls and/or synchronization events. X-ray dynamic
instrumentation counts the number of user-level instruc-
tions executed in each time period. It divides the two val-
ues to estimate the latency of each instruction.

To calculate CPU utilization, X-ray counts the in-
structions executed by each basic block. To calculate file
system and network usage, it observes replayed execu-
tion to identify file descriptors associated with the re-
source being analyzed. When a system call accesses such
descriptors, X-ray attributes the cost of the I/O operation
to the basic block that made the system call.

5.3 Second pass: performance summarization
Performance summarization, in which costs are at-

tributed to root causes, is performed during the second
execution pass. X-ray currently supports three modes: (1)
basic summarization, which computes the dominant root
causes over some set of input basic blocks, (2) differen-
tial summarization, which determines why the process-
ing of one input had a different cost than the processing

of another input, and (3) multi-request differential sum-
marization, which computes the differential cost across
three or more inputs.
5.3.1 Basic performance summarization

Basic performance summarization individually ana-
lyzes the per-cause performance cost and root cause of
all events. It then sums the per-event costs to calculate
how much each root cause has affected application per-
formance.

Figure 1 shows how basic performance summariza-
tion works. In the first pass, X-ray determines which ba-
sic blocks are within the analysis scope and assigns a per-
formance cost to the events in each block. In the second
pass, X-ray uses taint tracking to calculate a set of possi-
ble root causes for the execution of each such block. Es-
sentially, this step answers the question: “how likely is it
that changing a configuration option or receiving a differ-
ent input would have prevented this block from execut-
ing?” X-ray uses ConfAid to track taints as weights that
show how strongly a particular root cause affects why a
byte has its current value (data flow) or why a thread is
executing the current instruction (control flow).

X-ray next attributes a per-block cost to each root
cause. This attribution is complicated by the fact that
ConfAid returns only an ordered list of potential root
causes. Weights associated with causes are relative met-
rics and do not reflect the actual probability that each
cause led to the execution of a block. We considered sev-
eral strategies for attribution:

• Absolute weight. The simplest strategy multiplies
each per-cause weight by the per-block perfor-
mance cost. This is an intuitive strategy since X-
ray, like ConfAid, aims only to achieve a relative
ranking of causes.

• Normalized weight. The weights for a block are
normalized to sum to one before they are multi-
plied by the performance cost. This strategy tries
to calculate an absolute performance cost for each
cause. However, it may strongly attribute a block to

7

314 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

a root cause in cases where the block’s execution is
likely not due to any root cause.

• Winner-take-all. The entire per-block cost is at-
tributed to the highest ranking cause (or equally
shared in the case of ties).

• Learned weights. Based on earlier ConfAid re-
sults [6], we calculate the probability that a cause
ranked 1st, 2nd, 3rd, etc. is the correct root cause.
We use these probabilities to weight the causes
for each block according to their relative rankings.
Note that the benchmarks used for deciding these
weights are completely disjoint from the bench-
marks used in this paper.

Based on the sensitivity study reported in Section 6.4,
we concluded that X-ray results are robust across all at-
tribution strategies that consider more than just the top-
ranked root cause. X-ray uses the absolute weight strat-
egy by default because it is simple and it had slightly
better results in the study.

X-ray calculates the total cost for each root cause by
summing the per-block costs for that cause over all basic
blocks within the analysis scope; e.g., in Figure 1, the
per-block costs of option2 are 20 and 40, so its total cost
is 60). X-ray outputs potential root causes as a ranked list
ordered by cost; each list item shows the token string,
the config file or input source, the line number within the
file/source, and the total cost.
5.3.2 Differential performance summarization

Differential performance summarization compares
any two executions of an application activity, such as the
processing of two Web requests. Such activities have a
common starting point (e.g., the instruction receiving the
request), but their execution paths may later diverge.

Figure 2 shows an example of differential perfor-
mance summarization. X-ray compares two activities by
first identifying all points where the paths of the two
executions diverge and merge using longest common
sub-sequence matching [31]. In the figure, the execution
paths of the activities are shown by the solid and dashed
lines, and the conditional branches where the paths di-
verge are denoted as C1 and C2.

X-ray represents the basic blocks that processed each
request as a string where each static basic block is a
unique symbol. Recorded system calls and synchroniza-
tion operations give a partial order over blocks executed
by multiple threads and processes. Any blocks not so or-
dered executed concurrently; they do not contain racing
instructions. X-ray uses a fixed thread ordering to gen-
erate a total order over all blocks (the string) that obeys
the recorded partial order. The matching algorithm then
identifies divergence and merge points.

X-ray uses taint tracking to evaluate why each diver-
gence occurred. It calculates the taint of the branch con-
ditional at each divergence point. Note that since X-ray
uses dynamic analysis, loops are simply treated as a se-

Figure 2. Differential performance summarization

ries of branch conditionals (that happen to be the same
instruction). The cost of a divergence is the difference
between the performance cost of all basic blocks on the
divergent path taken by the first execution and the cost
of all blocks on the path taken by the second execu-
tion. As in the previous section, X-ray uses the absolute
weight method by default. Finally, X-ray sums the per-
cause costs over all divergences and outputs a list of root
causes ordered by differential cost. In Figure 2, option2
is output before option1 because its total cost is greater.
5.3.3 Multi-input differential summarization

Pairwise differential summarization is a powerful
tool, but it is most useful if an X-ray user can identify two
similar inputs that have markedly different performance.
To aid the user in this task, X-ray has a third performance
summarization mode that can graphically or numerically
compare a large number of inputs.

Multi-input summarization compares inputs that
match the same filter. The processing path of these in-
puts begins at the same basic block (containing the sys-
tem call that receives the matching data). The subsequent
processing paths of the various inputs split and merge.
Typically, the paths terminate at the same basic block
(e.g., the one closing a connection). If they do not, X-
ray inserts an artificial termination block that follows the
last block of each input. This allows the collection of in-
put paths to be viewed as a lattice, as shown in Figure 3
for an example with three unique paths.

X-ray discovers this lattice by first representing each
input path as a string (as it does for pairwise differen-
tial analysis). It then executes a greedy longest common
sub-sequence matching algorithm [31] in which it first
merges the two strings with the smallest edit distance
to form a common path representation, then merges the
closest remaining input string with the common repre-
sentation, etc. The common representation is a graph

8

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 315

Figure 3. Multi-input differential summarization

where each vertex is a branch at which input paths di-
verged or a merge point at which input paths converged.
Each edge is a sub-path consisting of the basic blocks
executed for all inputs that took a common sub-path be-
tween two vertexes.

Next, X-ray determines the cost of all divergences. In-
tuitively, the cost (or benefit) of taking a particular branch
should be the difference between the lowest-cost execu-
tion that can be achieved by the path taken subtracted
from the lowest-cost execution that can be achieved by
the path not taken. The weight of a graph edge is the sum
of the costs for each block along the edge averaged over
all requests that executed the blocks in that edge (e.g.,
this might be calculated by summing the average latency
for each block). X-ray calculates the shortest path on the
reverse graph from the termination node to every diver-
gence node for each possible branch. At each branch
where paths diverged, X-ray calculates the cost of tak-
ing a particular branch to be the difference between the
shortest path if that branch is taken and the shortest path
from any branch available at that node. For instance, in
Figure 3, the cost of conditional branch C2 is 3 (sub-
tracting the cost of the right branch from the left). For
C1, the cost is 2 because the shortest path taking the left
branch is 8 and the shortest path taking the right branch
is 6. The per-divergence cost is then merged with the per-
root-cause taints of the branch conditional.

X-ray offers two modes for displaying this data. The
first is a numerical summarization that integrates the per-
cause costs over all divergences in the graph and displays
all root causes in order of total cost. The second method
shows the lattice graph, with each divergence node dis-
playing the cost and reasons for the divergence, and the
width of each edge representing the number of inputs that
traversed the particular sub-path. An X-ray user can use

this graph to identify the most surprising or costly di-
vergences, then select two representative inputs that took
opposite branches at that point for a more detailed pair-
wise comparison. The simpler ordered list is appropriate
for casual users. The richer graphical output may be best
for power users (or possibly developers).

Multi-path analysis sometimes produced erroneous
results due to infeasible shortest paths. These paths arise
because X-ray uses taint tracking rather than symbolic
analysis. Consider two divergences points that test the
same condition. If the true outcome has the shortest
path after the first test and the false outcome has the
shortest path after the second test, the shortest path is in-
feasible because the same condition cannot evaluate to
two different values. X-ray uses a statistical analysis to
infer infeasible paths. Given a sufficient set of input path
samples that pass through two divergence vertexes, if the
partition generated by the branch each path took at the
first vertex is isomorphic to the partition generated by
the branch each took at the second vertex, X-ray infers
that the two divergences depend on the same condition
and does not allow a shortest path that takes a conflicting
path through the two vertexes.

5.4 Fast forward
For long-running applications, replaying days of exe-

cution to reach a period of problematic performance may
be infeasible. Periodic checkpointing of application state
is insufficient because most applications read configura-
tion files at the start of their execution. Thus, the execu-
tion after a checkpoint is missing data needed to trace
problems back to configuration root causes.

X-ray uses a fast forward heuristic to solve this prob-
lem. After configuration data is read, X-ray associates
dirty bits with each taint to monitor the amount of taint
changing during request handling. When less than n% of
taint values have been changed by the first n requests af-
ter reading a taint source, X-ray considers configuration
processing to have quiesced. It saves the current taint val-
ues and fast forwards execution to a point that is at least
n requests prior to the period of execution being inves-
tigated (or to the next opening of a configuration file).
It restores saved taints into the address space(s) of the
application and resumes instrumented execution.

Use of the fast forward heuristic is optional because it
may lead to incorrect results when configuration values
are modified as a result of processing requests unmoni-
tored by X-ray. However, we have not seen this behavior
in any application to date.

6 Evaluation
Our evaluation answers the following questions:
• How accurately does X-ray identify root causes?
• How fast can X-ray troubleshoot problems?
• How much overhead does X-ray add?

9

316 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Application Test Description of performance test cases
1 The number of requests that can be handled in one TCP connection is set too low. Reestablishing connections delays some requests [5].
2 Directory access permissions are based on the domain name of the client sending the request, leading to extra DNS lookups [4].

Apache 3 Logging the host names of clients sending requests to specific directories causes extra DNS requests for files in those directories [4].
4 Authentication for some directories causes high CPU usage peaks when files in those directories are accessed [3].

5 Apache can be configured to generate content-MD5 headers calculated using the message body. This header provides an end-to-end message
integrity with high confidence. However, for larger files, the calculation of the digests causes high CPU usage [27].

6 By default, Apache sends eTags in the header of HTTP responses that can be used by clients to avoid resending data in the future if file contents
have not changed. However, many mobile phone libraries do not correctly support this option [43].

1 Logging more information for a list of specific hosts causes excessive disk activity when one host is the computer running Postfix [38].

Postfix 2 Postfix can be configured to examine the body of the messages against a list of regular expressions known to be from spammers or viruses.
This setting can significantly increase the CPU usage for handling a received message if there are many expression patterns [40].

3 Postfix can be configured to reject requests from blacklisted domains. Based on the operators specified, Postfix performs extra DNS calls,
which significantly increases message handling latency [39].

1 PostgreSQL tries to identify the correct time zone of the system for displaying and interpreting time stamps if the time zone is not specified in
the configuration file. This increases the startup time of PostgreSQL by a factor of five.

PostgreSQL 2 PostgreSQL can be configured to synchronously commit the write-ahead logs to disk before sending the end of the transaction message to the
client. This setting can cause extra delays in processing transactions if the system is under a large load [48].

3 The frequency of taking checkpoints from the write-ahead log can be configured in the PostgreSQL configuration file. More frequent check-
points decrease crash recovery time but significantly increase disk activity for busy databases [47].

4 Setting the delay between activity rounds for the write-ahead log writer process causes excessive CPU usage [47].
5 A background process aggressively collects database statistics, causing inordinate CPU usage [47].

1 Equivalent to Apache bug 1.
lighttpd 2 Equivalent to Apache bug 4.

3 Equivalent to Apache bug 6.

Table 1. Description of the performance test cases used for evaluation

6.1 Experimental Setup
We used X-ray to diagnose performance problems

in four servers with diverse concurrency models: the
Apache Web server version 2.2.14, the Postfix mail
server version 2.7, the PostgreSQL database version
9.0.4, and the lighttpd Web server version 1.4.30. Apache
is multithreaded; new connections are received by a lis-
tener thread and processed by worker threads. In Postfix,
multiple utility processes handle each part of a request;
on average, a request is handled by 5 processes. In Post-
greSQL, each request is handled by one main process,
but work is offloaded in batch to utility processes such
as a write-ahead log writer. The lighttpd Web server is
event-driven; one thread multiplexes handling of multi-
ple concurrent requests using asynchronous I/O. We ran
all experiments on a Dell OptiPlex 980 with a 3.47 GHz
Intel Core i5 Dual Core processor and 4 GB of memory,
running a Linux 2.6.26 kernel modified to support deter-
ministic replay.

6.2 Root cause identification
We evaluated X-ray by reproducing 16 performance

issues (described in Table 1) culled from the cited perfor-
mance tuning and troubleshooting books, Web documen-
tation, forums, and blog posts. To recreate each issue, we
either modified configuration settings or sent a problem-
atic sequence of requests to the server while we recorded
server execution. We also used X-ray to troubleshoot an
unreported performance issue (described below) that was
hampering our evaluation.

For each test, Table 2 shows the scope and metric used
for X-ray analysis. The metric was either suggested by

the problem description or a bottleneck resource iden-
tified by tools such as top and iostat. The next col-
umn shows where true root cause(s) of the problem were
ranked by X-ray. X-ray considered on average 120 pos-
sible root causes for the Apache tests, 54 for Postfix, 54
for PostgreSQL, and 48 for lighttpd (these are the aver-
age number of tokens parsed from input and configura-
tion files). The last column shows how long X-ray offline
analysis took. The reported results do not use the fast-
forward heuristic—however, X-ray achieves the same re-
sults when fast-forward is enabled.

Our overall results were very positive. X-ray ranked
the true root cause(s) first in 16 out of 17 tests. In several
cases, multiple root causes contribute to the problem, and
X-ray ranked all of them before other causes. In two of
the above cases, the true root cause is tied with one or
two false positives. In the remaining test, X-ray ranked
one false positive higher than the true root causes. Fur-
ther, the analysis time is quite reasonable when compared
to the time and effort of manual analysis: X-ray took 2
minutes and 4 seconds on average to identify the root
cause, and no test required more than 9 minutes of anal-
ysis time. We next describe a few tests in more detail.
6.2.1 Apache

Apache test 1 shows the power of differential anal-
ysis. The threshold for the number of requests that can
reuse the same TCP connection is set too low, and re-
establishing connections causes a few requests to exhibit
higher latency. To investigate, we sent 100 various re-
quests to the Apache server using the ab benchmarking
tool. The requests used different HTTP methods (GET

10

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 317

Application Test Analysis scope Analysis metric Correct root cause(s) (rank) Analysis time
1 Differential Latency MaxKeepAliveRequests (1st) 0m 44s
2 Differential Latency Allow (t-1st), domain (t-1st) 0m 40s

Apache 3 Differential Latency On (1st), HostNameLookups (2nd) 0m 43s
4 Request CPU AuthUserFile (1st) 0m 43s
5 Differential CPU On (1st), ContentDigest (2nd) 0m 44s
6 Differential Network Input(eTag) (t-1st) 0m 42s
1 Request File system debug peer list (t-1st), domain (t-1st) 8m 10s

Postfix 2 Request CPU body checks (1st) 2m 38s
3 Request Latency reject rbl client (1st) 2m 18s
1 Time interval CPU timezone (1st) 6m 59s
2 Request Latency wal sync method (2nd), synchronous commit (3rd) 2m 04s

PostgreSQL 3 Time interval File system checkpoint timeout (1st) 3m 06s
4 Time interval CPU wal writer delay (1st) 2m 33s
5 Time interval CPU track counts (1st) 1m 51s
1 Differential Latency auth.backend.htpasswd.userfile (1st), 0m 34s

lighttpd 2 Request CPU Input(eTag) (t-1st), 0m 24s
3 Differential Network server.max-keep-alive-requests (1st), 0m 24s

This table shows the type of X-ray analysis performed, the ranking of all true root causes in the ordered list returned by X-ray and
X-rayʼs execution time. The notation, t-1st, shows that the cause was tied for first.

Table 2. X-ray results

and POST) and asked for files of different sizes.
We used X-ray to perform a differential summa-

rization of two similar requests (HTTP GETs of dif-
ferent small files), one of which had a small latency
and one of which had a high latency. X-ray identified
the MaxKeepAliveRequests configuration token as the
highest-ranked contributor out of 120 tokens. Based on
this information, an end user would increase the thresh-
old specified by that parameter; we verified that this in-
deed eliminates the observed latency spikes. In the next
section, we vary the requests compared for this test to ex-
amine how the accuracy of differential analysis depends
on the similarity of inputs.

In Apache test 6, the root cause of high network us-
age is the client’s failure to use the HTTP conditional
eTag header. A recent study [43] found that many smart-
phone HTTP libraries do not support this option, causing
redundant network traffic. X-ray identifies this problem
via differential analysis, showing that it can sometimes
identify bad client behavior via analysis of servers. We
verified that correct eTag support substantially reduces
network load.
6.2.2 Postfix

The first Postfix test reproduces a problem reported in
a user’s blog [38]—emails with attachments sent from
his account transferred very slowly, while everything
else, including mail received by IMAP services, had no
performance issues. Using iotop, the user observed that
one child process was generating a lot of disk activity.
He poured through the server logs and saw that the child
process was logging large amounts of data. Finally, he
scanned his configuration file and eventually realized that
the debug peer list, which specifies a list of hosts
that trigger logging, included his own IP address. Like
many configuration problems, the issue is obvious once
explained, yet even an experienced user still spent hours
identifying the problem. Further, this level of analysis is

beyond inexperienced users.
In contrast, X-ray quickly and accurately pinpoints

the root cause. We simply analyzed requests dur-
ing a period of high disk usage. X-ray identified the
debug peer list parameter and a token correspond-
ing to our network domain as the top root causes. Since
changing either parameter fixes the problem, the user
described above could have saved much time with this
important clue. Also, no manual analysis such as read-
ing log files was required, so even an inexperienced user
could benefit from these results.
6.2.3 PostgreSQL

The first PostgreSQL test is from our own experience.
Our evaluation started and stopped PostgreSQL many
times. We noticed that our scripts ran slowly due to appli-
cation start-up delay, so we used X-ray to improve per-
formance. Since top showed 100% CPU usage, we per-
formed an X-ray CPU analysis for the interval prior to
PostgreSQL receiving the first request.

Unexpectedly, X-ray identified the timezone config-
uration token as the top root cause. In the configuration
file, we had set the timezone option to unknown, caus-
ing PostgreSQL to expend a surprising amount of effort
to identify the correct time zone. Based on this clue, we
specified our correct time zone; we were pleased to see
PostgreSQL startup time decrease by over 80%. Admit-
tedly, this problem was esoteric (most users do not start
and stop PostgreSQL repeatedly), but we were happy that
X-ray helped solve an unexpected performance issue.

In PostgreSQL test 2, X-ray ranked the
shared buffers configuration token higher than
both true root causes. Manual analysis showed that this
token controls the number of database buffers and hence
is tested repeatedly by the loop that initializes those
buffers. This adds a control flow taint to all database
buffers that does not age rapidly due to the large number
of such buffers. Such taint could be eliminated by

11

318 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

specifically identifying initialization logic, but we have
yet to determine a sound method for doing so.
6.2.4 lighttpd

We chose to evaluate lighttpd to stress X-ray’s flow
analysis with an event based server in which one thread
handles many concurrent requests. Three of the bugs
that we examined for Apache have no clear analog in
lighttpd. For the remaining three bugs, we introduced
similar problems in lighttpd by modifying its configu-
ration file and/or sending erroneous input. X-ray ranked
the true root cause first in two tests; in the remaining test,
the true root cause was tied for first with two other pa-
rameters. From this, we conclude that the flow-based re-
quest identification works well with both multithreaded
(Apache) and event-based (lighttpd) programs.

6.3 Differential analysis
Experimental methods for analyzing differential per-

formance [14, 26, 46] often require that inputs be identi-
cal except for the variable being examined. Unlike these
prior methods, X-ray’s differential analysis analyzes ap-
plication control flow and determines the root cause for
each divergence between processing paths. Our hypoth-
esis is that this will enable X-ray to generate meaningful
results even for inputs that have substantial differences.

To validate this hypothesis, we repeated the first
Apache test. Instead of selecting similar requests, we se-
lected the pair of requests that were most different: a
small HTTP POST that failed and a very large HTTP
GET that succeeded. Somewhat surprisingly, X-ray still
reported MaxKeepAliveRequests as the top root cause.
The reason was a bit fortuitous: in our benchmark, the
MaxKeepAliveRequests option happened to increase
the latency of the small request, so the latency due to
the misconfiguration exhibited as a performance degra-
dation, while the difference in request input exhibited as
a performance improvement.

We verified this by reversing the order of the two
requests so that the large request was slowed by con-
nection re-establishment rather than the small request.
In this case, X-ray reported differences in the input re-
quest data as the largest reason why the processing of
the large request is slower. It incorrectly ranked the
DocumentRoot parameter second because the root is ap-
pended to the input file name before data is read from
disk. MaxKeepAliveRequests ranked third.

We conclude that differential analysis does not always
require that two requests be substantially similar in order
to identify root causes of performance anomalies. Differ-
ences in input will of course rise to the top of the ranked
list. However, after filtering these causes out, the true root
cause was still ranked very near the top in our experi-
ment, so a user would not have had to scan very far.

Finally, we applied multi-request differential anal-
ysis to this test by sending 100 requests of varying

Strategy False positives True cause
0 1 2 3+ unranked

Absolute 21 2 0 0 0
Normalized 20 0 3 0 0
Winner-take-all 15 3 1 2 2
Learning 20 2 1 0 0

For each strategy, this shows the number of false positives
ranked above each of the 23 true root causes from Table 2. The
winner-take-all strategy failed to identify 2 true root causes.

Table 3. Accuracy of attribution strategies

types (GET and POST), sizes, and success/failure out-
comes. When we compared all 100 requests and fil-
tered out input-related causes, the true root cause was
ranked second (behind the ServerRoot token). For an
end user, this mode is especially convenient because the
user need not identify specific requests to compare. For
power users and developers, the graphical version of the
multi-path output shows the specific requests for which
MaxKeepAliveRequests causes path divergences.

6.4 Sensitivity analysis
Section 5.3.1 described four strategies for attributing

performance to root causes. Table 3 summarizes the re-
sults of running all tests in Section 6.2 with each strategy.
There are 23 true root causes in the 17 tests. The second
column shows the number of these for which no false
positive is higher in the final X-ray rankings. The next
column shows the number for which 1 false positive is
ranked higher, etc. The final column shows true causes
that did not appear at all in X-ray’s rankings.

The winner-take-all strategy is substantially worse
than the other strategies because the true root cause ranks
second or third for many basic blocks, and so its impact
is underestimated. All other strategies are roughly equiv-
alent, with the absolute strategy being slightly more ac-
curate than the other two. We conclude that the X-ray
algorithm is not very sensitive to the particular attribu-
tion algorithm as long as that algorithm considers more
than just the top cause for each basic block.

As described in Section 4.1, X-ray uses ConfAid’s
taint aging heuristics: control flow taint is multiplied by
a weight of 0.5 when it is merged with data flow taint or
when a new tainted conditional branch is executed. We
performed a sensitivity analysis, shown in Table 4, that
examined the effect of changing this weight. Note that a
weight of 0 is equivalent to the winner-take-all strategy,
and a weight of 1 does not age taint at all. While the de-
fault weight of 0.5 produced slightly better results than
other weights, all values within the range 0.125–0.875
had roughly equivalent results in our experiments.

6.5 X-ray online overhead
We measured online overhead by comparing the

throughput and latency of applications when they are

12

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 319

Weight False positives True cause
0 1 2 3+ unranked

0 15 3 1 2 2
0.125 19 2 2 0 0
0.25 20 3 0 0 0
0.5 21 2 0 0 0
0.75 20 0 1 2 0
0.875 20 0 1 2 0
1 8 3 2 10 0

For each weight, this shows the number of false positives ranked
above each of the 23 true root causes from Table 2.

Table 4. Accuracy when using different weights

recorded by X-ray to results when the applications run
on default Linux without recording. For Apache and
lighttpd, we used ab to send 5000 requests for a 35 KB
static Web page with a concurrency of 50 requests at
a time over an isolated network. For Postfix, we used
smtp-source to send 1000 64 KB mail messages. For
PostgreSQL, we used pgbench to measure the number
of transactions completed in 60 seconds with a concur-
rency of 10 transactions at a time. Each transaction has
one SELECT, three UPDATEs, and one INSERT command.

Figure 4 shows X-ray adds an average of 2.3%
throughput overhead: 0.1% for Apache, 4.7% for Post-
fix, 3.5% for PostgreSQL, and 0.8% for lighttpd. These
values include the cost of logging data races previ-
ously detected by our offline data race detector. This
overhead is consistent with similar deterministic replay
approaches [18]. Latency overheads for Apache, Post-
greSQL, and lighttpd are equivalent to the respective
throughput overheads; Postfix has no meaningful la-
tency measure since its processing is asynchronous. The
recording log sizes were 2.8 MB for Apache, 1.6 MB for
lighttpd, 321 MB for PostgreSQL, and 15 MB for Post-
fix. Apache and lighttpd have smaller logs because they
use sendfile to avoid copying data.

6.6 Discussion
X-ray’s accuracy has exceeded our expectations. One

reason for this is that many performance issues, like the
Postfix example in Section 6.2.2, are obvious once ex-
plained. Without explanation, however, searching for the
root cause is a frustrating, “needle-in-a-haystack” pro-
cess. Performance summarization is essentially a brute-
force method for searching through that haystack. The
obvious-once-explained nature of many performance
problems has another nice property: X-ray’s accuracy is
not very sensitive to the exact heuristics it employs, so
many reasonable choices lead to good results.

X-ray’s most significant limitation is that it does not
track taint inside the OS so it cannot observe causal de-
pendencies among system calls. For instance, X-ray can-
not determine when one thread blocks on a kernel queue
waiting for other threads or kernel resources. In addition,

Apache Postfix PostgreSQL lighttpd
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Without X-ray
With X-ray

Each dataset shows server throughput with and without X-ray
recording, normalized to the number of requests per second
without X-ray. Higher values are better. Each result is the mean
of at least 10 trials; error bars are 95% confidence intervals.

Figure 4. X-ray online overhead

system call parameter values often affect the amount of
work performed by the kernel. X-ray currently addresses
this on an ad-hoc basis; e.g., it attributes amount of the
work performed by read and write system calls to the
size input parameter for each call. However, X-ray cur-
rently only supports a small number of system call pa-
rameters in this fashion. We hope to address these limita-
tions more thoroughly, either by instrumenting the ker-
nel or by creating more detailed performance models
that observe system calls, parameters, and selected ker-
nel events to infer such dependencies.

X-ray only considers configuration settings and pro-
gram inputs as possible root causes. If the true root cause
is a program bug or any other cause not considered by X-
ray, X-ray cannot diagnose the problem. X-ray will pro-
duce an ordered list of possible causes, all of which will
be incorrect. Thus, one potential improvement is to re-
quire a minimal level of confidence before X-ray adds a
root cause to the ordered list—this may enable X-ray to
better identify situations where the true root cause is not
in its domain of observation.

While X-ray adds only a small overhead on the pro-
duction system, its offline analysis runs 2–3 orders of
magnitude slower than the original execution. Thus,
while logging may be continuously enabled, we envision
that only portions of the log will be analyzed offline.

7 Conclusion
Diagnosing performance problems is challenging. X-

ray helps users and administrators by identifying the root
cause of observed performance problems. Our results
show that X-ray accurately identifies the root cause of
many real-world performance problems, while imposing
only 2.3% average overhead on a production system.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Dejan

Kostić, for comments that improved this paper. This research was sup-
ported by NSF award CNS-1017148. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing NSF, Michigan, Google, or the U.S. government.

13

320 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND

MUTHITACHAROEN, A. Performance debugging for distributed systems of
black boxes. In Proc. SOSP (October 2003), pp. 74–89.

[2] ALTEKAR, G., AND STOICA, I. ODR: Output-deterministic replay for
multicore debugging. In Proc. SOSP (October 2009), pp. 193–206.

[3] Apache HTTP server version 2.4 documentation: Authentication, autho-
rization, and access control. http://httpd.apache.org/docs/2.2/
howto/autho.html.

[4] Apache HTTP server version 2.4 documentation: Apache perfor-
mance tuning. http://httpd.apache.org/docs/current/misc/
perf-tuning.html.

[5] Apache performance tuning. http://perlcode.org/tutorials/
apache/tuning.html.

[6] ATTARIYAN, M., AND FLINN, J. Automating configuration troubleshoot-
ing with dynamic information flow analysis. In Proc. OSDI (October 2010).

[7] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Using
Magpie for request extraction and workload modelling. In Proc. OSDI (De-
cember 2004), pp. 259–272.

[8] BHATIA, S., KUMAR, A., FIUCZYNSKI, M. E., AND PETERSON, L.
Lightweight, high-resolution monitoring for troubleshooting production
systems. In Proc. OSDI (December 2008), pp. 103–116.

[9] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based fault toler-
ance. ACM TOCS 14, 1 (February 1996), 80–107.

[10] BROWN, A. B., AND PATTERSON, D. A. To err is human. In DSN Work-
shop on Evaluating and Architecting System Dependability (July 2001).

[11] BROWN, A. B., AND PATTERSON, D. A. Undo for operators: Building an
undoable e-mail store. In Proc. USENIX ATC (June 2003).

[12] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems programs.
In Proc. OSDI (December 2008), pp. 209–224.

[13] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dynamic
instrumentation of production systems. In Proc. USENIX ATC (June 2004),
pp. 15–28.

[14] CHEN, H., JIANG, G., ZHANG, H., AND YOSHIHIRA, K. Boosting the
performance of computing systems through adaptive configuration tuning.
In Proc. SAC (March 2009), pp. 1045–1049.

[15] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PATTERSON, D.,
FOX, A., AND BREWER, E. Path-based failure and evolution management.
In Proc. NSDI (March 2004).

[16] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER, E.
Pinpoint: Problem determination in large, dynamic Internet services. In
Proc. DSN (June 2002), pp. 595–604.

[17] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A platform for
in vivo multi-path analysis of software systems. In Proc. ASPLOS (March
2011).

[18] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling dynamic pro-
gram analysis from execution in virtual environments. In Proc. USENIX
ATC (June 2008), pp. 1–14.

[19] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND CHASE, J.
Correlating instrumentation data to system states: A building block for au-
tomated diagnosis and control. In Proc. OSDI (December 2004), pp. 231–
244.

[20] DIAO, Y., HELLERSTEIN, J. L., PAREKH, S., AND BIGUS, J. P. Managing
Web Server Performance with AutoTune Agent. IBM Systems Journal 42,
1 (January 2003), 136–149.

[21] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND CHEN,
P. M. ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proc. OSDI (December 2002), pp. 211–224.

[22] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STOICA,
I. X-trace: A pervasive network tracing framework. In Proc. NSDI (April
2007), pp. 271–284.

[23] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Replay de-
bugging for distributed applications. In Proc. USENIX ATC (June 2006).

[24] GRAY, J. Why do computers stop and what can be done about it? In Proc.
Symp. Rel. Dist. Sofrware and DB Syst. (1986).

[25] JUNQUEIRA, F., SONG, Y. J., AND REED, B. BFT for the skeptics. In
Proc. SOSP: WIP Session (October 2009).

[26] KASICK, M. P., TAN, J., GANDHI, R., AND NARASIMHAN, P. Black-box
problem diagnosis in parallel file systems. In Proc. FAST (February 2010).

[27] LAURIE, B., AND LAURIE, P. Apache: The Definitive Guide, 3rd Edition.
O’Reilly Media, Inc., December 2002.

[28] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY,
G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proc.
PLDI (June 2005), pp. 190–200.

[29] http://msdn.microsoft.com/en-us/library/bb968803(v=VS.85).aspx.
[30] MURPHY, B., AND GENT, T. Measuring system and software reliability

using an automated data collection process. Quality and Reliability Engi-
neering International 11, 5 (1995).

[31] MYERS, E. W. An O(ND) difference algorithm and its variations. Alo-
gorithmica 1, 1–4 (1986), 251–266.

[32] NAGARAJA, K., OLIVERIA, F., BIANCHINI, R., MARTIN, R. P., AND
NGUYEN, T. Understanding and dealing with operator mistakes in Internet
services. In Proc. OSDI (December 2004), pp. 61–76.

[33] NEWSOME, J., AND SONG, D. Dynamic taint analysis: Automatic detec-
tion, analysis, and signature generation of exploit attacks on commodity
software. In Proc. NDSS (February 2005).

[34] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A. Why do
Internet services fail, and what can be done about it? In Proc. USITS (March
2003).

[35] http://oprofile.sourceforge.net/.
[36] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE, K. H.,

AND LU, S. PRES: Probabilistic replay with execution sketching on multi-
processors. In Proc. SOSP (October 2009), pp. 177–191.

[37] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND COWNIE, J.
PinPlay: A framework for determinisrtic replay and reproducible analysis
of parallel programs. In Proc. CGO (March 2010).

[38] http://www.karoltomala.com/blog/?p=576.
[39] Postfix stress-dependent configuration. http://www.postfix.org/

STRESS README.html.
[40] Postfix tuning guide. http://www.postfix.org/TUNING README.

html.
[41] POZNIANSKY, E., AND SCHUSTER, A. Efficient on-the-fly data race detec-

tion in multithreaded C++ programs. In Proc. PPoPP (June 2003), pp. 179–
190.

[42] PRASAD, V., COHEN, W., EIGLER, F. C., HUNT, M., KENISTON, J., AND
CHEN, B. Locating system problems using dynamic instrumentation. In
Proceedings of the Linux Symposium (July 2005), pp. 49–64.

[43] QIAN, F., QUAH, K. S., HUANG, J., ERMAN, J., GERBER, A., MAO,
Z. M., SEN, S., AND SPATSCHECK, O. Web caching on smartphones:
Ideal vs. reality. In Proc. MobiSys (June 2012).

[44] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: A fully integrated prac-
tical record/replay system. ACM TOCS 17, 2 (May 1999), 133–152.

[45] RUAN, Y., AND PAI, V. Making the ”box” transparent: System call perfor-
mance as a first-class result. In Proc. USENIX ATC (June 2004), pp. 1–14.

[46] SAMBASIVAN, R. R., ZHENG, A. X., ROSA, M. D., KREVAT, E., WHIT-
MAN, S., STROUCKEN, M., WANG, W., XU, L., AND GANGER, G. R.
Diagnosing performance changes by comparing request flows. In Proc.
NSDI (March 2011), pp. 43–56.

[47] SMITH, G. PostgreSQL 9.0 High Performance. October 2010.
[48] SMITH, G., TREAT, R., AND BROWNE, C. Tuning your post-

gresql server. http://wiki.postgresql.org/wiki/Tuning Your
PostgreSQL Server.

[49] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND ZHOU, Y. Flash-
back: A light-weight extension for rollback and deterministic replay for
software debugging. In Proc. USENIX ATC (June 2004), pp. 29–44.

[50] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. AutoBash: Improving con-
figuration management with operating system causality analysis. In Proc.
SOSP (October 2007), pp. 237–250.

[51] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND NARAYANASAMY,
S. Detecting and surviving data races using complementary schedules. In
Proc. SOSP (October 2011).

[52] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J., CHEN,
P. M., FLINN, J., AND NARAYANASAMY, S. DoublePlay: Parallelizing
sequential logging and replay. In Proc. ASPLOS (March 2011).

[53] http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.
[54] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND WANG, Y.-M.

Automatic misconfiguration troubleshooting with PeerPressure. In Proc.
OSDI (December 2004), pp. 245–257.

[55] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y., WANG, H. J.,
YUAN, C., AND ZHANG, Z. STRIDER: A black-box, state-based approach
to change and configuration management and support. In Proc. LISA (Oc-
tober 2003), pp. 159–172.

[56] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configuration debug-
ging as search: Finding the needle in the haystack. In Proc. OSDI (Decem-
ber 2004), pp. 77–90.

[57] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM, G., AND
WEISSMAN, B. ReTrace: Collecting execution trace with virtual machine
deterministic replay. In Proc. MoBS (June 2007).

[58] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUNDARAM, L., AND
PASUPATHY, S. An emprirical study on configuration errors in commerica l
and open source systems. In Proc. SOSP (October 2011).

[59] YU, M., GREENBERG, A., MALTZ, D., REXFORD, J., YUAN, L., KAN-
DULA, S., AND KIM, C. Profiling network performance for multi-tier data
center applications. In Proc. NSDI (March 2011), pp. 57–70.

[60] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J., SANTOS, J. R., AND
TURNER, Y. JustRunIt: Experiment-based management of virtualized data
centers. In Proc. USENIX ATC (June 2009).

[61] ZHENG, W., BIANCHINI, R., AND NGUYEN, T. D. Automatic configura-
tion of Internet services. In Proc. EuroSys (March 2007), pp. 219–229.

14

