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Abstract—Modern applications especially cloud-based or cloud-
centric applications always have many components running in the
large distributed environment with complex interactions. They are
vulnerable to suffer from performance or availability problems
due to the highly dynamic runtime environment such as resource
hogs, configuration changes and software bugs. In order to make
efficient software maintenance and provide some hints to software
bugs, we build a system named CauseInfer, a low cost and black-
box cause inference system without instrumenting the application
source code. CauseInfer can automatically construct a two layered
hierarchical causality graph and infer the causes of performance
problems along the causal paths in the graph with a series of
statistical methods. According to the experimental evaluation in
the controlled environment, we find out CauseInfer can achieve
an average 80% precision and 85 % recall in a list of top two
causes to identify the root causes, higher than several state-of-the-
art methods and a good scalability to scale up in the distributed
systems.

I. INTRODUCTION

Modern applications especially cloud-based and cloud-
centric applications always consist of many components run-
ning in the large distributed environment with complex inter-
actions. They are vulnerable to suffer from performance or
availability problems due to the highly dynamic factors such
as resource hogs, configuration changes and software bugs.
Manual performance diagnosis is daunting, time-consuming
and frustrating in large distributed environment due to the
huge cardinality of potential cause set. Moreover with the
rapid development of cloud computing, more applications are
deployed in the cloud to provide services through network. This
exacerbates the difficulty of performance diagnosis because of
the inherent elastic resource sharing and dynamic management
mechanism in the cloud computing. Therefore performance
diagnosis becomes a big challenge in these systems.

Numerous previous work has been done in the performance
diagnosis area but they mainly put their emphasis on locat-
ing anomaly coarsely (e.g. at service level [1], [2] or VM
level [3], [4]) instead of identifying the real reasons causing
performance problems. However we argue that performance
diagnosis should not only cover coarsely anomaly locating
but also cause inference in order to make efficient software
maintenance or provide some hints to software bugs. If the
performance problems were not correctly diagnosed, wrong
actions may be taken to maintain the system leading to resource
waste and revenue loss.

The large cardinality of suspicious cause set hinders us to
uncover the actual culprits precisely and completely. Therefore
it’s impractical to propose a silver bullet to resolve all the
performance problems. In this paper we limit our diagnosis on
a subset of performance problems. From previous studies [3]–
[5], we find out performance problems are partly caused by the
runtime environment changes (e.g. resource hogs [3], [4] and
configuration changes [5], [6]). And after reviewing the bugs
of several open source systems, we observe that large number
of bugs can cause performance problems. Here we only take
into account the bugs relevant to the abnormal consumption
of physical resources (e.g. CPU) or logical resources (e.g.
lock). The reasons of choosing these bugs are: these metrics
can be readily collected at runtime without instrumenting the
source code; large number of these bugs exist in the software
(see Figure 1). Our objective is to attribute the root causes of
performance problems to the performance metrics mentioned
above. Although we will not directly identify the software bugs,
we provide some hints to software bug. For instance, if the root
cause is attributed to the violation of lock number it probably
indicates a concurrent bug occurs in the system.

To achieve the proposed objective, we build an automatic,
black-box and online performance diagnosis system named
CauseInfer. The basic idea of CauseInfer is to establish a
causality graph by capturing the cause-effect [7] relationships
and then infer the root causes along the causal paths in the
causality graph . To fulfill this task, CauseInfer automatically
constructs a two layered hierarchical causality graph: a coarse-
grained graph with the purpose of locating the causes at service
level and a fine-grained graph with the purpose of finding the
real culprits of performance problems.

Once an SLO (Service Level Objective) violation in the
front end servers occurs, the inference procedure is triggered.
We first locate the performance anomaly at specific service(s)
(e.g. tomcat) by detecting the violations of SLO metric then
find out the root cause(s) by detecting the violations of other
performance metrics in a local node To further strengthen
the robustness of the diagnosis we introduce a new change
point detection method based on Bayesian theory which is
better than conventional detection methods based on structure
changes like CUSUM [4]. Via the experimental evaluation in
two benchmarks: Olio and TPC-W, we find out CauseInfer
can pinpoint the root causes in an average 80% precision and
a 85% recall and readily scale up in a large distributed system.
Finally, CauseInfer works in a completely distributed manner
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Fig. 1. The number of bugs relevant to logical and physical resources. The
data is obtained through searching the relevant words like “cpu”,“memory”
in the bug repository and then manually check whether the bug is indeed
correlated with the searched words.

and largely reduces the data exchange between hosts during
performance diagnosis.

The contributions of this paper are four-fold:

• We introduce a new BCP change point detection method
which is more robust than CUSUM to find the change
points in the long-term data series.

• We propose a novel light-weighted service dependency
discovery method through analyzing the traffic delay
between two services combining the new properties of
modern operating system. It is very efficient to locate the
performance anomaly at service level.

• We provide a new causality graph building method based
on the original PC-algorithm. Using this causality graph,
we can precisely pinpoint the root causes of performance
problems at performance metric level.

• We design and implement CauseInfer to infer the root
causes of performance problems . CauseInfer can hit the
real culprits of performance problems in a high precision
and recall with low cost.

The rest of this paper is organized as follows. Section II
presents the overview of our system. Section III depicts the
details of the system design. In Section IV, we will evaluate
our system from several aspects in the controlled environment.
And in Section V, we will compare our work with previous
related work. Section VI concludes this paper.

II. SYSTEM OVERVIEW

In this section, we depict the umbrella of the CauseInfer
system and show the work flow of this system via a simple
case. The core modules of CauseInfer are a causality graph
builder and an inference engine. The causality graph builder
automatically constructs a two layered hierarchical causality
graph. The inference engine is in charge of finding the culprits
of performance problems with the causality graph. In the target
distributed system, CauseInfer is deployed in each node and
works in a distributed manner. Therefore in every node, there
exists a causality graph. The inference is triggered by an SLO
violation in the front end then iteratively goes to the back end
services along the paths in the service dependency graph. If
an SLO violation is detected in one node, the fine-grained

Fig. 2. The basic structure and the work flow of CauseInfer. The bottom is
the physical topology of a three-tiered transaction processing system; the top
is the abstracted service and metric causality graph. In the causality graph,the
big dashed circle denotes service, the red node denotes the root cause, the
black node denotes performance metric, the green node denotes SLO metric,
the arc denotes the causality or dependency relationship and the arrow denotes
the direction of anomaly propagation .

inference is conducted according to the metric dependency
graph. Figure 2 demonstrates the basic structure and the work
flow of CauseInfer in a typical three-tiered system. In Figure
2, we assume metric E in service II node is the root cause.
When an SLO violation of service I is detected, the cause
inference is triggered. After a cause inference in service I node,
we locate the performance anomaly at metric A indicating the
SLO violation of service II. Therefore the cause inference in
service II node is triggered and executed according to the metric
causality graph stored in that node. Finally, we find the root
cause, metric E. The whole inference path is: SLO → A → D
→ E. It should be noticed that the inference result may contain
multiple metrics due to the statistical error. Hence a root cause
ranking procedure is necessary to decrease the false positive
and select the most probable root causes.

III. SYSTEM DESIGN

In this section, we describe the details of the design and
methodology of CauseInfer. As demonstrated in Figure 3,
CauseInfer system mainly contains two procedures: an offline
causality graph building procedure and an online cause infer-
ence procedure. The online procedure consists of two modules:
data collection and cause inference. The data collection module
collects the runtime performance metrics from multiple data
sources. The cause inference module is in charge of traversing
and ranking the root causes according to the causality graph
generated by the causality graph builder. The offline proce-
dure contains two modules:change point detection module and
causality graph building module. The change point detection
module converts every metric to a binary data series using a
Bayesian change point detection. The causality graph building
module uses the binarized metrics to construct a two layered
hierarchical causality graph.
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Fig. 3. The main modules of the CauseInfer system.

A. Data collection

The data collection module collects high dimensional run-
time information from multiple data sources across different
software stacks covering application 2, process and operating
system. In the causality graph building phase, we need the SLO
metric of one application. However not all the applications re-
port SLO metric explicitly (e.g. Mysql,Hadoop) and it is variant
in different applications, hence we propose a new unified SLO
metric, tcp request latency (abbreviated as TCP LATENCY).
TCP LATENCY is obtained by measuring the latency between
the last inbound packet (i.e. request) and the first outbound
packet (i.e. response) passing through a specific port. Although
this metric is simple, it works well in our system. According
to our observations, most of applications use TCP protocol as
their fundamental transmission protocol like Mysql, Httpd,etc.
Hence TCP LATENCY can be adopted to represent the SLO
metric of most applications.

B. Change point detection

According to Pearl’s cause-effect [7] notion, if two variables
have causal relationship, the changes of one variable will cause
the changes of the other. So before causality graph building,
we first identify the changes in the time series. A conventional
CUSUM [4] is always adopted to detect the change points.
But due to the high sensibility to noise, CUSUM is hard to
detect the long-term changes leading to a high false positive
in an offline analysis. Therefore we introduce a more effective
method based on Bayes theory, named Bayesian Change Point
detection (abbreviated as BCP) [8].

The basic idea of BCP is to find an underlying sequence
of parameters which partitions the time series into contiguous
blocks with equal parameter values and locate the position of
change point which is the beginning of each block. Given a
sequence of observations: X = (x1, x2, · · · , xn), the aim is to
find a partition: ρ = (P1, P2, P3, · · · , Pn−1), where Pi = 1
indicates a change occurs at position i + 1, else Pi = 0. For
the detailed theoretical analysis of BCP, we recommend the
reader to refer to the paper [8]. Compared with the prevalent
CUSUM method, BCP doesn’t need to set the maximal number
of change points and the group size in the raw time series.
Owing to the sound Bayesian statistical inference, BCP is
more effective than CUSUM to identify a change point. To

2In this paper, we make no differences between application and service and
use both terms interchangeably.

Fig. 4. The change point detection result using BCP and CUSUM.

compare the effectiveness of CUSUM and BCP, we use these
two methods to detect the change points in the CPU TOTAL
metric obtained from a CPU fault injection experiment depicted
in Section IV. There are 16 change points in the CPU TOTAL
metric confirmed by manually checking. From the detection
results demonstrated in Figure 4, we can see there are so many
false positives using CUSUM (group size=2) but very few using
BCP (600 iterations). Therefore we conclude BCP is better than
CUSUM to analyze a long sequence of time series. However
BCP will not work in an online mode due to the requirement
of long historical data, so in the online cause inference we still
adopt CUSUM as our change point detection method.

C. Causality graph building

In this section, we describe the details of a two layered
hierarchical causality graph (i.e. service dependency graph and
performance metric causality graph) building procedure. Before
that we give a short introduction of causality. Different from
the concepts of association or correlation, causality is used to
represent the cause-effect relationship. The formal definition
has been described in Pearl’s work [7], here we just give
a qualitative description. Given two variables X and Y, we
say X is a cause of Y if the changes of X can affect the
distribution of Y but not vice versa, denoted by X → Y . Or
in other words, X is a parent of Y, denoted by X ∈ pa(Y ).
In the collective variables, if all the parents of Y have been
fixed, the distribution of Y will be fixed and not affected
by other variables. And in this causal relationship, it’s not
allowed two variables cause each other. So finally, all the causal
relationships can be encoded by a DAG (Directed Acyclic
Graph)
Service Dependency Graph

Our method has the similar assumption and methodology to
Orion [1] that is the traffic delay between dependent services
often exhibits “typical” spikes that reflect the underlying de-
lay for using or providing these services. But the primary
differences are: a. Our method focuses on a limited set of
applications which use TCP as their underlying transmission
protocol although it can be extended with extra effort. b. Our
method relies on the new properties of the modern operating
system such as network statistical tools and kprobe [9] used

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1889



4

to probe the system call. c. We leverage traffic delay to
determine the dependency directions rather than determine the
dependency structure in the dependency graph which reduces
the risk of wrong dependent relationships and computational
complexity (from O(n2) to O(n)). According to our obser-
vations, TCP protocol takes a dominated position amongst all
the protocols facilitated by common applications like Mysql,
Tomcat,etc and almost all mainstream Linux operating systems
have integrated with network statistic tools such as netstat,
tcpdump and kprobe. Therefore our method can be used in most
of distributed systems running on Linux operating system.

Different from Orion, we use a two-tuple (ip, service name)
instead of three-tuple (ip, port, proto) to denote a service
considering that a service may utilize multiple ports. For
example, in a three tiered system, a web server may access
the application server through a random port. So if we adopt
port as an attribute of a unique service, the dependency graph
becomes dramatically huge even though the requests are all
issued by the same service. In a distributed system, ip denotes a
unique host and service name denotes a unique service running
in the host. We follow the definition of service dependency in
Orion system that is: if service A requires service B to satisfy
certain requests from its clients, A → B. For instance, a web
service needs to fetch the content from a database kept by a
database service , so we say the web service depends on the
database service. And in this paper, we are also only concerned
about client-server applications which are dominant in modern
applications.

The first step of our method is to use the connection
information to construct a skeleton of the service dependency
graph. Executing an off-the-shelf tool, netstat, in a host, we
get a list of all the connection information including protocol,
source, destination and connection state. We extract the source
and destination information which connected by TCP protocol.
Each of the connection is organized in the format source ip :
port → destination ip : port, we call it a channel. The
channel is very close to the service dependency pair except one
point: it doesn’t contain a service name but a port. The follow-
ing trivial work is to map a service port to a service name.
To get the service name with respect to a local port is easy by
querying the port information. But to a remote port, CauseInfer
in the local host need to send a query to the CauseInfer in
the remote host. After the mapping procedure, the skeleton
of a service dependency graph in a local host is established.
But one problem stays unresolved. The transmission between
client and server is bidirectional which means we may get an
opposite service dependency when observing in different hosts.
For instance, when observing in host 192.168.1.117, we get the
service connection (192.168.1.117, httpd) → (192.168.1.115,
tomcat); but in host 192.168.1.115, we get (192.168.1.115,
tomcat) → (192.168.1.117, httpd). To address this issue, we
use and improve the traffic delay assumption mentioned above.

In a client-server structure, a common observation is the
packets sent by the server change with the ones sent by
the client. Therefore we use the lag correlation of the send
traffic between two services to distinguish the dependency

Fig. 5. The lag correlation of send traffic between Httpd and Memcached.

direction. To get the send traffic of a specific service, we
count the number of packets transmitted by a specific process
through probing the function netdev.transmit triggered when
the network device wants to transmit a buffer. Assuming X is
the send traffic of service A, Y is the send traffic of service
B , the lag correlation between X and Y is defined as

ρXY (k) =

∑N−1
t=0 (Yt − Ȳ )(Xt−k − X̄)√∑N−1

t=0 (Xt − X̄)2
∑N−1

t=0 (Yt − Ȳ )2
k ∈ Z (1)

Where k is the lag value, it can be positive and negative. In our
system we set the absolute value of k at 30 which can capture
almost all the traffic delay. Our objective is to find a best k
which maximize ρXY (k) namely

k∗ = {argmax(|ρXY (k)|), k ∈ [−30, 30]} (2)

According to the sign of k∗, the dependency direction is deter-
mined. If k∗ > 0, A → B ; else B → A. Figure 5 demonstrates
the lag correlation between httpd and memcached applications.
The result shows that k∗ = 4 implies httpd → memcached
confirmed in reality.
Metric Causality Graph
Our method is established on PC-algorithm [10]. The basic
idea of PC-algorithm is to build a DAG in the collective
variables based on the causal Markov condition [10], [11] and
D-separation [10], [11]. To keep self contained, we first give
some definitions and preliminaries. Given a graph G = (V,E),
V is a set of variables and E is a set of edges. If G is directed,
for each (i, j) ∈ V , (j, i) /∈ V , denoted by i → j. A DAG
is a directed graph without any circle. PC-algorithm makes
two assumptions: causal Markov condition and faithfulness
[11]. As a fundamental property distinguishing causality from
correlation, causal Markov condition is used to produce a set
of independence relationships and construct the skeleton of a
causality graph. It could be defined as:

Definition 1. Given a DAG G = (V,E), for every v ∈ V , v is
independent of the non-descendant of v given its direct pa(v)

In this paper we use a conditional cross entropy based metric
G2 [11] to test the independence of X and Y given Z, where
X , Y and Z are disjoint set of variables in V . G2 is defined
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as

G2 = 2mCE(X,Y |Z) (3)

Where m is the sample size, CE(X,Y |Z) is the conditional
cross entropy of X and Y given Z. If G2 exceeds a preset sig-
nificance level, say 0.05, the independence assumption will be
accepted, so X is independent of Y given Z. The PC-algorithm
begins with a completely connected undirected graph, then
facilitates G2 to capture all the conditional independences in
the set of variables. After that a skeleton of DAG is constructed.
The following work is to determine the causal directions us-
ing D-separation. The faithfulness assumption guarantees that
the independence relationships among the variables in V are
exactly those represented by G by means of the D-separation
criterion [10]. Due to the limited space of this paper, we don’t
give the details of PC-algorithm. Please refer to the paper [10]
for the details. Based on PC-algorithm, we set up two methods:
a conservative one and an aggressive one. By the word of
aggressive, we mean it doesn’t use any prior knowledge to build
the causality graph. while by the the word conservative, we
mean the graph is initialized with some prior knowledge before
construction. The prior knowledge includes which variables
have no parents and which variables have no descendants in the
graph. In this paper, we set TCP LATENCY metric of the local
service has no descendants because TCP LATENCY can’t
cause changes of other metrics; a subset of possible root cause
metrics including workload, configuration, TCP LATENCY of
the dependent services have no parents because they can not be
changed by other metrics. Both of the algorithms are executed
locally in the distributed systems.

The aggressive algorithm begins with a metric preparation.
For a service without any dependent service such as database
service, the causality graph is built using only the local
performance metrics mentioned in data collection section. But
for the one with some dependent services such as web service,
the causality graph is built using not only the local performance
metrics but also the TCP LATENCY metrics of its dependent
services. The length of training data is set a default value 200
which will be explained in Section IV . Then we conduct
PC-algorithm to construct the causality graph and a DAG is
obtained. However this DAG may contain multiple isolated
subgraphs, counterintuitive causal relations and bidirectional
links due to the lacking of evidence, statistical errors or non-
causal relations at all. For example, M5 is isolated, the causal
relation M4 → M2 is counterintuitive and the causal relation
between M1 and M4 is bidirectional in Figure 6 (a). So we
further select a maximum subgraph from the DAG using the
following conditions: a) TCP LATENCY metric as the final
effect metric has no descendants; b) The final effect metric is
reachable from every path in the graph. c) There are no parents
for the preset root cause metrics; d) For a bidirectional link,
we select one direction randomly.

The procedure of conservative algorithm is the same as the
aggressive one except the initialization. We initialize some
directions in the graph before executing PC-algorithm. The
links between TCP LATENCY and other metrics are directed
and the links between the preset root cause metrics and other

Fig. 6. An example of causality graph constructed by the aggressive algorithm
(a) and the conservative algorithm (b). The red circle denotes a preset root
cause and the subgraph with red links is the selected final causality graph.

metrics are directed. Compared with the aggressive algorithm,
the conservative one can capture more causal relations and
reduce the counterintuitive causal relations. For example, the
causal relation M1 → SLO, lost by the aggressive algorithm
is captured by the conservative algorithm and simultaneously
the counterintuitive causal relation M4 → M2 is eliminated in
Figure 8(b).

D. Cause inference
When an SLO violation in the front end occurs, the cause

inference is triggered. We first infer the root causes of local
service performance problems using the metric causality graph
constructed by the graph building module. If the root causes
are located on the SLO metrics of its dependent services, the
inference is propagated to the remote dependent services. The
process is conducted iteratively until no SLO violations or no
service dependencies.

To detect the violations of SLO and other performance
metrics online, we adopt two sided CUSUM with a sliding
window. Assuming X is a metric, we first initialize the sliding
window using a normal data series with a fixed length, say 60
in this paper. Then if a new data Xt arrives, we use CUSUM
to check the data series [Xt−60, Xt] whether Xt is abnormal.
If Xt exceeds the lower control level (LCL) or upper control
level (UCL), Xt is abnormal and the sliding window will not
move otherwise the new data is filled in the sliding window
and the sliding window moves forward. A big advantage of this
method is that it can adjust the anomaly threshold adaptively.

To infer the root causes in a specific node, we use a DFS
(Depth First Search) method to traverse the metric causality
graph. When a node in the graph is traversed, we use the
CUSUM method to determine whether it is abnormal. If it is
abnormal, we continue to traverse the descendants of this node
otherwise we traverse its neighbor node. When there are no
descendants for an abnormal node or no violations in all of its
descendants we output this node as a root cause. Take Figure
6 (b) for example. We start the inference from node SLO if
SLO is abnormal. Then we detect node M1, if it is normal, its
neighbor node M2 is traversed. If M2 is abnormal, we output
it as a root cause. The following node is M3, if it is abnormal,
we continue to detect M2. Because M2 is abnormal, we output
M2. Finally we find only one root cause M2 although M2 and
M3 are both abnormal. However due to the multiple causal

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1891



6

paths, it’s possible to get a set of potential root causes in some
circumstances. Therefore it is necessary to rank the root causes
and select the most probable one. In this paper, a simple z-
score based method is employed to measure the violation of a
performance metric. The measurement is defined as:

violation(X) =
X(t)−Xt−60,t−1

σt−60,t−1 + ε
, ε = 0.001 (4)

Where Xt−60,t−1 and σt−60,t−1 are the mean and standard
deviation of the sliding window respectively. In case of the
situations where the metric may not change in the sliding
window, we add a small number ε to σt−60,t−1. According
to this score, we get a list of ordered root causes.

IV. EXPERIMENTAL EVALUATION

We have implemented a prototype named CauseInfer and de-
ployed it in the controlled environment. To collect the process
and operating system performance metrics, we use some off-
the-shelf tools such as Hyperic [12]; to collect other metrics,
we develop several tools from the scratch. The sample interval
in all the data collection tools is 1 minute. In the following,
we will give the details of our experimental methodology and
evaluation results in two benchmarks: TPC-W and Olio.

A. Evaluation Methodology
Due to the lack of real operating platforms, CauseInfer

is only evaluated in a controlled distributed system. But we
believe it works well in a real system without exceptions.
The controlled system contains five physical server machines
hosting the benchmarks and four client machines generating
the workload. Each physical server machine has a 8-core Xeon
2.1 GHZ CPU and 16GB memory and is virtualized into five
VM instances including domain 0 by KVM. Each VM has two
vcpu and 2GB memory and runs a 64-bit CentOS 6.2.

TPC-W is a transaction processing benchmark which is
used to emulate online book shopping. In our controlled
environment, we employ Apache Httpd, Apache Tomcat and
Mysql as the web, servlet application and database service
respectively and these services run in dedicated VM instances.
We adopt Siege [13] to generate the HTTP requests randomly.
To mimic the real performance problems, we inject several
faults in the benchmark. For the performance problems caused
by runtime environment changes, we inject the following faults:
1) CpuHog: a CPU-bound application co-locates with web
server competing for CPU resource; 2) MemLeak: a memory-
bound application continually consumes memory of the appli-
cation server; 3) DiskHog: we use a disk-bound program to
generate a mass of disk reads and writes on the web server;
4) NetworkJam: we use “tc”, a traffic control tool in Linux,
to mimic the packet loss on database server; 5) Overload: we
increase the the number of request until the TCP LATENCY
of web service becomes anomaly; 6) ConfChanges: we change
the configuration item such as the “KeelAliveTimeout” in
Httpd configuration file and then restart Httpd service. For the
performance problems caused by software bug, we inject the
following faults: 1) CpuBug: we write a php file which largely

Fig. 7. Patrt of causality graph for Httpd service in TPC-W

consumes CPU resource and then access this file through
HTTP protocol; 2) MemBug: a code snippet is injected in the
“TPCW home interaction” class. 4KB memory will be leaked
once this class is called.

Olio is a web 2.0 toolkit to help evaluate the suitability,
functionality and performance of web technologies. We employ
the same fault injection methodology to mimic the performance
problems caused by environment changes as TPC-W. But for
software bugs, we inject the following faults: 1) MemBug: we
comment the “do slabs free” function call in the source code
of memcached and recompile the code; 2) LockBug: a daemon
program locks “PERSON” table in olio database periodically.

Each of the faults mentioned above will be repeated for more
than 20 times and last 5 minutes. And multiple faults may be
simultaneously injected in multiple nodes. To get the ground
truth, we will log the fault injection time and types. We leverage
two commonly used metrics: precision and recall [3], [4] and
the rank assigned to the real root cause proposed in the paper
[5] to evaluate the effectiveness of our system. By the rank
metric, we mean the position of the real cause in the ranking
list.

B. Effectiveness Evaluation

Our system strongly relies on the causality graph, so
we first present the causality graph using conservative al-
gorithm. Figure 7 demonstrates part of the causality graph
built for Httpd service in TPC-W benchmark. From the fig-
ure, we can see all the relations are reasonable except one:
NETTxKBT → NETRxKBT . Intuitively as a server, the
send traffic (NET TxKBT) changes with the receive traffic
(NET RxKBT). But we get an opposite result here. The most
possible reason is that our system runs in a close loop which
means the workload generator issues a new request only when
it gets response from the Httpd server. This is a “back pressure”
which is stated in [3]. And it is a reason to bias our result. But
in a real open system, this phenomenon is scarce.

Figure 8 and Figure 9 demonstrate the diagnosis precision
and recall of our conservative algorithm setting rank = 1
which means the real cause is the top one of the ordered
list in TPC-W and Olio benchmarks, with only one fault
injected every time. From Figure 8, we observe that most of
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Fig. 8. The diagnosis precision using “conservative” when rank = 1

Fig. 9. The diagnosis recall using “conservative” when rank = 1

the precisions fall in the range 80%-90% except three cases:
CpuHog, CpuBug and LockBug. Through a manual inspections
of the whole work flow of CauseInfer, we find the anomaly
detection procedure with CUSUM has a high false positive.
The reason is that the SLO metric of the benchmark is sensitive
to these faults, they can cause the SLO metric fluctuates
frequently. While for other faults like DiskHog, they are not
easy to cause SLO violations. From Figure 9, we observe
the recall falls between 70% and 93% and shares a similar
characteristic with the precision. Due to the similar structures
of TPC-W and Olio, we observe very similar diagnosis results
on these two benchmarks. Therefore in the following, we only
show the diagnosis results in the TPC-W benchmark.

C. Comparison

We conduct several comparisons with previous studies. 1)
TAN: TAN (Tree Augment Bayesian Network) is adopted to
diagnose performance problems in paper [14]. For compari-
son, we substitute PC-algorithm with TAN to construct the
dependency graph in a local node; 2) NetMedic [5]: although
the original approach is designed to build the component
dependency graph, it can also be used to build the metric
dependency graph. We compare it with our system at both
of component level and metric level diagnosis; 3) PAL [4]:
it is a propagation-aware performance diagnosis method. For
comparison, we implement it to diagnose the injected faults;
4) FChain [3]: it shares the same idea with PAL even though it

Fig. 10. The comparison using rank Fig. 11. Single VS Multiple

leverages a new anomaly detection method. To reduce the bias
caused by the implementation deviation of these methods, we
guarantee the injected faults can make significant violations of
SLO metrics.

For metric level diagnosis, Figure 10 demonstrates the re-
sult of CauseInfer, TAN and NetMedic conducted in TPC-
W benchmark with only one fault injected every time. From
this figure, we observe that the conservative algorithm always,
about 80%, puts the root cause in the top two causes showing
a high diagnosis precision. But using the aggresive algorithm,
we only get a 50% precision when rank = 2 due to the causal
relation loss. Actually, we have only nine metrics connected
in the final causality graph which means the algorithm can
attribute root causes to at most eight metrics. That’s the reason
why the curve is truncated when the percentage of cumulative
injected faults exceeds 75%. Compared with the other two
methods, our system achieves better diagnosis result when the
rank is set. In the graph constructed by TAN, we observe that
each node only has one parent if not counting the SLO node.
Therefore many causal relations are lost. And what makes it
worse is that every node in the graph connects with SLO node
leading to many fault positives. In the graph constructed by
NetMedic, we observe that there are many redundant links and
circles which makes the inference unstable and inaccurate as
NetMedic constructs causality graph based on correlation rather
than Markov conditional independence. We investigate what’s
the worst case and observe that TAN and NetMedic achieve
very low precision to diagnose overload faults, about 15%.
Because these faults can cause violations of many other metrics
simultaneously. TAN and NetMedic put the the most violated
metrics in the first position but not workload while CauseInfer
can always put the workload violation on the top.

Figure 12 and Figure 13 show diagnosis results of Cau-
seInfer, TAN, NetMedic with multiple simultaneous injected
faults ranging from 2 to 6. Due to the multiple faults, we use
precision and recall instead of the rank metric to evaluate them.
From these two figures wen can see, there is some degradation
in the effectiveness compared with single fault injection for
CauseInfer, but it is still better than other methods. We observe
that although TAN method has a lower precision, it has a high
recall due to the full connections from SLO metric to other
metrics in the dependency graph.

For node level diagnosis, Figure 11 demonstrates the diag-
nosis precision of CauseInfer (rank = 1), PAL, NetMedic
and FChain under fault injection in single component and
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Fig. 12. Precision of diagnosis Fig. 13. Recall of diagnosis

TABLE I
THE OVERHEAD OF OUR SYSTEM

System Module CPU cost

Data collection 10% CPU utilization

Change point detection (one metric) 0.003 second

Service dependency graph (one service pair) 0.05second

Metric causality graph (100 metrics,200
samples)

10 second

Cause inference (one node,one fault,100
metrics)

5 second

multiple components. The result shows that our system has
an extraordinary precision compared with other systems. The
underlying reason is that we leverage the application specific
information to construct the service dependency graph rather
than inferring the dependency relations by analyzing the history
correlation or sequences of change points of system metrics.

But compared with PAL and FChain, CauseInfer brings a
high overhead to the host. Table I shows the overhead of
our system. Data collection module takes about 10% CPU
utilization as we collect over one hundred metrics from multiple
data sources. The metric causality graph building module and
cause inference module are highly computation-intensive. But
overall, it is still a light-weighted tool. In the future work, we
will select fewer but effective metrics and improve the cause
inference algorithm to reduce the cost.

D. Discussion
scalability:CauseInfer works in a distributed manner. Most

of the computation is done locally and the data exchange
between hosts is very small only including the SLO information
and the send traffic of a specific service. Therefore our system
is easy to scale up no matter adding new services or machines
in a large distributed system. To test the scalability of our
system, we deploy more services such as Memcached and
Tomcat. From Figure 14 we can see our system has only three
percent degradation in precision from 4 services to 20 services
showing a good scalability.

Sensibility: We have conducted several experiments to eval-
uate the sensibility to the data length in the metric causality
graph building procedure. Figure 15 demonstrates the precision
changes with the data length increasing. When the data length
is small, a large number of circles and isolated nodes exist
in the graph constructed by the original PC-algorithm due to
the lack of evidence. So many faults are generated using the

Fig. 14. Precision vs service number Fig. 15. Precision vs data length

causality graph obtained by our method. But when the data
length reaches 200, the causality graph becomes stable and the
precision doesn’t change significantly. That’s the reason why
we choose 200 in this paper.

V. RELATED WORK

Performance diagnosis in the large distributed system with
many components is a daunting and frustrating work. To
pinpoint the causes of performance problems, a large body of
researchers have devoted themselves to this area. We present
the relative work from the following aspects.
Log-based method: These methods use the log information
reported by the system to investigate the causes of performance
problems [15]–[17]. A general idea is to train the invariant
patterns from the history data and then use these patterns to
detect anomalies. Some of these work also use graph model
[15], [17] to express the patterns, but they are event causal
graph instead of performance metric causal graph. Actually our
system is also able to analyze the log data sets if the events are
transformed into a 0-1 binary data series. Although they can
discovery more informational causes, they are hard to work
online.
Trace-based method: Many famous tools fall into this class
such as Magpie [18], X-Trace [19], and Pinpoint [20]. These
tools can precisely record the execution path information and
locate the abnormal code through instrumenting the source
code. It’s very helpful to debug the distributed applications.
But the overhead brought by these tools are significant which
hinders them to be widely used in modern applications. And
deploying these tools is also a tough job requiring the admin-
istrators to understand the code well. Compared to them, Cau-
seInfer can be easily deployed and used without instrumenting
the source code. Although it can’t detect the real software bugs
directly, it indeed provides some hints to them.
Signature-based method: These methods employ supervised
learning algorithms such as Bayesian classifier or K-NN to
classify performance anomalies under several typical scenar-
ios. CloudPD [21] uses a layered online learning approach
including K-NN, HMM and k-Means to deal with frequent
reconfiguration and high rate of faults; Fingerprint [22] can
automatically classify and identify the performance crises using
a simple statistical method in large data centers; Cherkasova et
al. [23] proposes a new performance signature method based
on the resource utilization of requests; Fa [24] uses a new
technique named “anomaly based clustering” to make failure
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signatures robust to the noisy monitoring data in production
systems, and to generate reliable confidence estimates. Most
of these methods require labeled data sets or problem tickets
and show weakness at discovering new anomalies. While
CauseInfer is able to capture new anomalies readily due to
its unsupervised nature.
Dependency graph-based method: Recently dependency
graph based performance diagnosis becomes a surge. Many
state of the art systems are proposed like WISE [6], Con-
stellation [2], Orion [1], NetMedic [5], FChain [3] and PAL
[4]. The emphasis of FChain [3], PAL [4] and NetMedic [5]
is put on the performance diagnosis at component or service
level. They are not effective enough to infer the root causes
at performance metric level which is stated in Section IV. The
aim of Constellation [2] and Orion [1] is to locate the anomaly
at service level instead of metric level. WISE [6] adopts a
similar causal graph to ours. But it is used to predict the
effect of possible configuration and deployment changes rather
than infer the root causes. TAN [14] is adopted to infer the
performance problems at metric level which is the first close
to ours, but it is also not effective enough due to the lack of
causality.

VI. CONCLUSION

Towards automatic performance diagnosis in large dis-
tributed systems, this paper designs and implements the Cau-
seInfer system. CauseInfer can not only pinpoint the root
causes caused by runtime environment changes but also provide
some hints to software bugs. To fulfill the diagnosis procedure,
CauseInfer automatically builds a two layered hierarchical
causality graph and infers the root causes along the paths
in the graph. The service dependency graph is built using a
novel light-weighted traffic delay method combining the new
properties of modern operating systems; the metric causality
graph is built on Pearl’s cause-effect notion. To strengthen the
effectiveness of our system, we introduce a Bayesian change
point detection method which is much better than prevalent
CUSUM method. The experimental evaluation in TPC-W and
Olio benchmarks shows that CauseInfer can achieve a high
precision and recall for performance diagnosis and scale up
readily in large distributed systems.
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