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ABSTRACT
Mobile app ecosystems have experienced tremendous growth
in the last six years. This has triggered research on dynamic
analysis of performance, security, and correctness properties
of the mobile apps in the ecosystem. Exploration of app
execution using automated UI actions has emerged as an im-
portant tool for this research. However, existing research
has largely developed analysis-specific UI automation tech-
niques, wherein the logic for exploring app execution is in-
tertwined with the logic for analyzing app properties. PUMA
is a programmable framework that separates these two con-
cerns. It contains a generic UI automation capability (often
called a Monkey) that exposes high-level events for which
users can define handlers. These handlers can flexibly direct
the Monkey’s exploration, and also specify app instrumenta-
tion for collecting dynamic state information or for trigger-
ing changes in the environment during app execution. Tar-
geted towards operators of app marketplaces, PUMA incor-
porates mechanisms for scaling dynamic analysis to thou-
sands of apps. We demonstrate the capabilities of PUMA by
analyzing seven distinct performance, security, and correct-
ness properties for 3600 apps downloaded from the Google
Play store.

1. INTRODUCTION
Today’s smartphone app stores host large collections of

apps. Most of the apps are created by unknown developers
who have varying expertise and who may not always operate
in the users’ best interests. Such concerns have motivated re-
searchers and app store operators to analyze various proper-
ties of the apps and to propose and evaluate new techniques
to address the concerns. For such analyses to be useful, the
analysis technique must be robust and scale well for large
collections of apps.

Static analysis of app binaries, as used in prior work to
identify privacy [21] and security [10, 12] problems, or app
clones [9] etc., can scale to a large number of apps. How-
ever, static analysis can fail to capture runtime contexts, such
as data dynamically downloaded from the cloud, objects cre-
ated during runtime, configuration variables, and so on. More-
over, app binaries may be obfuscated to thwart static analy-
sis, either intentionally or unintentionally (such as stripping

symbol information to reduce the size of the app binary).
Therefore, recent work has focused on dynamic analyses

that execute apps and examine their runtime properties (Sec-
tion 2). These analyses has been used for analyzing per-
formance [26, 27, 15], bugs [22, 25, 19], privacy and secu-
rity [11, 24], compliance [20] and correctness [18], of apps,
some at a scale of thousands of apps. One popular way to
scale dynamic analysis to a large number of apps is to use
a software automation tool called a “monkey” that can au-
tomatically launch and interact with an app (by tapping on
buttons, typing text inputs, etc.) in order to navigate to var-
ious execution states (or, pages) of the app. The monkey
is augmented with code tailored to the target analysis; this
code is systematically executed while the monkey visits var-
ious pages. For example, in DECAF [20], the analysis code
algorithmically examines ads in the current page to check if
their placement violates ad network policies.

Dynamic analysis of apps is a daunting task (Section 2).
At a high level, it consists of exploration logic that guides
the monkey to explore various app states and analysis logic
that analyzes the targeted runtime properties of the current
app state. The exploration logic needs to be optimized for
coverage—it should explore a significant portion of the use-
ful app states, and for speed—it should analyze a large col-
lection of apps within a reasonable time. To achieve these
goals, existing systems have developed a monkey from scratch
and have tuned its exploration logic by leveraging properties
of the analysis. For example, AMC [18] and DECAF [20]
required analyzing one of each type of app page, and hence
their monkey is tuned to explore only unique page types. On
the other hand, SmartAds [23] crawled data from all pages,
so its monkey is tuned to explore all unique pages. Simi-
larly, the monkeys of VanarSena [25] and ConVirt [19] in-
ject faults at specific execution points, while that of AMC
and DECAF only read specific UI elements from app pages.
Some systems even instrument app binaries to optimize the
monkey [25] or to access app runtime state [23]. In sum-
mary, exploration logic and analysis logic are often inter-
twined and hence a system designed for one analysis cannot
be readily used for another. The end effect is that many of
the advances developed to handle large scale studies are only
utilizable in the context of the specific analysis and cannot
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currently be generalized to other analyses.
Contributions. In this paper we propose PUMA (Section 3),
a dynamic analysis framework that can be instantiated for
a large number of diverse dynamic analysis tasks that, in
prior research, used systems built from scratch. PUMA en-
ables analysis of a wide variety of app properties, allows its
users to flexibly specify which app states to explore and how,
provides programmatic access to the app’s runtime state for
analysis, and supports dynamic runtime environment modi-
fication. It encapsulates the common components of exist-
ing dynamic analysis systems and exposes a number of con-
figurable hooks that can be programmed with a high level
event-driven scripting language, called PUMAscript. This
language cleanly separates analysis logic from exploration
logic, allowing its users to (a) succinctly specify navigation
hints for scalable app exploration and (b) separately specify
the logic for analyzing the app properties.

This design has two distinct advantages. First, it can sim-
plify the analysis of different app properties, since users do
not need to develop the monkey, which is often the most
challenging part of dynamic analysis. A related benefit is
that the monkey can evolve independently of the analysis
logic, so that monkey scaling and coverage improvements
can be made available to all users. Second, PUMA can mul-
tiplex dynamic analyses — it can concurrently run similar
analyses, resulting in better scaling of the dynamic analysis.

To validate the design of PUMA, we present the results
of seven distinct analyses (many of which are presented in
prior work) executed on 3,600 apps from Google Play (Sec-
tion 4). The PUMAscripts for these analyses are each less
than 100 lines of code; by contrast, DECAF [20] required
over 4,000 lines of which over 70% was dedicated to app
exploration. Our analyses are valuable in their own right,
since they present fascinating insights into the app ecosys-
tem: there appear to be a relatively small number (about
40) of common UI design patterns among Android apps; en-
abling content search for apps in the app store can increase
the relevance of results and yield up to 50 additional results
per query on average; over half of the apps violate accessi-
bility guidelines; network usage requirements for apps vary
by six orders of magnitude; and a quarter of all apps fail
basic stress tests.

PUMA can be used in various settings. An app store can
use PUMA—the store’s app certification team can use it to
verify that a newly submitted app does not violate any pri-
vacy and security policies, the advertising team can check if
the app does not commit any ad fraud, the app store search
engine can crawl app data for indexing, etc. Researchers in-
terested in analyzing the app ecosystem can download PUMA
and the apps of interest, customize PUMA for their target
analysis, and conduct the analysis locally. A third-party can
offer PUMA as a service where users can submit their analy-
ses written in PUMAscript for analyzing the app ecosystems.

2. BACKGROUND AND MOTIVATION

In this section, we describe the unique requirements of
large-scale studies of mobile apps and motivate the need for
a programmable UI-based framework for supporting these
studies. We also discuss the challenges associated with sat-
isfying these requirements. In Section 3, we describe how
PUMA addresses these challenges and requirements.

2.1 Dynamic Analysis of Mobile Apps
Dynamic analysis of software is performed by executing

the software, subjecting it to different inputs, and record-
ing (and subsequently analyzing) its internal state and out-
puts. Mobile apps have a unique structure that enables a
novel form of dynamic analysis. By design, most mobile
app actions are triggered by user interactions, such as clicks,
swipes etc., through the user interface (UI). Mobile apps are
also structured to enable such interactions: when the app
is launched, a “home page” is shown that includes one or
more UI elements (buttons, text boxes, other user interface
elements). User interactions with these UI elements lead to
other pages, which in turn may contain other UI elements.
A user interaction may also result in local computation (e.g.,
updating game state), network communication (e.g., down-
loading ads or content), access to local sensors (e.g., GPS),
and access to local storage (e.g., saving app state to storage).
In the abstract, execution of a mobile app can be modeled
as a transition graph where nodes represent various pages
and edges represent transitions between pages. The goal of
dynamic analysis is to navigate to all pages and to analyze
apps’ internal states and outputs at each page.
UI-Automation Frameworks. This commonality in the struc-
ture of mobile apps can be exploited to automatically ana-
lyze their dynamic properties. Recent research has done this
using a UI automation framework, sometimes called a mon-
key, that systematically explores the app execution space. A
monkey is a piece of software that runs on a mobile device
or on an emulator, and extracts the user-interface structure
of the current page (e.g., the home page). This UI structure,
analogous to the DOM structure of web pages, contains in-
formation about UI elements (buttons and other widgets) on
the current page. Using this information, the monkey can, in
an automated fashion, click a UI element, causing the app to
transition to a new page. If the monkey has not visited this
(or a similar) page, it can interact with the page by clicking
its UI elements. Otherwise, it can click the “back” button
to return to the previous page, and click another UI element
to reach a different page.1 In the abstract, each page cor-
responds to a UI-state and clicking a clickable UI element
results in a state transition; using these, a monkey can effec-
tively explore the UI-state transition graph.

2.2 Related Work on Dynamic Analysis of Mo-
bile Apps

As discussed above, our work is an instance of a class of
dynamic analysis frameworks. Such frameworks are widely
1Some apps do not include back buttons; this is discussed later.
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System Exploration target Page transition inputs Properties checked Actions Taken Instrumentation

AMC [18] Distinct types of pages UI events Accessibility None No
DECAF [20] Distinct types of pages

containing ads
UI events Ad layouts None No

SmartAds [23] All pages UI events Page contents None Yes
A3E [8] Distinct types of pages UI events None None Yes
AppsPlayGround [24] Distinct types of pages UI events, Text inputs Information flow None Yes
VanarSena [25] Distinct types of pages UI events, Text inputs App crashes Inject faults Yes
ContextualFuzzing [19]All pages UI events Crashes, performance Change contexts No
DynoDroid [22] Code basic blocks UI events, System events App crashes System inputs No

Table 1: Recent work that has used a monkey tool for dynamic analysis

used in software engineering for unit testing and random
(fuzz) testing. The field of software testing is rather large,
so we do not attempt to cover it; the interested reader is re-
ferred to [6].

Monkeys have been recently used to analyze several dy-
namic properties of mobile apps (Table 1). AMC [18] eval-
uates the conformance of vehicular apps to accessibility re-
quirements; for example, apps need to be designed with large
buttons and text, to minimize driving distractions. DECAF [20],
detects violations of ad placement and content policies in
over 50,000 apps. SmartAds [23] crawls contents of from an
app’s pages to enable contextual advertising for mobile apps.
A3E [8] executes and visits app pages to uncover potential
bugs. AppsPlayground [24] examines information flow for
potential privacy leaks in apps. VanarSena [25], Contextual-
Fuzzing [19], and DynoDroid [22] try to uncover app crashes
and performance problems by exposing them to various ex-
ternal exceptional conditions, such as bad network condi-
tions.

At a high-level, these systems share a common feature:
they use a monkey to automate dynamic app execution and
use custom code to analyze a specific runtime property as the
monkey visits various app states. At a lower level, however,
they differ in at least the following five dimensions.
Exploration target: This denotes what pages in an app are to
be explored by the monkey. Fewer pages mean the monkey
can perform the analysis faster, but that the analysis may
be less comprehensive. AMC, A3E, AppsPlayground, Va-
narSena aim to visit only pages of unique types. Their anal-
ysis goals do not require visiting two pages that are of same
type but contain different contents (e.g., two pages in a News
app that are instantiated from the same page class but dis-
plays different news articles), and hence they omit exploring
such pages for greater speed. On the other hand, SmartAds
requires visiting all pages with unique content. DECAF can
be configured to visit only the pages that are of unique types
and that are likely to contain ads.
Transition inputs: This denotes the inputs that the monkey
provides to the app to cause transitions between pages. Most
monkeys generate UI events, such as clicks and swipes, to
move from one page to another. Some other systems, such
as AppsPlayground and VanarSena, can provide text inputs
to achieve a better coverage. Dynodroid can generate system

inputs (e.g., the “SMS received” event).
Properties checked: This defines what runtime properties
the analysis code checks. Different systems check different
runtime properties depending on what their analysis logic
requires. For example, DECAF checks various geometric
properties of ads in the current page in order to identify ad
fraud.
Actions taken at each page: This denotes what action the
monkey takes at each page (other than transition inputs).
While some systems do not take any actions, VanarSena,
ContextualFuzzing, and DynoDroid creates various contex-
tual faults (e.g., slow networks, bad user inputs) to check if
the app crashes on those faults.
Binary instrumentation: This denotes whether the monkey
runs an unmodified app or an instrumented app. VanarSena
instruments app before execution in order to identify a small
set of pages to explore. SmartAds instruments apps to re-
trieve application states.

Due to these differences, each work listed in Table 1 has
developed its own automation components from scratch and
tuned the tool to explore a specific property of the researchers’
interest. The resulting tools have an intertwining of the app
exploration logic and the logic required for analyzing the
property of interest. This has meant that many of the ad-
vances developed to handle large scale studies are only uti-
lizable in the context of the specific analyses and cannot be
readily generalized to other analyses.
PUMA. As mentioned in Section 1, our goal is to build a
generic framework called PUMA that enables scalable and
programmable UI automation, and that can be customized
for various types of dynamic analysis (including the ones in
Table 1). PUMA separates the analysis logic from the auto-
mated navigation of the UI-state transition graph, allowing
its users to (a) succinctly specify navigation hints for scal-
able app exploration and (b) separately specify the logic for
analyzing the app properties. This has two distinct advan-
tages. It can simplify the analysis of different app proper-
ties, since users do not need to also develop UI automation
components, and the UI automation framework can evolve
independently of the analysis logic. As we discuss later, the
design of scalable and robust state exploration can be tricky,
and PUMA users can benefit from improvements to the un-
derlying monkey, since their analysis code is decoupled from
the monkey itself. Moreover, PUMA can concurrently run
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similar analyses, resulting in better scaling of the dynamic
analysis. We discuss these advantages below.

2.3 Framework Requirements
Table 1 and the discussion above motivates the follow-

ing requirements for a programmable UI-automation frame-
work:

• Support for a wide variety of properties: The goal of us-
ing a UI-automation tool is to help users analyze app prop-
erties. But it is hard (if not impossible) for the framework to
predefine a set of target properties that are going to be use-
ful for all types of analyses. Instead, the framework should
provide a set of necessary abstractions that can enable users
to specify properties of interest at a high level.

• Flexibility in state exploration: The framework should
allow users to customize the UI-state exploration. At a high-
level, UI-state exploration decides which UI element to click
next, and whether a (similar) state has been visited before.
Permitting programmability of these decisions will allow anal-
yses to customize the monkey behavior in flexible ways that
can be optimized for the analysis at hand.

• Programmable access to program state: Many of the
analyses in Table 1 require access to arbitrary app state, not
just UI properties, such as the size of buttons or the layout
of ads. Examples of app state include dynamic invocations
of permissions, network or CPU usage at any given point, or
even app-specific internal state.

• Support for triggered actions: Some of the analyses in
Table 1 examine app robustness to changes in environmen-
tal conditions (e.g., drastic changes to network bandwidth)
or exceptional inputs. PUMA must support injecting these
runtime behaviors based on user-specified conditions (e.g.,
change network availability just before any call to the net-
work API).

These requirements raise significant research questions and
challenges. For example, how can PUMA provide users with
flexible and easy-to-use abstractions to specify properties
that are unknown beforehand? Recall these properties can
range from basic UI attributes to those that aim to diagnose
various performance bottlenecks. Also, can it provide flexi-
ble control of the state exploration, given that the state space
may be huge or even infinite? We now describe how PUMA
provides meets these challenges.

3. PROGRAMMABLE UI-AUTOMATION
In this section, we describe PUMA, a programmable frame-

work for dynamic analysis of mobile apps that satisfies the
requirements listed in the previous section. We begin with
an overview that describes how a user interacts with PUMA
and the workflow within PUMA. We then discuss how users
can specify analysis code using a PUMAscript, and then dis-
cuss the detailed design of PUMA and its internal algorithms.

Figure 1: Overview of PUMA

We conclude the section by describing our implementation
of PUMA for Android.

3.1 PUMA Overview and Workflow
Figure 1 describes the overall workflow for PUMA. A

user provides two pieces of information as input to PUMA.
The first is a set of app binaries that the user wants to an-
alyze. The second is the user-specified code, written in a
language called PUMAscript2. The script contains all infor-
mation needed for the dynamic analysis.

In the first step of PUMA’s workflow, the interpreter com-
ponent interprets the PUMAscript specification and recog-
nizes two parts in the script: monkey-specific directives and
app-specific directives. The former provides necessary in-
puts or hints on how apps will be executed by the monkey
tool, which is then translated as input to our programmable
monkey component. The latter dictates which parts of app
code are relevant for analysis, and specifies what actions are
to be taken when those pieces of code are executed. These
app-specific directives are fed as input to an app instrumenter
component.

The app instrumenter component statically analyzes the
app to determine parts of app code relevant for analysis and
instruments the app in a manner described below. The output
of this component is the instrumented version of input app
that adheres to the app-specific directives in PUMAscript.

Then, the programmable monkey executes the instrumented
version of each app, using the monkey-specific directives
specified in the PUMAscript. PUMA is designed to execute
the instrumented app either on a phone emulator, or on a
mobile device. As a side effect of executing the app, PUMA
may produce logs which contain outputs specified in the
app-specific directives, as well outputs generated by the pro-
grammable monkey. Users can analyze these logs using
analysis-specific code; such analysis code is not part of PUMA.
In the remainder of this section, we describe these compo-
nents of PUMA.

3.2 The PUMAScript Language
Our first design choice for PUMA was to either design a

new domain-specific language for PUMAscript or implement
it as an extension of some existing language. A new lan-
2In the rest of paper, we will use PUMAscript to denote both the
language used to write analysis code and the specification program
itself; the usage will be clear from the context.
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guage is more general and can be compiled to run on multi-
ple mobile platforms, but it may also incur a steeper learn-
ing curve. Instead, we chose the latter approach and im-
plemented PUMAscript as a Java extension. This choice has
its advantage of familiarity for programmers but also lim-
its PUMA’s applicability to some mobile platforms. How-
ever, we emphasize that the abstractions in our PUMAscript
language are general enough and we should be able to port
PUMA to other mobile platforms relatively easily, a task we
have left to future work.

The next design challenge for PUMA was to identify ab-
stractions that provide sufficient expressivity and enable a
variety of analysis tasks, while still decoupling the mechan-
ics of app exploration from analysis code. Our survey of
related work in the area (Table 1) has influenced the abstrac-
tions discussed below.
Terminology. Before discussing the abstractions, we first
introduce some terminology. The visual elements in a given
page of the mobile app consist of one or more UI element. A
UI element encapsulates a UI widget, and has an associated
geometry as well as content. UI elements may have addi-
tional attributes, such as whether they are hidden or visible,
clickable or not, etc.

The layout of a given page is defined by a UI hierarchy.
Analogous to a DOM tree for a web page, a UI hierarchy
describes parent-child relationships between widgets. One
can programmatically traverse the UI hierarchy to determine
all the UI elements on a given page, together with their at-
tributes and textual content (image or video content associ-
ated with a UI element is usually not available as part of the
hierarchy).

The UI state of a given page is completely defined by its
UI hierarchy. In some cases, it might be desirable to define
a more general notion of the state of an app page, which
includes the internal program state of an app together with
the UI hierarchy. To distinguish it from UI state, we use the
term total state of a given app.

Given this discussion, a monkey can be said to perform a
state traversal: when it performs a UI action on a UI element
(e.g., clicks a button), it initiates a state transition which may,
in general, cause a completely different app page (and hence
UI state) to be loaded. When this loading completes, the app
is said to have reached a new state.
PUMAscript Design. PUMAscript is an event-based program-
ming language. It allows programmers to specify handlers
for events. In general, an event is an abstraction for a specific
point in the execution either of the monkey or of a specific
app. A handler for an event is an arbitrary piece of code
that may perform various actions: it can keep and update
internal state variables, modify the environment (by alter-
ing system settings), and, in some cases, access UI state or
total state. This paradigm is an instance of aspect-oriented
programming, where the analysis concerns are cleanly sepa-
rated from app traversal and execution.

PUMAscript defines two kinds of events: monkey-specific

events and app-specific events.
Monkey-specific Events. A monkey-specific event encap-
sulates a specific point in the execution of a monkey. A mon-
key is a conceptually simple tool3, and Alg. (1) describes the
pseudo-code for a generic monkey, as generalized from the
uses of the monkey described in prior work (Table 1). The
highlighted names in the pseudo-code are PUMA APIs that
will be explained later. The monkey starts at an initial state
(corresponding to its home page) for an app, and visits other
states by deciding which UI action to perform (by selecting
a clickable UI element in line 8), and performing the click
(line 12). This UI action will, in general, result in a new state
(line 13), and the monkey needs to decide whether this state
has been visited before (line 15). Once a state has been fully
explored, it is no longer considered in the exploration (lines
19-20).

Algorithm 1 Generic monkey tool. PUMA APIs for config-
urable steps are highlighted.

1: while not all apps have been explored do
2: pick a new app
3: S ← empty stack
4: push initial page to S
5: while S is not empty do
6: pop an unfinished page si from S
7: go to page si
8: pick next clickable UI element from si // Next-Click
9: if user input is needed (e.g., login/password) then

10: provide user input by emulating keyboard clicks // Text Input
11: effect environmental changes // Modifying Environment
12: perform the click
13: wait for next page sj to load
14: analyze page sj // In-line Analysis
15: flag← sj is equivalent to an explored page // State-Equivalence
16: if not flag then
17: add sj to S
18: update finished clicks for si
19: if all clicks in si are explored then
20: remove si from S
21: flag←monkey has used too many resources // Terminating App
22: if flag or S is empty then
23: terminate this app

In this algorithm, most of the steps are mechanistic, but
six steps involve policy decisions. The first is the decision
of whether a state has been visited before (Line 15): prior
work in Table 1 has observed that it is possible to reduce app
exploration time with analysis-specific definitions of state-
equivalence. The second is the decision of which UI action
to perform next (Line 8): prior work in Table 1 has proposed
using out of band information to direct exploration more effi-
ciently, rather than randomly selecting UI actions. The third
is a specification of user-input (Line 10): some apps require
some forms of text input (e.g., a Facebook or Google login).
The fourth is a decision (Line 11) of whether to modify the
environment as the app page loads: for example, one prior
work [25] modifies network state to reduce benefit, with the
3However, as discussed later, the implementation of a monkey can
be significantly complex.
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aim of analyzing the robustness of apps to sudden resource
availability changes. The fifth is analysis (Line 14): some
prior work has performed in-line analysis (e.g., ad fraud de-
tection [20]). Finally, the sixth is the decision of whether to
terminate an app (Line 21): prior work in Table 1 has used
fixed timeouts, but other policies are possible (e.g., after a
fixed number of states have been explored). PUMAscript sep-
arates policy from mechanism by modeling these six steps
as events, described below. When these events occur, user-
defined handlers are executed.
(1) State-Equivalence. This abstraction provides a customiz-
able way of specifying whether states are classified as equiv-
alent or not. The inputs to the handler for a state-equivalence
event include: the newly visited state sj , and the set of pre-
viously visited states S. The handler should return true if
this new state is equivalent to some previously visited state
in S, and false otherwise.

This capability permits an arbitrary definition of state equiv-
alence. At one extreme, two states si and sj are equivalent
only if their total states are identical. A handler can code
this by traversing the UI hierarchies of both states, and com-
paring UI elements in the hierarchy pairwise; it can also, in
addition, compare program internal state pairwise.

However, several pieces of work have pointed out that this
strict notion of equivalence may not be necessary in all cases.
For example, to detect ad violations, it suffices to treat two
states as equivalent if their UI hierarchies are “similar” in the
sense that they have the same kinds of UI elements. Handlers
can take one of two approaches to define such fuzzier notions
of equivalence.

They can implement app-specific notions of similarity. For
example, if an analysis were only interested in UI properties
of specific types of buttons (like [18]), it might be sufficient
to declare two states to be equivalent if one had at least one
instance of each type of UI element present in the other.

A more generic notion of state equivalence can be ob-
tained by defining features derived from states, then defin-
ing similarity based on distance metrics defined on the fea-
ture space. In DECAF [20], we defined a generic feature
vector encoding the structure of the UI hierarchy, then used
the cosine-similarity metric4 with a user-specified similarity
threshold, to determine state equivalence. This state equiva-
lence function is built into PUMA, so a PUMAscript handler
can simply invoke this function with the appropriate thresh-
old.

A handler may also define a different set of features, or
different similarity metrics. The exploration of which fea-
tures might be appropriate, and how similarity thresholds af-
fect state traversal is beyond the scope of this work.
(2) Next-Click. This event permits handlers to customize
how to specify which item to click next. The input to a
handler is the current UI state, together with the set of UI
elements that have already been clicked before. A handler

4http://en.wikipedia.org/wiki/Cosine_similarity

should return a pointer to the next UI element to click.
Handlers can implement a wide variety of policies with

this flexibility. A simple policy may decide to explore UI
elements sequentially, which may have good coverage, but
increase exploration time. Alternatively, a handler may want
to maximize the types of items clicked; prioritizing UI ele-
ments of different types over instances of a type of UI ele-
ment that has been clicked before. These two policies are
built into PUMA for user convenience.

Handlers can also use out-of-band information to imple-
ment directed exploration. Analytics from real users can
provide insight into how real users prioritize UI actions: for
example, an expert user may rarely click a Help button. In-
sights like these, or even actual traces from users, can be
used to direct exploration to visit states that are more likely
to be visited by real users. Another input to directed explo-
ration is static analysis: the static analysis may reveal that
button A can lead to a particular event handler that sends a
HTTP request, which is of interest to the specific analysis
task at hand. The handler can then prioritize the click of
button A in every visited state.
(3) Text Input. The handler of this event provides the text
input required for exploration to proceed. Often, apps re-
quire login-based authentication to some cloud-service be-
fore permitting use of the app. The input to the handler is
the UI state and the text box UI element which requires in-
put. The handler’s output includes the corresponding text
(login, password etc.), using which the monkey can emulate
keyboard actions to generate the text. If the handler for this
event is missing, and exploration encounters a UI element
that requires text input, the monkey stops exploring the app.
(4) Modifying the Environment. This event is triggered just
before the monkey clicks a UI element. The corresponding
handler for this event takes as input the current UI state, and
the UI element to be clicked. Based on this information, the
handler may enable or disable devices, dynamically change
network availability using a network emulator, or change
other aspects of the environment in order to stress-test apps.
This kind of modification is coarse-grained, in the sense that
it occurs before the entire page is loaded. It is also possible
to perform more fine-grained modifications (e.g., reducing
network bandwidth just before accessing the network) using
app-specific events, described below. If a handler for this
event is not specified, PUMA skips this step.
(5) In-line Analysis. The in-line analysis event is triggered
after a new state has completed loading. The handler for this
event takes as input the current total state; the handler can
use the total state information to perform analysis-specific
computations. For example, an ad fraud detector can ana-
lyze the layout of the UI hierarchy to ensure compliance to
ad policies [20]. A PUMAscript may choose to forgo this
step and perform all analyses off-line; PUMA outputs the ex-
plored state transition graph together with the total states for

6

 http://en.wikipedia.org/wiki/Cosine_similarity


this purpose.
(6) Terminating App Exploration. Depending on the pre-
cise definition of state equivalence, the number of states in
the UI state transition graph can be practically limitless. A
good example of this is an app that shows news items. Each
time the app page that lists news items is visited, a new news
item may be available which may cause the state to be tech-
nically not equivalent to any previously visited state. To
counter such cases, most prior research has established prac-
tical limits on how long to explore an app. PUMA provides
a default timeout handler for the termination decision event,
which terminates an app after its exploration has used up a
certain amount of wall-clock time. A PUMAscript can also
define other handlers that make termination decisions based
on the number of states visited, or CPU, network, or energy
resources used.
App-specific Events. In much the same way that monkey-
specific events abstract specific points in the execution of
a generic monkey, an app-specific event abstracts a specific
point in app code. Unlike monkey-specific events, which are
predetermined because of the relative simplicity of a generic
monkey, app-specific events must be user-defined. In a PUMA-
script, an app-specific event is defined by naming an event
and associating the named event with a codepoint set [16].
A codepoint set is a set of instructions (e.g., bytecodes or in-
vocations of arbitrary functions) in the app binary, usually
specified as a regular expression on class names, method
names, or names of specific bytecodes. Thus, a codepoint
set defines a set of points in the app binary where the named
event may be said to occur.

Once named events have been described, a PUMAscript
can associate arbitrary handlers with these named events.
These handlers have access to app-internal state and can ma-
nipulate program state, can output state information to the
output logs, and can also perform finer-grained environmen-
tal modifications.
A sample PUMAscript. Listing 1 shows the listing of a
PUMAscript designed to count the network usage of apps.
A PUMAscript is effectively a Java extension, where a spe-
cific analysis is described by defining a new class inherited
from a PUMAScript base class. This class (in our ex-
ample, NetworkProfiler) defines handlers for monkey-
specific events (lines 2-7), and also defines events and asso-
ciated handlers for app-specific events. It uses the inbuilt
feature-based similarity detector with a threshold that per-
mits fuzzy state equivalence (line 3), and uses the default
next-click function, which traverses each UI element in each
state sequentially (line 6). It defines one app-specific event,
which is triggered whenever execution invokes the HTTP-
Client library (lines 10-11), and defines two handlers, one
(line 21) before the occurrence of the event (i.e., the invoca-
tion) and another after (line 24) the occurrence of the event.
These handlers respectively log the size of the network re-
quest and response. The total network usage of an app can
be obtained by post-facto analysis of the log.

1 class NetworkProfiler extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void specifyInstrumentation() {
9 Set<CodePoint> userEvent;

10 CPFinder.setBytecode("invoke.*", "HTTPClient.
execute(HttpUriRequest request)");

11 userEvent = CPFinder.apply();
12 for (CodePoint cp:userEvent) {
13 UserCode code = new UserCode("Logger", "

countRequest", CPARG);
14 Instrumenter.place(code, BEFORE, cp);
15 code = new UserCode("Logger", "countResponse",

CPARG);
16 Instrumenter.place(code, AFTER, cp);
17 }
18 }
19 }
20 class Logger {
21 void countRequest (HttpUriRequest req) {
22 Log(req.getRequestLine().getUri().getLength());
23 }
24 void countResponse (HttpResponse resp) {
25 Log(resp.getEntity().getContentLength());
26 }
27 }

Listing 1: Count Network Usage

3.3 PUMA Design
PUMA incorporates a generic monkey (Alg. (1)), together

with support for events and handlers. One or more PUMA-
scripts are input to PUMA, together with the apps to be ana-
lyzed. The PUMAscript interpreter instruments each app in a
manner designed to trigger the app-specific events. One way
to do this is to instrument apps to transfer control back to
PUMA when the specified code point is reached. The advan-
tage of this approach is that app-specific handlers can then
have access to the explored UI states, but it would have made
it harder for PUMA to expose app-specific internal state. In-
stead, PUMA chooses to instrument apps so that app-specific
handlers are executed directly within the app context; this
way, handlers have access to arbitrary program state infor-
mation. For example, in line 22 of Listing 1, the handler can
access the size of the HTTP request made by the app.

After each app has been instrumented, PUMA executes the
algorithm described in Alg. (1), but with explicit events and
associated handlers. The six monkey-specific event handlers
are highlighted in Alg. (1) and are invoked at relevant points.
Because app-specific event handlers are instrumented within
app binaries, they are implicitly invoked when a specific UI
element has been clicked (Line 12).

PUMA can also execute multiple PUMAscripts concurrently.
This capability provides scaling of the analyses, since each
app need only be run once. However, arbitrary concurrent
execution is not possible, and concurrently executed scripts
must satisfy two sets of conditions.

Consider two PUMAscripts A and B. In most cases, these
scripts can be run concurrently only if the handlers for each
monkey-specific event for A are identical to or a strict subset
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of the handlers for B. For example, consider the state equiv-
alence handler: if A’s handler visits a superset of the states
visited by A and B, then, it is safe to concurrently execute
A and B. Analogously, the next-click handler for A must be
identical with that of B, and the text input handler for both
must be identical (otherwise, the monkey would not know
which text input to use). However, the analysis handler for
the two scripts can (and will) be different, because this han-
dler does not alter the sequence of the monkey’s exploration.
By a similar reasoning, for A and B to be run concurrently,
their app-specific event handlers must be disjoint (they can
also be identical, but that is less interesting since that means
the two scripts are performing identical analyses), and they
must either modify the environment in the same way or not
modify the environment at all.

In our evaluation, we demonstrate this concurrent PUMA-
script execution capability. In future work, we plan to derive
static analysis methods by which the conditions outlined in
the previous paragraph can be tested, so that it may be pos-
sible to automate the decision of whether two PUMAscripts
can run concurrently. Finally, this static analysis can be sim-
plified by providing, as PUMA does, default handlers for var-
ious events.

3.4 Implementation of PUMA for Android
We have designed PUMA to be broadly applicable to dif-

ferent mobile computing platforms. The abstractions PUMA
uses are generic and should be extensible to different pro-
gramming languages. However, we have chosen to instanti-
ate PUMA for the Android platform because of its popularity
and the volume of active research that has explored Android
app dynamics.

The following paragraphs describe some of the complex-
ity of implementing PUMA in Android. Much of this com-
plexity arises because of lack of a complete native UI au-
tomation support in Android.
Defining a Page State. The UI state of an app, defined as
the current topmost foreground UI hierarchy, is central to
PUMA. The UI state might represent part of a screen (e.g.,
a pop-up dialog window), a single screen, or more than one
screen (e.g., a webview that needs scrolling to finish view-
ing). Thus, in general, a UI state may cover sections of an
app page that are not currently visible.

In Android, the UI hierarchy for an app’s page can be ob-
tained from hierarchyviewer [1] or the uiautomat-
or [2] tool. We chose the latter because it supports many
Android devices and has built-in support for UI event gen-
eration and handling, while the former only works on sys-
tems with debugging support (e.g., special developer phones
from google) and needs an additional UI event generator.
However, we had to modify the uiautomator to intercept
and access the UI hierarchy programmatically (the default
tool only allows dumping and storing the UI state to external
storage).
Supporting Page Scrolling. Since smartphones have small

screens, it is common for apps to add scrolling support to
allow users to view all the contents in a page. However,
uiautomator only returns the part of the UI hierarchy
currently visible. To overcome this limitation, PUMA scrolls
down till the end of the screen, extracts the UI hierarchy in
each view piecemeal, and merges these together to obtain
a composite UI hierarchy that represents the UI state. This
turns out to be tricky for pages that can be scrolled vertically
and/or horizontally, since uiautomator does not report
the direction of scrollability for each UI widget. For those
that are scrollable, PUMA first checks whether they are hor-
izontally or vertically scrollable (or both). Then, it follows
a zig-zag pattern (scrolls horizontally to the right end, ver-
tically down one view, then horizontally to the left end) to
cover the non-visible portions of the current page. To merge
the scrolled states, PUMA relies on the AccessibilityEvent
listener to intercept the scrolling response, which contains
hints for merging. For example, for ListView, this lis-
tener reports the start and the end entry indices in the scrolled
view; for ScrollView and WebView, it reports the co-
ordinate offsets with respect to the global coordinate.
Detecting Page Loading Completion. Android does not
have a way to determine when a state has been completely
loaded. State loading can take arbitrary time, especially if
content needs to be fetched over the network. PUMA uses a
heuristic that detects WINDOW_CONTENT_CHANGED events
signaled by the OS, since this event is fired whenever there
is a content change or update in the current view. For exam-
ple, a page that relies on network data to update its UI wid-
gets will trigger one such event every time it receives new
data that causes the widget to be rendered. PUMA considers
a page to be completely loaded when there is no content-
changed event in a window of time that is conservatively
determined from the inter-arrival times of previous events.
Instrumenting Apps. PUMA uses SIF [16] in the backend
to instrument app binaries. However, other tools that are
capable of instrumenting Android app binaries can also be
used.
Environment Modifications by Apps. We observed that
when PUMA runs apps sequentially on one device, it is pos-
sible that an app may change the environment (e.g., some
apps turn off WiFi during their execution), affecting subse-
quent apps. To deal with this, PUMA restores the environ-
ment (turning on WiFi, enabling GPS, etc.) after completing
each app, and before starting the next one.
Implementation Limitations. Currently, our implementa-
tion uses Android’s uiautomator tool that is based on
the underlying AccessibilityService in the OS. So
any UI widgets that do not support such a service cannot be
supported by our tool. For example, some user-defined wid-
gets do not use any existing Android UI support at all, so
are inaccessible to PUMA. However, in our evaluations de-
scribed later, we find relatively few instances of apps that use
user-defined widgets, likely because of Android’s extensive
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support for UI programming.
Finally, PUMA does not support non-deterministic UI events

like swipes, or other customized user gestures, which are
fundamental problems for any monkey-based automation tool.
In particular, this limitation rules out analysis of games, which
is an important category of Android apps. To our knowledge,
no existing monkeys have overcome this limitation. It may
be possible to overcome this limitation by passively observ-
ing real users and “learning” user-interface actions, but we
have left this to future work.

4. EVALUATION
The primary motivation for PUMA is rapid development

of large-scale dynamic mobile app analyses. In this section,
we validate that PUMA enables this capability: in a space
of two weeks, we were able to develop 7 distinct analyses
and execute each of them on a corpus of 3600 apps. Beyond
demonstrating this, our evaluations provide novel insights
into the Android app ecosystem. Before discussing these
analyses, we discuss our methodology.

4.1 Methodology
Apps. We downloaded 18,962 top free apps5, in 35 cate-
gories, from the Google Play store with an app crawler [4]
that implements the Google Play API. Due to the incom-
pleteness of the Dalvik to Java translator tool we use for app
instrumentation [16], some apps failed the bytecode transla-
tion process, and we removed those apps. Then based on the
app name, we removed foreign-language apps, since some
of our analyses are focused on English language apps, as
we discuss later. We also removed apps in the game, social,
or wallpaper categories, since they either require many non-
deterministic UI actions or do not have sufficient app logic
code (some wallpaper apps have no app code at all). These
filtering steps resulted in a pool of 9,644 apps spread over
23 categories, from which we randomly selected 3,600 apps
for the experiments below. This choice was dictated by time
constraints for our evaluation.
Emulators vs Phones. We initially tried to execute the mon-
key on emulators running concurrently on a single server.
Android emulators were either too slow or unstable, and
concurrency was limited by the performance of the graph-
ics cards on the server. Accordingly, our experiments use 11
phones, each running an instance of PUMA: 5 Galaxy Nexus,
5 HTC One, and 1 Galaxy S3, all running Android 4.3. The
corpus of 3,600 apps is partitioned across these phones, and
the PUMA instance on each phone evaluates the apps in its
partition sequentially. PUMA is designed to work on emula-
tors as well, so it may be possible to scale the analyses by
running multiple cloud instances of the emulator when the
robustness of the emulators improves.

4.2 PUMA Scalability and Expressivity
5The versions of these apps are those available on Oct 3, 2013.

To evaluate PUMA’s expressivity and scalability, we used
it to implement seven distinct dynamic analyses. Table 2 lists
these analyses. In subsequent subsections, we describe these
analyses in more detail, but first we make a few observations
about these analyses and about PUMA in general.

First, we executed PUMAscripts for three of these analyses
concurrently: UI structure classifier, ad fraud detection, and
accessibility violation detection. These three analyses use
similar notions of state equivalence and do not require any
instrumentation. We could also have run the PUMAscripts for
network usage profiler and permissions usage profiler con-
currently, but did not do so for logistical reasons. These apps
use similar notions of state equivalence and perform com-
plementary kinds of instrumentation; the permissions usage
profiler also instruments network calls, but in a way that does
not affect the network usage profiler. We have verified this
through a small-scale test of 100 apps: the combined analy-
ses give the same results as the individual analyses, but use
only the resources required to run one analysis. In future
work, we plan to design an optimizer that automatically de-
termines whether two PUMAscripts can be run concurrently
and performs inter-script optimizations for concurrent anal-
yses.

Second, we note that for the majority of our analyses, it
suffices to have fuzzier notions of state equivalence. Specifi-
cally, these analyses declare two states to be equivalent if the
cosine similarity between the feature vectors derived from
the UI structure are above a specified threshold. In practice,
this means that two states whose pages have different con-
tent, but similar UI structure, will be considered equivalent.
(This is shown in Table 2, with the value “structural” in the
“State-equivalent function” column.) For these analyses, we
are able to run the analysis to completion for each of our
3600 apps: i.e., the analysis terminates when all applicable
UI elements have been explored. For the single analysis that
required an identical match, we had to limit the exploration
of an app to 20 minutes. This demonstrates the importance
of exposing programmable state equivalence in order to im-
prove the scalability of analyses.

Third, PUMA enables extremely compact descriptions of
analyses. Our largest PUMAscript is about 20 lines of code.
Some analyses require non-trivial code in user-specified han-
dlers; this is labeled “user code” in Table 2. The largest han-
dler is 77 lines long. So, for most analyses, less than 100
lines is sufficient to explore fairly complex properties. In
contrast, the implementation of DECAF [20] was over 4,300
lines of code, almost 50× higher; almost 70% of this code
went towards implementing the monkey functionality. Note
that, some analyses require post-processing code; we do not
count this in our evaluation of PUMA’s expressivity, since
that code is presumably comparable for when PUMA is used
or when a hand-crafted monkey is used.

Finally, another measure of scalability is the speed of the
monkey. PUMA’s programmable monkey explored 15 apps
per hour per phone, so in about 21 hours we were able to
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run our structural similarity analysis on the entire corpus
of apps. This rate is faster than the rates reported in prior
work [18, 20]. The monkey was also able to explore about
65 app states per hour per phone for a total of over 100,000
app states across all 7 analyses. As discussed above, PUMA
ran to completion for our structural similarity-based analy-
ses for every app. However, we do not evaluate coverage,
since our exploration techniques are borrowed from prior
work [20] and that work has evaluated the coverage of these
techniques.

4.3 Analysis 1: Accessibility Violation Detec-
tion

Best practices in app development include guidelines for
app design, either for differently-abled people or for use
in environments with minimal interaction time requirements
(e.g., in-vehicle use). Beyond these guidelines, it is desir-
able to have automated tests for accessibility compliance, as
discussed in prior work [18]. From an app store adminis-
trator’s perspective, it is important to be able to classify apps
based on their accessibility support so that users can be more
informed in their app choices. For example, elderly persons
who have a choice of several email apps may choose the ones
that are more accessible (e.g., those that have large buttons
with enough space between adjacent buttons.)

In this dynamic analysis, we use PUMA to detect a subset
of accessibility violations studied in prior work [18]. Specif-
ically, we flag the following violations: if a state contains
more than 100 words; if it contains a button smaller than
80mm2; if it contains two buttons whose centers are less than
15mm apart; and if it contains a scrollable UI widget. We
also check if an app requires a significant number of user
interactions to achieve a task by computing the maximum
shortest round-trip path between any two UI states based on
the transition graph generated during monkey exploration.

This prior work includes other accessibility violations: de-
tecting distracting animations can require a human-in-the-
loop, and is not suitable for the scale that PUMA targets; and
analyzing the text contrast ratio requires OS modifications.
Our work scales this analysis to a much larger number of
apps (3,600 vs. 12) than the prior work, demonstrating some
of the benefits of PUMA.

Our PUMAscript has 11 lines of code, and is similar in
structure to ad fraud detection. It uses structural matching
for state equivalence, and detects these accessibility viola-
tions using an in-line analysis handler.

Table 3 shows the number of apps falling into different
categories of violations, and the number of apps with more
than one type of violation. We can see that 475 apps have
maximum round-trip paths greater than 10 (the threshold
used in [18]), 552 for word count, 1,276 for button size,
1,147 for button distance and 2,003 for scrolling. Thus, al-
most 55% of our apps violate the guideline that suggests not
having a scrollable widget to improve accessibility. About
one third of the violating apps have only one type of vi-

user actions
per task

words
count

button
size

button
distance

scrolling

#apps 475 552 1276 1147 2003

1 type 2 types 3 types 4 types 5 types

#apps 752 683 656 421 223

Table 3: Accessibility violation results

olation and less than one third have two or three types of
violations. Less than one tenth of the apps violate all five
properties.

This suggests that most apps in current app stores are
not designed with general accessibility or vehicular settings
in mind. An important actionable result from our findings
is that our analyses can be used to automatically tag apps
for “accessibility friendliness” or “vehicle unfriendliness”.
Such tags can help users find relevant apps more easily, and
may incentivize developers to target apps towards segments
of users with special needs.

4.4 Analysis 2: Content-based App Search
All app stores allow users to search for apps. To answer

user queries, stores index various app metadata (e.g., app
name, category, developer-provided description, etc.) That
index does not use app content—content that an app reveals
at runtime to users. Thus, a search query (e.g., for a specific
recipe) can fail if the query does not match any metadata,
even though the query might match the dynamic runtime
content of some of these apps (e.g., culinary apps).

One solution to the above limitation is to crawl app con-
tent (by dynamic analysis) and index this content as well.
We program PUMA to achieve this. Our PUMAscript for this
analysis contains 14 lines of code and specifies a strong no-
tion of state equivalence: two states are equivalent only if
their UI hierarchy is identical and their contents are identi-
cal. Since the content of a given page can change dynami-
cally, even during exploration, the exploration may, in the-
ory, never terminate. So, we limit each app to 20 minutes
(using PUMA’s terminating app exploration event handler).
Finally, the PUMAscript scrapes the textual content from the
UI hierarchy in each state and uses the in-line analysis event
handler to log this content.

We then post-process this content to build three search in-
dices: one that uses the app name alone, a second that in-
cludes the developer’s description, and a third that also in-
cludes the crawled content. We use Apache Lucene6 an open
source, full-featured text search engine, for this purpose.

We now demonstrate the efficacy of content-based search
for apps. For this, we use two search-keyword datasets to
evaluate the generated indices: (1) 200 most popular app
store queries7 and (2) a trace of 10 million queries from the
Bing search engine. By re-playing those queries on the three
indices, we find (Table 4), that the index with crawled con-

6http://lucene.apache.org/core/
7http://goo.gl/JGyO5P
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Properties studied State-equivalence App instrumentation PUMAscript (LOC) User code (LOC)

Accessibility violation detection UI accessibility violation structural no 11 77
Content-based app search in-app text crawling exact no 14 0
UI structure classifier structural similarity in UI structural no 11 0
Ad fraud detection ad policy violation structural no 11 74
Network usage profiler runtime network usage structural yes 19 8
Permission usage profiler permission usage structural yes 20 5
Stress testing app robustness structural yes 16 5

Table 2: List of analyses implemented with PUMA

Keyword Type Number Search Type Rate of Queries with Statistics of Valid Return
Valid Search Return (≥1) Min Max Mean Median

App Store Name 68% 1 115 17 4
Popular Keywords 200 Name + Desc. 93% 1 1234 156.54 36.50

Name + Desc. + Crawl 97% 1 1473 200.46 46
Bing Trace Name 54.09% 1 311 8.31 3

Search Keywords 9.5 million Name + Desc. 81.68% 1 2201 199.43 66
Name + Desc. + Crawl 85.51% 1 2347 300.37 131

Table 4: Search result

tent yields at least 4% more non-empty queries than the one
which uses app metadata alone. More importantly, on aver-
age, each query returns about 50 more apps (from our corpus
of 3,600) for the app store queries and about 100 more apps
for the Bing queries.

Here are some concrete examples to demonstrate the value
of indexing app content. For the search query “Jewelery
deals”, the metadata-based index returned many “deals” and
“jewelery” apps, while the content-based index returned as
the top result an app (Best Deals) that was presumably adver-
tising a deal for a jewelry store8. Some queries (e.g., “xmas”
and “bejeweled”) returned no answers from the metadata-
based index, but the content-based index returned several
apps that seemed to be relevant on manual inspection. These
examples show that app stores can greatly improve search
relevance by crawling and indexing app contents, and PUMA
provides a simple way to crawl the data.

4.5 Analysis 3: UI Structure Classifier
In this analysis, we program PUMA to cluster apps based

on their UI state transition graphs so that apps within the
same cluster have the same “look and feel”. The clusters can
be used as input to clone detection algorithms [14], reducing
the search space for clones: the intuition here is that the UI
structure is the easiest part to clone and cloned apps might
have very similar UI structures to the original one. More-
over, developers who are interested in improving the UI de-
sign of their own app can selectively examine a few apps
within the same cluster as their own apps and do not need to
exhaustively explore the complete app space.

The PUMAscript for this analysis is only 11 lines and uses
structural page similarity to define state equivalence. It sim-
ply logs UI states in the in-line analysis event handler. After
the analysis, for each app, we represent its UI state transi-
8In practice, for search to be effective, apps with dynamic content
need to be crawled periodically.
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Figure 2: App Clustering for UI Structure Classification

tion graph by a binary adjacent matrix, then perform Sin-
gular Value Decomposition9 (SVD) on the matrix, and ex-
tract the Singular Value Vector. SVD techniques have been
widely used in many areas such as general classification, pat-
tern recognition and signal processing. Since the singular
vector has been sorted by the importance of singular values,
we only keep those vector elements (called primary singu-
lar values) which are greater than ten times the first element.
Finally, the Spectral Clustering10 algorithm is employed to
cluster those app vectors, with each entry of the similarity
matrix being defined as follows:

mij =

{
0 , dim(vi) 6= dim(vj) or dij > rspatial
e−dij , otherwise

where vi and vj are the singular vectors of two different apps
i and j, and dij is the Euclidean distance between them.
dim() gives the vector dimension, and we only consider two
apps to be in a same cluster if the cardinality of their primary
singular values are the same. Finally, the radius rspatial is a
tunable parameter for the algorithm – the larger the radius,
the farther out the algorithm searches for clusters around a
given point (singular vector).

Following the above process, Figure 2 shows the number

9http://en.wikipedia.org/wiki/Singular_value_decomposition
10http://en.wikipedia.org/wiki/Spectral_clustering
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Figure 4: An app clone example (one app per rectangle)

of clusters and average apps per cluster for different spatial
radii. As the radius increases, each cluster becomes bigger
and the number of clusters increases, as expected. The num-
ber of clusters stabilizes beyond a certain radius and reaches
38 for a radius of 3. The CDF of cluster size for rspatial = 3
is shown in Figure 3. By manually checking a small set of
apps, we confirm that apps in a same cluster have pages with
very similar UI layouts and transition graphs.

Our analysis reveals a few interesting findings. First, there
exists a relatively small number of UI design patterns (i.e.,
clusters). Second, the number of apps in each cluster can be
quite different (Figure 3), ranging from one app per cluster
to more than 300 apps, indicating that some UI design pat-
terns are more common than the others. Third, preliminary
evaluations also suggest that most apps from a developer fall
into the same cluster; this is perhaps not surprising given that
developers specialize in categories of apps and likely reuse
significant code across their offerings. Finally, manual veri-
fication reveal the existence of app clones For example, Fig-
ure 4 shows two apps from one cluster have nearly the same
UI design with slightly different color and button styles, but
developed by different developers11.

4.6 Analysis 4: Ad Fraud Detection
Recent work [20] has used dynamic analysis to detect var-

ious ad layout frauds for Windows Store apps, by analyzing
geometry (size, position, etc.) of ads during runtime. Ex-
amples of such frauds include (a) hidden ads: ads hidden
behind other UI controls so the apps appear to be ad-free;
(b) intrusive ads: ads placed very close to or partially behind
clickable controls to trigger inadvertent clicks; (c) too many
ads: placing too many ads in a single page; (d) small ads:
ads too small to see. We program PUMA to detect similar
frauds in Android apps.

Our PUMAscript for ad fraud detection catches small, in-
11We emphasize that clone detection requires sophisticated tech-
niques well beyond UI structure matching; designing clone detec-
tion algorithms is beyond the scope of the paper

violation small many intrusive 1 type 2 types 3 types

#apps 13 7 10 3 3 7

Table 5: Ad fraud violation results

trusive, and too many ads per page. We have chosen not to
implement detection of hidden ads on Andoid, since, unlike
Microsoft’s ad network [5], Google’s ad network does not
pay developers for ad impressions [3], and only pays them
by ad clicks, so there is no incentive for Android developers
to hide ads.

Our PUMAscript requires 11 lines and uses structural match
for state equivalence. It checks for ad violations within the
in-line analysis handler; this requires about 74 lines of code.
This handler traverses the UI view tree, searches for the We-
bView generated by ads, and checks its size and relationship
with other clickable UI elements. It outputs all the violations
found in each UI state.

Table 5 lists the number of apps that have one or more vi-
olations. About 13 out of our 3,600 apps violate ad policies.
Furthermore, all 13 apps have small ads (which can improve
the user experience by devoting more screen real estate to
the app, but can reduce the visibility of the ad and adversely
affect the advertiser). Seven apps show more than one ad
on at least one of their pages, and 10 apps display ads in a
different position than required by ad networks. Finally, if
we examine violations by type, 7 apps exhibit all three vio-
lations, 3 apps exhibit one and 3 exhibit two violations.

These numbers appear to be surprisingly small, compared
to results reported in [20]. To understand this, we explored
several explanations. First, we found that the Google Ad-
Mob API enforces ad size, number and placement restric-
tions, so developers cannot violate these policies. Second,
we found that 10 of our 13 violators use use ad providers
other than AdMob, like millennialmedia, medialets and Lead-
Bolt. These providers’ API gives developers the freedom to
customize ad sizes, conflicting with AdMob’s policy of pre-
defined ad size. We also found that, of the apps that did not
exhibit ad fraud, only about half used AdMob and the rest
used a wide variety of ad network providers. Taken together,
these findings suggest that the likely reason the incidence
of ad fraud is low in Android is that developers have little
incentive to cheat, since AdMob pays for clicks and not im-
pressions (all the frauds we tested for are designed to inflate
impressions). In contrast, the occurrence of ad fraud in Win-
dows phones is much higher because (a) 90% of the apps
use the Microsoft ad network, (b) that network’s API allows
developers to customize ads, and (c) the network pays both
for impressions as well as clicks.

4.7 Analysis 5: Network Usage Profiler
About 62% of the apps in our corpus need to access re-

sources from the Internet to function. This provides a rough
estimate of the number of cloud-enabled mobile apps in the
Android marketplace, and is an interesting number in its own
right. But beyond that, it is important to quantify the network
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usage of these apps, given the prevalence of usage-limited
cellular plans, and the energy cost of network communica-
tion [15].

PUMA can be used to approximate the network usage of an
app by dynamically executing the app and measuring the to-
tal number of bytes transferred. Our PUMAscript for this has
19 lines of code, and demonstrates PUMA’s ability to specify
app instrumentation. This script specifies structural match-
ing for state equivalence; this can undercount the network
usage of the app, since PUMA would not visit similar states.
Thus, our results present lower bounds for network usage
of apps. To count network usage, our PUMAscript specifies
a user-defined event that is triggered whenever the HTTP-
Client library’s execute function is invoked (Listing 1).
The handler for this event counts the size of the request and
response.

Figure 5 shows the CDF of network usage for 2218 apps;
the x-axis is in log scale. The network usage across apps
varies by 6 orders of magnitude from 1K to several hundred
MB.

Half the apps use more than 206KB of data, and about
20% use more than 1MB of data. More surprisingly, 5%
apps use more than 10MB data; 100 times more than the
lowest 40% of the apps. The heaviest network users (the
tail) are all video streaming apps that stream news and daily
shows. For example, “CNN Student News” app, which de-
livers podcasts and videos of the top daily news items to mid-
dle and high school students has a usage over 700MB. We
looked at 508 apps that use more than 1MB data and classi-
fied based on their app categories. The top five are “News
and Magazines”, “Sports”, “Library and Demo”, “Media and
Video”, and “Entertainment”. This roughly matches our ex-
pectation that these heavy hitters would be heavy users of
multimedia information.

This diversity in network usage suggests that it might be
beneficial for app stores to automatically tag apps with their
approximate network usage, perhaps on a logarithmic scale.
This kind of information can help novice users determine
whether they should use an app when Wi-Fi is unavailable or
not, and may incentivize developers to develop bandwidth-
friendly apps.
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Figure 5: Network traffic usage

4.8 Analysis 6: Permission Usage Profiler
Much research has explored the Android security model,

and the use of permissions. In particular, research has tried
to understand the implication of permissions [13], designed
better user interfaces to help users make more informed de-
cisions [28], and proposed fine-grained permissions [17].

In this analysis, we explore the runtime use of permissions
and relate that to the number of permissions requested by an
app. This is potentially interesting because apps develop-
ers may request more permissions than are actually used in
the code. Static analysis can reveal an upper bound on the
permissions needed, but provides few hints on actual per-
missions usage.

With PUMA, we can implement a permission usage pro-
filer, which logs every permission usage during app exe-
cution. This provides a lower bound on the set of permis-
sion required. We use the permission maps provided by [7].
Our PUMAscript has 20 lines of code. It uses a structural-
match monkey and specifies a user-level event that is trig-
gered when any API call that requires permissions is invoked
(these API calls are obtained from [7]). The corresponding
instrumentation code simply logs the permissions used.
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Figure 6: Permission usage: granted vs used

Figure 6 shows the CDF of the number of permissions
requested and granted to each of the 3600 apps as well as
those used during app exploration. We can see that about
80% are granted less than 15 permissions (with a median of
7) but this number can be as high as 41. Apps at the high
end of this distribution include antivirus apps, a battery opti-
mization tool, or utilities like “Anti-Theft” or “AutomateIt”.
These apps need many permissions because the functional-
ities they provide require them to access various system re-
sources, sensors and phone private data.

At runtime, apps generally use fewer permissions than
granted; about 90% of them used no more than 5 permis-
sions, or no more than half of granted ones. While one ex-
pects the number of permissions used in runtime is always
less than granted, but the surprisingly low runtime permis-
sion usage (about half the apps use less than 30% of their
permissions) may suggest that some app developers might
request for more permissions than actually needed, increas-
ing the security risks.

4.9 Analysis 7: Stress Testing
Mobile apps are subject to highly dynamic environments,

including varying network availability and quality, and dy-
namic sensor availability. Motivated by this, recent work [25]
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has explored random testing of mobile apps at scale using a
monkey in order to understand app robustness to these dy-
namics.

In this analysis, we demonstrate PUMA can be used to
script similar tests. In particular, we focus on apps that use
HTTP and inject null HTTP responses by instrumenting the
app code, with the goal of understanding whether app devel-
opers are careful to check for such errors. The PUMAscript
for this analysis has 16 lines of code to specify a structural-
match monkey and defines the same user-defined event as
the network usage profile (Listing 1). However, the corre-
sponding event handler replaces the HTTPClient library in-
vocation with a method that returns a null response. During
the experiment, we record the system log (logcat in An-
droid) to track exception messages and apps that crash (the
Android system logs these events).

In our experiments, apps either crashed during app explo-
ration, or did not crash but logged a null exception, or did not
crash and did not log an exception. Out of 2218 apps, 582
(or 26.2%) crashed, 1287 (or 58%) continued working with-
out proper exception handling. Only 15.7% apps seemed to
be fairly robust to our injected fault.

This is a fairly pessimistic finding, in that a relatively
small number of apps seem robust to a fairly innocuous er-
ror condition. Beyond that, it appears that developers don’t
follow Android development guidelines which suggest han-
dling network tasks in a separate thread than the main UI
thread. The fact that 26% of the apps crash suggest that
their network handling was performed as part of the main UI
thread, and they did not handle this error condition grace-
fully. This analysis suggests a different usage scenario for
PUMA: as an online service that can perform random testing
on an uploaded app.

5. CONCLUSION
In this paper, we have described the design and imple-

mentation of PUMA, a programmable UI automation frame-
work for conducting dynamic analyses of mobile apps at
scale. PUMA incorporates a generic monkey and exposes
an event driven programming abstraction. Analyses writ-
ten on top of PUMA can customize app exploration by writ-
ing compact event handlers that separate analysis logic from
exploration logic. We have evaluated PUMA by program-
ming seven qualitatively different analyses that study perfor-
mance, security, and correctness properties of mobile apps.
These analyses exploit PUMA’s ability to flexibly trade-off
coverage for speed, extract app state through instrumenta-
tion, and dynamically modify the environment. The analy-
sis scripts are highly compact and reveal interesting findings
about the Android app ecosystem.
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