
Smartphone Background Activities in the Wild:
Origin, Energy Drain, and Optimization

Xiaomeng Chen†∧ Abhilash Jindal†∧ Ning Ding†∧ Y. Charlie Hu†∧ Maruti Gupta⋆

Rath Vannithamby⋆

†Purdue University ∧Mobile Enerlytics ⋆Intel Corporation

ABSTRACT

As new iterations of more powerful and better connected smart-
phones emerge, their limited battery life remains a leading factor
adversely affecting the mobile experience of millions of smart-
phone users. While it is well-known that many apps can drain
battery even while running in background, there has not been any
study that quantifies the extent and severity of such background en-
ergy drain for users in the wild. To extend battery life, various new
features are being incorporated within the phone, one of them be-
ing preventing applications from running in background, i.e., when
the screen is off, but their impact is largely unknown.
This paper makes several contributions. First, we present a large-

scale measurement study that performs an in-depth analysis of the
activities of various apps running in background on thousands of
phones in the wild. Second, we quantify the amount of battery
drain by all such background activities and possible energy sav-
ing. Third, we develop a metric to measure the usefulness of back-
ground activities that is personalized to each user. Finally, we
present a system called HUSH (screen-off optimizer) that monitors
the metric online and automatically identifies and suppresses back-
ground activities during screen-off periods that are not useful to the
user experience. In doing so, our proposed HUSH saves screen-off
energy of smartphones by 15.7% on average while incurring mini-
mal impact on the user experience with the apps.

Categories and Subject Descriptors

C.4 [Computer SystemOrganization]: Performance of Systems—
Modeling techniques; D.2.8 [Metrics]: Performance measures

General Terms

Experimentation, Measurement, Performance

Keywords

Smartphones, background activities, screen-off energy drain

1. INTRODUCTION
It is well known that many apps on smartphones wake up period-

ically to run when users are not actively interacting with them. This

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiCom’15, September 07–11, 2015, Paris, France.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3619-2/15/09 ...$15.00 .

DOI: http://dx.doi.org/10.1145/2789168.2790107 .

happens predominantly during screen-off periods but can also hap-
pen when other apps are running in the foreground during screen-
on periods. The reasons for such periodic wakeups are severalfold:
(1) to perform a refresh of the app state, e.g., in apps that provide
updates for news, financial stocks, weather or twitter feed updates,
(2) to sync with cloud services and get status updates or notifica-
tions, e.g., in social networking apps such as Facebook, WeChat,
and Google+, (3) to support non-touch based user interactions such
as in audio apps Pandora and Spotify which periodically download
files to play songs, or apps used for location tracking or navigation
which allow a user to listen to directions without screen interac-
tions. Additionally, many system services may run in the back-
ground due to either direct invocations by apps (e.g., MediaPlay-
backService) or the registration and callback mechanism where an
app during initiation registers for future events monitored by the
system services (e.g., LocationManagerService).

More generally, many mobile apps are designed to run in back-
ground to enable a model of always-on connectivity and to provide
fast response time. This means that once installed and initiated by
the user, apps can register themselves with the services provided
by the OS framework for background activities, regardless of the
user’s actual usage of the app. This is true of both iOS and An-
droid OS [2, 7]. This leads one to the conjecture that the apps
running in background and the system services they invoke may
be consuming a significant amount of energy. Despite such gen-
eral perception, there has not been any quantitative measurement
of the background activities and energy drain by apps running on
user phones in the wild. To quantify such app background activities
and energy drain on real users’ phones, we conducted a large-scale
measurement of 2000 Samsung Galaxy phones in the wild. Our
analysis shows that background activities of apps and services are
prevalent and on average 28.9% of the daily energy drain is due to
apps and services running during screen-off intervals.

Given the perception of the effects of app background activi-
ties on the phone’s battery, it is not surprising that smartphones
now come with features to turn off background activities, e.g., iOS
provides a feature called "Disable Background Refresh" [6] which
basically prevents the apps from running in the background alto-
gether. Android has a similar feature called "Restrict Background
Data" [1] which prevents the user from running up charges on their
mobile data usage due to background data activities by switching
background data refresh to using WiFi only. Such blanket solu-
tions disable background activities of all apps and hence do not
distinguish background activities of apps that are potentially more
useful to the user from the rest, which can adversely affect user ex-
perience. Some apps provide the user with the option of disabling
background activities. However, it is very cumbersome for a user to
manually change the settings for every installed app on the phone.

40

In this paper, we explore effective ways of optimizing back-
ground activities of apps and services. Our exploration is motivated
by two hypotheses: (1) background activities of apps are meant to
improve user app experience but they are only useful if the user
interacts with those apps in foreground sometime during the next
screen-on interval; (2) the usefulness of background activities of an
app is likely to be user-dependent and thus their occurrences should
be personalized.
First, we propose a metric to measure this usefulness of app

background activities called Background to Foreground Correla-
tion (BFC). Second, we experimentally confirm the hypotheses us-
ing our 2000-user trace. The confirmation suggests the level of
background activities of an app should be personalized to individ-
ual users. We then design a screen-off energy optimizer on Android
called HUSH that monitors the BFC of all apps on a phone online
and automatically identifies and suppresses app background activi-
ties during screen-off intervals that are not useful to the user expe-
rience. In doing so, HUSH saves screen-off energy of smartphones
by 15.7% on average with minimal impact on the user experience
with the apps.

2. RELATEDWORK
There have been recently a lot of interests in measurement stud-

ies of smartphone app traffic and their impact on power consump-
tion. In [13], Falaki et al. characterized smartphone traffic based
on traffic traces collected from 43 users and showed how power
consumption could be reduced. In [16, 14], Huang et al. stud-
ied 3G and LTE network performance and described the impact of
the RRC radio power states on radio energy consumption. In [26],
Xu et al. studied the smartphone usage patterns via network mea-
surement from a tier-1 cellular network provider. AppInsight [23]
monitors the performance of mobile apps in the wild by instrument-
ing app binary. In [25], Sommers and Barford studied the WiFi
and cellular performance using the Speedtest.net data. None of the
work above, however, provided a thorough analysis of how energy
is consumed on the smartphones in the wild.
In [15], Huang et al. collected traffic from 20 users and studied

screen-off radio energy consumption due to cellular network and
proposed to provide savings by shifting this traffic load over WiFi
instead, on an opportunistic basis. In [26], Xu et al. studied the
energy drain of email sync operations of two email apps when the
phone is in standby mode (i.e., during screen-off) using a power-
meter and proposed ways to optimize the email sync operations.
In summary, while there have been many studies recently that

characterize the traffic seen on smartphones, only a few have looked
at the impact of background traffic activities on the power con-
sumption, e.g., on network components such as WiFi and cellular
radios, using small-scale measurement or in the lab setting.
Most recently, Chen et al. performed the first large-scale mea-

surement study of energy drain on Android phones in the wild.
Their focus is on a holistic analysis that comprehensively breaks
down the total daily energy drain into different phone components
as well as apps and services running on the phones and further
draws implications to the designers of different components of smart-
phone and app developers.
The first part of this paper also presents a large-scale measure-

ment study of Android phones in the wild, but the focus is on a
detailed analysis of the activity, origin, and energy drain of back-
ground apps and services. Second, we introduce a new metric that
characterizes the usefulness of background activities in a way that
is customized to each app and each user. Finally, we present a novel
technique called HUSH with implementation on Android phones
that reduces the energy consumption due to background activities
and show its energy impact on actual phones.

Table 1: Trace statistics.

Devices (≥ 7 days trace) 2000
Aggregate trace duration 55759 days
Median trace duration 27.9 days
Countries of origin 61
Mobile operators 191
Unique phone types 2 (Galaxy S3 and S4)
Rate of mobile RSSI reading when signal changes,

effective: 1/min
Rate of network usage reading screen-on: every 1 second,

screen-off: every 5 seconds

3. CHARACTERIZINGBACKGROUNDAC-

TIVITIES IN THEWILD
In this section, we study the background activities on the 2000

phones in the wild.

3.1 Trace Collection
To perform the measurement study, we designed a free Android

app called eStar [4] that when installed on a user’s phone, performs
periodic logging of the usage of various phone components by apps
and system services. As discussed in Section 4, the logged infor-
mation is also sufficient to drive a carefully designed power model
to estimate the energy drain of the apps and services and various
phone components in each logging interval. Since the app does not
require any modifications to the Android framework or the kernel,
its logging can be performed on smartphones in the wild. All the
information collected (summarized below) are anonymized before
uploaded to our server.

In principle, the shorter the logging interval, the more fine-grained
the collected information, which leads to better accuracy in esti-
mating energy drain, but also the higher the logging overhead. In
designing the app, we carefully chose logging intervals to strike a
balance between these two objectives.

Coarse-grained logging. Coarse-grained logging happens ev-
ery 5 minutes, where the app logs app-wise CPU usage (from
/proc/[pid]/stat), and the per-core CPU usage (from /proc/stat)
and the time duration spent in different frequencies (from
/sys/devices/system/cpu/cpu[id]/).

Fine-grained logging. Fine-grained logging happens every 5 sec-
onds during screen-off when CPU is on and every 1 second dur-
ing screen-on, where the app logs the network usage (in bytes)
of all apps that had data transfer during the interval, by reading
/proc/uid_stat/[uid]/.

On-demand event logging. Finally, dynamic events are logged
on demand. These include WiFi, mobile data, and screen being
switched on and off, WiFi being associated and scanning, WiFi and
cellular signal strength change, battery level change (1% granular-
ity), and the time each app starts and stops.

Trace collection. We released the eStar app in Google Play on
September 1, 2014 which was downloaded by thousands of users
worldwide 1. The trace we used in this study contains logs from
2000 Galaxy S3 and S4 devices. Each user trace ranges from 7 to
40 days in length, with an average of 27.9 days (median 30 days).
The detailed characteristics of the trace are shown in Table 1.

Logging overhead. The logging was shown in [11] to incur very
low overhead: the average overhead per day across the devices in
the trace were 2.4% of the total CPU time, 0.3% of the total network
bytes, and 0.6% of the total energy drain.

1eStar received exemption from the full requirement of 45 CFR 46
or 21 CFR 56 by the IRB of our organization.

41

 0

 4

 8

 12

 16

 20

 24

 0 500 1000 1500 2000

T
im

e
 (

h
o
u
r)

Devices

Screen On
Screen Off

Figure 1: Daily screen-on vs screen-off time across users.

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000

C
o
u
n
t
o
f
in

te
rv

a
ls

Devices

Screen off intervals

Figure 2: Average number of

screen-on (and hence screen-

off) intervals per day across

users.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Duration of intervals (hour)

Screen on
Screen off

Figure 3: CDF of screen-on

and screen-off interval dura-

tions across users for all days.

3.2 Screen-off Intervals
We start with an overview of the smartphone foreground and

background usage across the 2000 devices. Figure 1 shows the
distribution of the average daily total time spent in screen-off and
screen-on intervals across the 2000 devices sorted by the total time.
The reason the screen-off and screen-on time do not add up to 24
hours is that a phone can be turned off. On average, the users spend
around 2.56 hours per day actively interacting with their phones;
the 10th percentile, and 90th percentile screen-on time are 0.84 and
4.62 hours, respectively.
Next, we study the frequency and duration of screen-on and screen-

off intervals. Figure 2 shows other than the 9.3% users who on av-
erage turn their phones on over 100 times a day, the usage by the
rest of the users is spread almost uniformly between 2 to 100 times
a day. Overall, the average, 10th percentile, and 90th percentile
numbers of screen-on/screen-off intervals per day are 58.3, 21.4,
99.0, respectively. The last user (the rightmost) on average turned
the device on 237 times a day for a total average daily screen-on
time of 4.2 hours, to mainly check two apps – Whatsapp and Insta-
gram.
The roughly similar total screen-on time (Figure 1) but diverse

numbers of screen-on intervals suggest the screen-on and screen-
off intervals (Figure 2) differ significantly in duration. Figure 3
plots the CDF of the duration of individual screen-on/off intervals
for all users across all days, truncated at 2 hours. We observe that
as expected, (1) the duration of screen-on/off intervals differ sig-
nificantly, and (2) the screen-off intervals tend to last much longer
than screen-on intervals. The average, 10th percentile, and 90th
percentile durations are 2.9 minutes, 4.9 seconds, and 5.2 minutes
for screen-on intervals, and 26.8 minutes, 18.0 seconds, and 60.0
minutes for screen-off intervals, respectively.

 0

 4

 8

 12

 16

 20

 24

 0 500 1000 1500 2000

T
im

e
 (

h
o
u
r)

Devices

CPU busy time during screen on
CPU idle time during screen on
CPU busy time during screen off
CPU idle time during screen off

(a) Percentage CPU time breakdown of all devices.

(b) Average of percentage
breakdown of CPU time

across all devices.

(c) After removing USB
charging intervals and CPU

lingering time.

Figure 4: Distribution of daily CPU busy and idle time during

screen-on and screen-off periods.

3.3 Background Activities in Screen-off
A longer screen-off interval does not necessarily imply more

background activities and more energy drain. To understand back-
ground activities and energy drain, we first measure the CPU time
spent to perform background activities. To this end, we break down
the total CPU time of a device, e.g., in a day, into the following
components:

• CPU idle time during screen-off;

• CPU busy time (background apps and services) during screen-off;

• CPU idle time during screen-on;

• CPU busy time (for all apps and services) during screen-on.

Note the rest of the time where the CPU is neither busy nor idle is
when the CPU is in suspended state or the phone is powered off.

Figure 4(a) shows the average percentage breakdown of daily
CPU time across the 2000 devices, sorted in the increasing order of
the total CPU time, and Figure 4(b) shows the average of the per-
centage CPU time breakdowns of the 2000 devices. We make the
following observations. (1) Out of the total CPU time in a day, on
average, the total CPU busy time during screen-on and screen-off
intervals are 9.8% and 16.7%, respectively, suggesting a significant
portion of the total CPU busy time is spent during screen-off inter-
vals running apps and services in the background. (2) On average,
the fractions of the total CPU time spent in CPU idle during screen-
off and screen-on intervals are 50.8% and 22.7%, respectively. The
large fraction of CPU idle time compared to CPU busy time during
screen-on is intuitive because the OS is often waiting for screen in-
put but the user is idle most of the time when interacting with many
apps, e.g., reading web pages or emails. But the large fraction of
CPU idle time during screen-off intervals is surprising, as the phone
is expected to go back to sleep (i.e., CPU suspended) right after
waking up to perform any background activities. (3) Across the de-
vices, while the CPU busy and idle time during screen-on and CPU
busy time during screen-off stay more or less similar, the average
absolute CPU idle time during screen-off increases significantly,

42

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14

C
u

rr
e

n
t

(m
A

)

Time (s)

Screen

turned off

CPU

turned off

Power

Figure 5: CPU lingers for 2-6 seconds after screen is turned off.

from 1.4 hours on average among the least active 10% devices (on
the left of Figure 4(a)) all the way up to 9.7 hours among the most
active 10% devices (on the right)!

USB charging. Our quick examination of the trace revealed that
the CPU was always fully awake in screen-off intervals when the
phones were being charged via USB. We then verified using our
own S3 and S4 phones running Android versions 4.3 and 4.3.1 that
indeed when during USB charging, the CPU/SOC was never sus-
pended.

Lingering CPU time after screen-on interval. In processing the
trace, we discovered a persistent lingering CPU-on period upon en-
tering each screen-off interval (i.e., right after a screen-on interval).
In our lab experiment using a powermeter as the energy source for
a Galaxy S3 phone, we confirmed that the CPU stays on right af-
ter entering a screen-off interval for 2-6 seconds, as indicated by
the powermeter reading shown in Figure 5. The Linux /proc shows
the second lingering duration is broken down into 940 ms, 740 ms,
and 4180 ms of user time, system time, and idle time, respectively.
Most of the user time, 750 ms out of 940 ms, is spent in the An-
droid’s framework services, while the rest is waiting for the fore-
ground app to pause its activities and for the other apps listening
on Intent.ACTION_SCREEN_OFF broadcast messages. Similarly,
most of the system time is also spent in various shutdown activities.

In the rest of the section, we removed all the USB charging inter-
vals and the 6-second CPU linger time (2 seconds of busy time and
4 seconds of idle time) from all the rest screen-off intervals. Fig-
ure 4(c) re-plots the CPU time breakdown. We see that the average
fraction of daily CPU time spent in CPU idle during screen-off in-
tervals remains high at 48.7%.

3.4 Background App Activities
To understand the high CPU idle time during screen-off intervals,

we plot the total CPU busy and idle time of all screen-off intervals
as fractions of the total screen-off interval durations for each device
in Figure 6. We see that the fractions are high – out of the 2000
devices, over 200 devices have the CPU staying up (busy or idle)
for over 50% of the screen-off interval durations.
Since ultimately it is the apps and system services they depend

on that wake up the device during screen-off intervals, we next
zoom into the apps running on the 100 devices with the highest
total fractions of CPU idle and busy time in Figure 6, i.e., the right-
most 100 devices in the figure, and analyze the app activities during
screen-off intervals.

(1) App busy/idle time per device. We first try to understand if
there is any correlation between app busy time and app idle time
in screen-off intervals. We plot in Figure 8 both quantities for the
selected 100 devices. We see that there is no significant correlation
between the total app busy time and the total CPU idle time across
the 100 devices – on average, the CPU busy time per device in a
day due to the apps in screen-off intervals is only 2.0 hours, while

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000

T
im

e
 f
ra

c
ti
o
n
 (

%
)

Devices

CPU busy
CPU idle

Figure 6: Total CPU busy and

idle time as fractions of total

interval duration of all screen-

off intervals per device, after

removing USB charging inter-

vals and CPU lingering time.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000

T
im

e
 f
ra

c
ti
o
n
 (

%
)

Intervals

CPU busy
CPU idle

Figure 7: CPU busy and idle

time as fractions of each in-

terval duration, for 3000 sam-

pled intervals, after removing

CPU lingering time and ex-

cluding USB charging inter-

vals.

 0

 4

 8

 12

 16

 20

 0 20 40 60 80 100
 0

 4

 8

 12

 16

 20

C
P

U
 b

u
s
y
 t
im

e
 (

h
o
u
r)

C
P

U
 i
d
le

 t
im

e
 (

h
o
u
r)

Devices

CPU busy
CPU idle

Figure 8: Cumulative daily app busy time in screen-off inter-

vals across 100 heavily used devices, sorted by daily CPU idle

time in screen-off.

the corresponding CPU idle time varies from 3.1 hours all the way
to 20.5 hours.

(2) App busy/idle time per interval. Next, we analyze the CPU
busy and idle time in individual screen-off intervals. We uniformly
sampled 3000 screen-off intervals from all 2000 devices and plot-
ted the distribution of CPU busy and idle time in each screen-off
interval as fractions of the interval duration in Figure 7. We see
that the CPU busy+idle time is over 50% of the interval duration
for over 27.1% of the intervals, and over 95% for 9.4% of the inter-
vals. Further, the CPU idle time alone is over 50% of the interval
duration for over 18.0% of the intervals (not directly shown).

(3) App holding wakelocks for long durations. Our investiga-
tion suggests the primary suspect for causing the large fractions of
CPU idle time during screen-off intervals is inefficient or incorrect
use of wakelocks in apps. Specifically, we suspect there are apps
that when running in the background hold wakelocks for unnec-
essarily long durations causing the CPU to remain in idle for ex-
tended periods of time. To verify our hypothesis, for each device,
we flag the apps that appear in more than half of the screen-off
intervals when CPU hardly suspends, i.e., the intervals with over
95% CPU busy+idle time, which include 9.4% all screen-off inter-
vals as shown in Figure 7, as suspicious apps for that device. If
one app is installed on at least 2 devices and there are more de-
vices that have this app as suspicious than the devices that have
this app but do not mark it as suspicious, then the app is marked as
a “no-sleep” app [21]. Among the apps on all devices, we found
76 no-sleep apps, and 56 of them contain wakelock permissions in
their manifest file. We installed 22 of them on an S4 phone running

43

Table 2: Summary of the hybrid power model.

Hardware component Model type Logged data

CPU utilization CPU time + CPU frequency
GPU utilization GPU time + GPU frequency
Screen utilization screen on time + brightness
WiFi non-utilization bytes + signal strength

3G/LTE non-utilization bytes + signal strength
WiFi beacon constant WiFi status
WiFi scan constant WiFi status

Cellular Paging constant cellular status
SOC Suspension constant phone status

Samsung’s Android version 4.3 (Jelly Bean) in the lab for 9 hours
and found that the CPU was never suspended. On further investiga-
tion, we found that one of the suspicious apps installed, Hi [5], held
a wakelock, *sync*_com.android.contacts_Account, for the entire
time; indeed for the entire 9-hour duration of the screen-off inter-
val, the CPU was busy for 1.5 hours and in the rest of the time it
was in the CPU idle state. In summary, while we cannot directly
confirm the reason for the large fractions of CPU idle time during
screen-off intervals on the phones in the wild, we believe the likely
cause is that certain apps hold wakelocks for unnecessarily long
periods of time.

4. ENERGY DRAIN
In this section, we characterize the energy drain of the back-

ground activities on the 2000 devices.

4.1 Methodology
We adopt the methodology used in [11] for measuring and ana-

lyzing energy drain on unmodified user phones. In a nut shell, the
measurement is performed in three steps: (1) developing a power
model that uses triggers that can be collected without any modifica-
tions to the Android framework or the kernel or rooting the phones;
(2) developing and deploying an app that collects all the triggers
for the power model; (3) post-processing the trace to estimate the
energy drain on the phones.

A hybrid power model. To accurately capture the power behav-
ior of all the identified components, a hybrid utilization-based and
FSM-based power model was developed in [11] which does not re-
quire modifying the Android framework or the kernel yet achieves
good modeling accuracy. The model uses utilization-based model-
ing (e.g., [24, 27]) to capture the power behavior of CPU, GPU, and
screen whose power draw has linear correlation with utilization (it
estimates the average screen power draw as a function of the bright-
ness level), and FSM-based modeling (e.g., [10, 17, 22, 18, 19, 12])
for wireless interfaces such as WiFi/3G/LTE. The model collects
network usage in each logging interval and then estimates the send
and receive system calls as triggers to drive the FSM models [20].
It further models cellular paging, WiFi beacon, and WiFi scanning
as constant power draws by averaging their power spikes over time,
and SOC suspension power (base power) as a constant power draw.
Table 2 summarizes the power model type and triggers collected
for the set of components modeled, which are selected as those that
show significant power draw. As in [11], we further confirmed the
component power draw are largely independent, and hence the total
power draw can be approximated by summing the power draw of
individual components.
We focus on Galaxy S3 and S4 phones in our measurement study,

which are the most popular Android phones [3]. The details of the
power models for Galaxy S3 and S4 can be found in [11].

Model validation. The hybrid model was validated in [11] using
both micro-benchmarks and real apps. Using micro-benchmarks,

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000

E
n
e
rg

y
 (

m
A

h
)

Devices

Energy by foreground apps excluding screen
Energy by CPU idle during screen on
Screen energy
Energy by background apps and services during screen on
Energy by background apps and services during screen off
Energy by CPU idle during screen off
Energy by SOC, WiFi beacon, WiFi scan and cellular paging

(a) Average daily energy breakdown

(b) Daily energy percentage breakdown, average over all devices.

Figure 9: Daily energy breakdown.

the measured error in estimating the energy drain by individual
components is within 11% of the powermeter output. On a phone
with 25 popular apps installed, the measured error in estimating the
energy drain of the whole phone during both screen-on and screen-
off intervals is within 10% of the powermeter output.

4.2 Background Energy Analysis
We break down the total energy per day per device among dif-

ferent activities as follows:

• Energy by WiFi beacon, WiFi scanning, cellular paging, and SOC
base power during screen-off;

• Energy by CPU idle during screen-off;

• Energy by background services and apps during screen-off;

• Energy by background services and apps during screen-on;

• Screen energy during screen-on.

• Energy by CPU idle during screen-on;

• Energy by foreground apps excluding screen.

We note each app and service energy component includes both
CPU and networking energy.

Figure 9 shows the energy breakdown across the 2000 devices.
We make the following observations. (1) Overall screen-on vs.

screen-off: Across the 2000 devices, on average 45.9% of the to-
tal energy drain in a day occurs during screen-off periods, includ-
ing 17.0% due to SOC, WiFi beacon, WiFi scan and cellular pag-
ing. This is rather surprising, debunking the perception that when
a phone is turned off, it should consume little energy. (2) Back-
ground app/service energy in screen-off: The background apps
and services during screen-off including the induced CPU idle to-
gether contribute to 28.9% of the total energy drain2, in contrast
to the 11.1% by background apps and services during screen-on.
The 28.9% gives an upper bound on how much daily energy can be
saved from suppressing background activities of apps and services
during screen-off intervals. (3) CPU idle energy in screen-off:

2This number is slightly higher than in [11], since the average
logged screen-off duration per day in this trace (Figure 1), 18.3
hours, is longer than in that trace.

44

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000

E
n
e
rg

y
 (

m
A

h
)

Devices

Apps
Services

(a) App vs. service

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
n
e
rg

y
 (

m
A

h
)

Devices

CPU busy
CPU idle

(b) CPU busy vs. idle

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
n
e
rg

y
 (

m
A

h
)

Devices

WiFi transmission
Cellular transmission
WiFi tail
Cellular tail

(c) WiFi vs. cellular, transmission vs. tail energy

Figure 10: Breakdown of background energy between apps and

services, CPU busy and idle, and wireless radios.

Although on average the CPU spends 50.8% of the total CPU time
in idle in screen-off (Figure 4(b)), it only drains on average 6.0%
of the total energy, primarily due to the effectiveness of frequency
scaling – in entering the idle state, the CPU quickly drops to the
lowest frequency, e.g., 384MHz on Galaxy S3, and then further
into a power-saving C state which draws minimum power.
Next, we zoom into the background app and service activities

during screen-off intervals, and break down the energy drain due
to apps versus services, CPU busy versus CPU idle, and network
energy among different radios and states. The results, shown in
Figure 10, show that across the 2000 devices, on average the en-
ergy drain of background activities is roughly split 55.4% to 44.6%
between apps and services, and 70.8% to 29.2% between CPU busy
and CPU idle, and the vast majority of the network energy by back-
ground apps and services is spent in 3G/LTE tail energy.

5. KEY IDEA
Our analysis of energy drain of 2000 devices in the wild shows

that on average 28.9% of the daily energy drain is due to apps
and services running during screen-off intervals. The current so-
lutions to curtailing this energy drain are limited. For example,
iOS provides a feature called “Disable Background Refresh” [6]
which prevents the apps from running in background altogether,
while Android provides a similar feature called “Restrict Back-
ground Data” [1] which switches background data refresh to using
WiFi links only.
In this paper, we propose HUSH, a simple yet effective screen-

off energy optimizer that reduces smartphone battery drain due to
background activities. The two premises behind HUSH are that (1)
background activities of apps are meant to improve user app expe-

rience but they are only useful if the user interacts with those apps

in foreground some time during the next screen-on interval; and

(2) the usefulness of background activities of an app is likely to be

user-dependent and thus their occurrences should be personalized.

The basic idea behind HUSH is to extract the correlation be-
tween an app’s background activities, i.e., whether it runs during

a screen-off interval, and its foreground activities, i.e., whether it
would run in the foreground during the next screen-on interval. If
there is a strong correlation, the background activities of the app
during screen-off intervals are likely to be useful to the user expe-
rience. For example, for a user who checks her Facebook feeds
frequently, the periodic synchronization of the Facebook app with
the server during a screen-off interval reduces the response time
when the user checks her Facebook during the next screen-on in-
terval and thus enhances the user experience. On the other hand,
if a user rarely checks her Facebook feeds, the background activ-
ities are likely not useful to the user, and disabling such periodic
synchronization with the server in screen-off intervals is unlikely
to affect the user experience.

Once HUSH learns the usefulness of apps’ background activi-
ties during screen-off intervals, it instructs the Android scheduler
to selectively avoid scheduling the execution of certain apps during
screen-off intervals to save the screen-off energy.

6. BFC ANALYSIS
To validate the premise behind HUSH, in this section, we propose

a metric to measure the correlation between background-foreground
app activities called Background-Foreground Correlation (BFC).
We then perform an extensive analysis of the BFC of all back-
ground and foreground activities on the 2000 devices. Our anal-
ysis shows that (1) the usefulness of the background activities of
different apps for the same user can differ significantly; (2) the use-
fulness of the same app differs significantly for different users, and
thus background activities of apps should be personalized to indi-
vidual users. We then propose and evaluate an online algorithm
that disables app background activities during screen-off intervals
judiciously.

6.1 BFC Analysis
The motivation for the BFC metric is to capture the likelihood

that a user will interact with an app during a screen-on interval
after it had any background activities during the preceding screen-
off interval. Formally, for a given app k, let Bk denote a given
sequence of all screen-off intervals in time order during which app
k was active. For each interval b in Bk, we define binary function
Xk(b) = 1, if app k ran in foreground during the screen-on interval
following b, and Xk(b) = 0, otherwise. The BFC metric of app k
for Bk is calculated as

BFCk(Bk) =
∑

b∈Bk

Xk(b)/|Bk| (6.1.1)

The BFC of an app is thus a value between 0 and 1. The lower
the BFC value, the weaker the correlation between the app’s back-
ground activities during screen-off intervals and its foreground ac-
tivities during subsequent screen-on intervals, and hence suppress-
ing the app’s background activities during screen-off intervals will
most likely not affect the user experience with the app.

Limitations. The BFC metric does not capture well the useful-
ness of the class of apps that primarily run in the background, such
as file-syncing apps or health monitoring apps. For example, Drop-
box is used by users to upload files to the Dropbox site and this may
happen on a scheduled frequency which may occur during screen-
off intervals only, and the user may only infrequently access the
Dropbox app itself during screen-on. In this case, the BFC metric
will be low yet the background upload activities are considered use-
ful to the user. For such apps, HUSH provides a feature that allows
users to whitelist them to bypass the suppressing procedure.

BFC of the apps of the same user varies. We first measure the
BFC of different apps on the same device. We randomly picked

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

B
F

C

Percentage of apps (%)

Heavy user 1
Heavy user 2
Heavy user 3
Medium user 1
Medium user 2
Medium user 3
Light user 1
Light user 2
Light user 3

Figure 11: BFC of all apps

across 3 light users, 3 median

users, and 3 heavy users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

B
F

C

Percentage of devices (%)

Gmail
Chrome
Facebook
Dropbox
FBMessenger

Figure 12: BFC of top 5 most

popular apps across users

Table 3: Top 5 popular apps in the 2000-user trace.

App Popularity

Gmail 1718
Chrome 1601
Facebook 1462
Dropbox 1259

FB Messenger 1257

3 light users, 3 median users and 3 heavy users according to daily
screen-on time of Figure 1. Figure 11 shows the BFC for all the
apps during the trace period, 27.9-day long on average, for each of
the 9 users. We make several observations. First, the heavy users
have the highest BFC, followed by the median users and by light
users. This is intuitive as heavy users spend more time playing apps
in foreground, making more background app updates useful. Sec-
ond, for all 9 users, nearly 60% of the apps have a BFC value of
0, suggesting that many apps are not accessed at all by users after
they performed some background activities. This is often the case
where the user used an app for a short while, and then lost interest
and stopped using it. In other cases, an app’s background activities
may not be a driving factor (e.g., the app did not generate any no-
tifications) for the user to access it, and thus the user experience is
likely unaffected if its background activities are suppressed. Third,
for the remaining 30%–40% of the apps on each device, their BFC
values vary significantly, all the way from 0 to 1, suggesting the
BFC is highly app-dependent.

BFC of an app varies with users. Next, we measure the BFC of
an app across different users. We pick the top 5 most popular apps
in our 2000-user trace, shown in Table 3, and calculate the BFC
for each of them on the 2000 devices. The results are shown in
Figure 12. We make several observations. First, the BFC of all 5
apps indeed vary significantly, ranging between 0 to 1, suggesting
it is highly user-dependent. Second, even for popular apps such
as Gmail, the BFC is zero for 35% of the users, who will bene-
fit from HUSH which would suppress the app from running during
screen-off intervals and save battery, without experiencing any ad-
verse user experience. Third, interestingly, while Dropbox indeed
has a BFC of zero for about 80% of the users, its BFC is large for
the remaining 20% users, reaching 1 for 1.1% of the users. The
detailed trace shows for those devices, the user checks Dropbox
in foreground every time after it synchronizes with its server in a
screen-off interval.

Stability of BFC. Next, we measure whether the BFC of a given
app on a given user’s phone is stable over time. For each user trace,
we divide the trace duration into non-overlapping windows of 24
hours each, and calculate the BFC for each window for each app
that has at least 24 daily background activities (on average one per

 0

 0.5

 1

 0 50 100 150 200 250 300 350

B
F

C

Gmail
Chrome
Facebook

Dropbox
FBMessenger

 0

 0.5

 1

 0 50 100 150 200 250 300 350

B
F

C

 0

 0.5

 1

 0 50 100 150 200 250 300 350

B
F

C

 0

 0.5

 1

 0 50 100 150 200 250 300 350

B
F

C

Time (hour)

Figure 13: Stability of the BFC of 5 apps on 4 selected devices.

hour). Figure 13 plots the BFC values across all the windows for
the same 5 apps studied in Figure 12 and 4 out of the 9 devices in
Figure 11 (the second user has no Dropbox). Further, we pick top
25 apps across the devices, calculate the standard deviation of the
BFC values for all the windows for each app on each device that
has it, and plot in Figure 14 the distribution of standard deviation
values per app across all the devices. We observe that (1) the BFC
for the same app on the same device is fairly steady (e.g., FBMes-
senger) or changes slowly (e.g., Facebook), and (2) while the BFC
for the same app may vary sharply across users, it is fairly stable
for individual users.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Percentage of device (%)

Google Play
Google Now
Youtube
Google Map
Google Plus
Android MMS
Hangout
Gmail
Chrome

Facebook
Google Music
FB Messenger
Whatsapp
Exchange
Google Drive
Dropbox
Instagram
Twitter

Skype
Google Video
AccuWeather
TripAdvisor
CleanMaster
Viber
Kindle

Figure 14: Standard deviation of the BFC of top 25 apps on all

devices.

In summary, the results from the above three measurements sug-
gest that the BFC value is both user-dependent and app-dependent
but is fairly steady for the same app and same user, and therefore
should be and can be learned on a per-app and per-user basis.

6.2 Prediction-based Online Algorithm
The BFC analysis above motivated us to develop a prediction-

based online algorithm for suppressing app background activities
to reduce the background energy drain. The algorithm uses an ex-
ponential moving average to continuously update the BFC for each

46

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800

A
v
g

.
n

u
m

b
e

r
o

f
a

c
ti
v
it
ie

s
 p

e
r

d
a

y

Apps

Foreground
Background

Figure 15: Average numbers of foreground and background

activities per day of top 800 apps on the 2000 devices.

app on each device, as follows:

BFCk(i) = β · BFCk(i− 1) + (1− β) ·Xk(i) (6.2.1)

where BFCk(i) denotes the BFC updated at the end of the screen-
on interval after screen-off interval i which had background activ-
ities of app k, and Xk(i) records if app k ran in that screen-on
interval.
In the following screen-off interval i + 1 when app k attempts

to wake up to perform background activities, the algorithm com-
pares the app’s current BFC(i) to a predetermined cutoff value α:
the background activity is suppressed if BFCk(i) ≤ α. However,
BFCk(i + 1) is updated as usual regardless if the background ac-
tivities during interval i+ 1 were suppressed or not.

6.3 Choosing Parameters
The online algorithm above has two key parameters: coefficient

β in the exponential moving average calculation and cutoff α for
suppressing app background activities. Both parameters directly
affect the suppression operations of the algorithm.
To gain insight into how to choose the parameters, we first show

the average numbers of foreground and background activities per
day of the top 800 apps on the 2000 devices (i.e., with over 15
users) in Figure 15. We find 22% apps have more than 10 back-
ground activities per day, 10% apps have more than 36 background
activities per day, and 77% of apps have more daily background
activities than daily foreground activities. We further study the
300-hour long background and foreground activity sequences of
10 popular apps running on a dozen devices, and calculated their
BFC under β values of 0.1, 0.5, and 0.9. Figure 16 shows the re-
sults for 6 representative app-device combinations. Based on these
background activity patterns, we can group apps into three cases:

• Case 1: there are few foreground activities and hence many back-
ground activities per foreground activity (e.g., Google Now, and
Gmail);

• Case 2: there are many foreground activities and hence few back-
ground activities per foreground activity (e.g., Facebook-User 2,
Whatsapp-User 2);

• Case 3: the app contains alternating phases with few and many
foreground activities (e.g., Facebook-User 1, Whatsapp-User 1).

Notice the same app (e.g., Whatsapp) can fall into different cases
on different devices because of different user behavior.
The above categorization of app background activities can be in-

tuitively explained as follows. All the background activities that we
see are push-based. Pushed information are either time-sensitive or
time-insensitive. If the information is time-sensitive, the app typi-
cally notifies the user to use the app and the user is likely to open
the app. For example, chats and certain types of posts (e.g., a friend
directly interacts with a user by sending messages or writing to her

timeline) are generally considered time-sensitive and produce no-
tifications, and hence Whatsapp and Facebook (User 2) fall into
Case 2. In contrast, the information fetched by Google Now in
background, e.g., recommended news and weather forecast, sel-
dom are time-sensitive or generate notifications, and rarely prompt
the user to use the app. Hence Google Now falls into Case 1. The
information fetched by Facebook may consist of a mix of general
friend’s posts which are not time-sensitive, and time-sensitive posts
mentioned above. Thus, Facebook can also fall into Case 3, e.g.,
Facebook - User 1.

Picking the β value. In Case 1, since the app has few foreground
activities, the app’s BFC should stay low, and hence a large β value
is preferred as it favors the steady-state (low) BFC; with a small
β, transient foreground activities would cause the BFC to jump up
significantly, as shown in Figure 16(c)(d).

In Case 2, there are many foreground activities and also back-
ground activities, and hence Xk(i) oscillates between 0 and 1 fre-
quently. Since many background activities are useful, background
activities should not be suppressed and hence BFC should not go
too low. In this case, a larger β is preferred as using a small β
value would give too much weight to the most recentXk(i) which
can cause the BFC to fluctuate between close-to-0 and close-to-1
values, as seen in Figure 16(b)(f).

Finally, in Case 3, the app transitions between strong and weak
correlation phases, a small β is preferred since it allows the BFC to
quickly adjust to the steady-state value in the new phase, as shown
in Figure 16(a)(e).

In summary, the three cases prefer different values of β. We pick
β=0.5 to strike a balance between the difference preferences. As
shown in Figure 16, using β=0.5 keeps the BFC sufficient low for
Case 1 and sufficiently high for Case 2, and adapts the BFC quickly
for Case 3. The BFC curves using β=0.5 in the figure also suggest
that using a low value of α in the range of 0.1-0.2 will suppress
most background activities appropriately.

6.4 Trace-driven Evaluation
We now evaluate the effectiveness of our online BFC-based algo-

rithm for suppressing background activities to save screen-off en-
ergy using trace-driven simulation, using our 2000-user trace. The
energy saving is defined as Eb−Ea

Eb

, where Eb and Ea are the total

energy on each device before and after our suppression algorithm
is turned on.

Methodology. When we suppress background activities in screen-
off, we assume their networking is completely avoided, i.e., not
delayed to be performed during the next screen-on activity of the
app, which potentially can increase the screen-on part of the app
energy. Since we do not know the causality between app and sys-
tem service activities, we break down the total energy drain due to
system services in each logging interval and attribute them to the
apps that ran in that interval proportionally to their CPU busy time.
Similarly, we break down the CPU idle time and hence energy in
each interval and attribute them to the apps that ran in that interval
proportionally to their CPU busy time. When an app background
activity is suppressed, the associated service and CPU idle energy
drain are also avoided.

Since we have networking statistics per 5-second logging inter-
val, the total network energy calculation in Section 4 already took
into account app background networking activities in the same 5-
second interval would share network tail energy. Similarly, when
an app background activity in a screen-off interval is suppressed,
its share of network energy is deducted appropriately, i.e., if other
apps and services had networking activities in the same 5-second
interval, the tail energy is not deducted.

47

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(a) Facebook - User 1 (Case 3)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(b) Facebook - User 2 (Case 2)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(c) Gmail (Case 1)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(d) Google Now (Case 1)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(e) Whatsapp - User 1 (Case 3)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

Time(hour)

β=0.1
β=0.5
β=0.9
Foreground
Background

(f) Whatsapp - User 2 (Case 2)

Figure 16: Background/foreground activities and online BFC calculation under three β values. BFC is initialized to 0.5.

Staleness. Since our practical algorithm uses an app’s past BFC to
predict its future BFC, it can mispredict and suppress background
activities that turned out to be useful, i.e., the next screen-on inter-
val had foreground activities of the app. To quantify such mispre-
dictions, we define the staleness for each app foreground activity as
the elapsed time since the last background activity, or the last fore-
ground activity of the app, whichever is closer in time. The stale-
ness of an app on a device is then defined as the average staleness
of all its foreground activities on that device. We note under this
definition, even without any suppression, the staleness of an app is
not zero, but an incorrect suppression increases the staleness.

Optimal energy saving. Before presenting the results for our on-
line prediction-based algorithm, we calculate the optimal energy

saving, the energy saving of an optimal suppression algorithm that
knows the future and disables all background activities of any app
that ran in screen-off interval b but did not run in the screen-on
interval immediately following screen-off interval b. In doing so,
the screen-off energy would be reduced by 14.1%–90.0% across

the 2000 devices, with an average of 55.6%, which translates into
0.2%–63.1% total daily energy saving, with an average of 17.1%
and a median of 15.7%, as shown in Figure 17(b).

Energy saving. We evaluate the algorithm with different threshold
α values, which control the trade-off between screen-off energy
reduction with app staleness. For example, an α value of 0 is the
most conservative – an app’s background activities are suppressed
only if its current BFC metric is 0, which also leads to the least
amount of energy saving.

Figures 17(a)(b) show the percentage of background activities
suppressed and the total energy saving across the 2000 devices as
α varies between 0 and 0.8 and β = 0.5. We observe that using a
small α value of 0.1, significant amount of background energy can
already be reduced across the 2000 devices, with the average, the
10th, 50th, and 90th percentile total energy saving being 16.4%,
6.0%, 14.9% and 29.4%, respectively. Additional energy saving
with more aggressive suppression, i.e., by relaxing α all the way to
0.8, is small, with the average, the 10th, 50th, and 90th percentile

48

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000

P
e

rc
e

n
ta

g
e

 o
f

s
u

p
p

re
s
s
e

d
b

a
c
k
g

ro
u

n
d

 a
c
ti
v
it
ie

s
 (

%
)

Devices

HUSH σ = 1
HUSH σ = 1.2
HUSH σ = 2
BFC α = 0
BFC α = 0.1
BFC α = 0.2
BFC α = 0.8
Optimal

(a) Percentage of suppressed background activities

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

E
n

e
rg

y
 s

a
v
in

g
 (

%
)

Devices

HUSH σ = 1
HUSH σ = 1.2
HUSH σ = 2
BFC α = 0
BFC α = 0.1
BFC α = 0.2
BFC α = 0.8
Optimal

(b) Energy saving

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

S
ta

le
n

e
s
s
 (

h
o

u
r)

Devices

No suppression
Optimal
HUSH σ = 1
HUSH σ = 1.2
HUSH σ = 2
BFC α = 0
BFC α = 0.1
BFC α = 0.2
BFC α = 0.8

(c) Average staleness of apps

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

S
ta

le
n

e
s
s
 (

h
o

u
r)

Apps

Google Now

Telegram

Toolbox

Google Play
α = 0.1
No suppression

(d) Staleness per app on one device from BFC-based algorithm
(with 2.5x staleness for α=0.1)

Figure 17: Results from running the BFC-based algorithm and

the HUSH algorithm across the devices, β=0.5.

total energy saving being 19.3%, 7.3%, 17.9%, and 33.2%, respec-
tively. This is because most of the energy saving comes from Case
1 apps, whose BFC will almost always stay below 0.1.
Figure 17(c) shows the corresponding app staleness under the

different α values. We see that suppressing background activities
increases the app staleness from on average 2.5x with α = 0.1 to
3.1x with α = 0.8. The above trade-off between energy saving and
app staleness suggests choosing an α value of 0.1 strikes a good
balance between the two metrics. To understand the seemingly
large staleness increase, we picked the device that corresponds to
2.5x increase under α=0.1 in Figure 17(c), device 1400, and plot
the staleness of the individual apps on it before and after running
the suppression algorithm, in Figure 17(d), sorted by staleness with-
out suppression. We see that for most apps, the staleness stays the
same, suggesting the suppression of their background activities was
accurate; only 4 out of 27 apps have significantly increased stale-
ness, which contributes to the 2.5x average staleness of the device.

 0

 20

 40

 60

 80

 100

Case 1 Case 2 Case 3
 0

 100

 200

 300

 400

 500

A
v
g

.
p

e
r-

a
p

p
 e

n
e

rg
y
 s

a
v
in

g
 (

%
)

A
v
g

.
s
ta

le
n

e
s
s
 i
n

c
re

a
s
e

 f
a

c
to

rAvg. per-app energy saving
Avg. staleness increase factor

Figure 19: Average energy saving and staleness increase factors

of apps in the 3 cases on the 2000 devices.

Figure 20: The HUSH suppression algorithm.

Algorithm refinement. We dig deeper into the 4 apps (Google
Now, Telegram, All-In-One Toolbox, Google Play) with large stal-
eness and plot their 300-hour long background and foreground ac-
tivity sequences in Figure 18 (with Google Play omitted due to page
limit). We observe these apps are all Case 1 apps; they rarely run in
foreground, and hence when background activities in between two
adjacent foreground activities are suppressed, the screen-off energy
is reduced significantly but the staleness also skyrockets.

To generalize this finding, we classify the user-app combinations
into each case using a simple algorithm as follows. We assign a
user-app combination as Case 1 (Case 2) if for 80% of the fore-
ground activities there are more (less) than 5 background activities
until the next foreground activity, and Case 3 otherwise. We draw
the average per-app energy saving and the ratio of staleness (af-
ter and before suppression) in Figure 19 under α=0.1 for the three
Cases of apps and observe that Case 1 apps indeed have the most
energy savings as well as the highest staleness increase.

The BFC-based suppression algorithm strictly follows an all-or-
none policy; once the BFC decays below α, it suppresses all back-
ground activities in the subsequent screen-off intervals leaving the
staleness grow boundlessly until the next foreground activity. We
observe that the staleness of Case 1 apps can be significantly re-
duced while retaining their energy saving, by relaxing the strict-
ness of the suppressing policy to include an exponential backoff
and omitting the need to maintain BFC calculation, as shown in
Figure 20. We denote this new algorithm as HUSH.

HUSH does not maintain the BFC calculation since for Case 1
apps the BFC between two foreground activities will be very low
that it cannot predict the next foreground activity anyway. Instead,
it simply maintains and tunes a single threshold time parameter (τ)
for each app; an app’s next screen-off activity is allowed only if its
previous background activity happened τ earlier, and is otherwise
suppressed. Whenever HUSH allows a screen-off activity, τ is mul-
tiplied by a scaling factor σ (>1), making screen-off activities less
and less frequent. However, when an app comes to foreground, its
τ is reset back to τinit. Figure 18 shows how HUSH suppresses the
background activities for the 3 apps for different values of σ.

Compared to the BFC algorithm, HUSH just allowsO(logσ(K))
screen-off activities where K is the total screen-off activities be-

49

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

B
F

C

Time(hour)

σ=2
σ=1.2
σ=1
Foreground
Background
BFC

(a) Google Now

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

B
F

C

Time(hour)

σ=2
σ=1.2
σ=1
Foreground
Background
BFC

(b)Telegram

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300

B
F

C

Time(hour)

σ=2
σ=1.2
σ=1
Foreground
Background
BFC

(c) All-in-one Toolbox

Figure 18: Original background/foreground activities, and background activities after suppression by the BFC algorithm and by the

HUSH algorithm, for 3 apps with large staleness.

tween two foreground activities with interval D, while bounding
app staleness to be about σ−1

σ
·D, assuming the background activ-

ities are equally spaced. Thus, it turns out HUSH works well not
only for Case 1 apps, but also for Case 2 (and hence Case 3 apps),
for which the background activities will be barely suppressed as de-
sired, if τinit is set to an appropriate value – we set it to 1 minute.
We also plot the average energy savings and staleness of apps

across 2000 devices in Figure 17 for HUSH with different values of
σ. We see the HUSH algorithm does not incur large staleness and
yet is able to achieve similar energy savings as the BFC algorithm.
With σ = 1.2, the average energy saving across the 2000 devices is
15.7% compared to 16.4% for BFC with α = 0.1, and the staleness
increase is 1.3x on average compared to 2.5x in BFC with α = 0.1.

7. HUSHSCREEN-OFFENERGYOPTIMIZER
The Android framework exposes to apps several services such

as Location Manager, Alarm Manager, and Power Manager, which
run with higher privilege than apps in a separate process, system_-
server. Android services typically use the publish-subscribe pat-
tern where apps subscribe to updates (e.g., location updates) from
the services (e.g., Location Manager), and services then invoke app
callbacks upon the subscribed event (e.g., user location changed),
via either the synchronous RPC mechanism Binder, or the asyn-
chronous IPC message passing mechanism Intent.
Thus, to suppress the default app background activities, HUSH

tracks app foreground and background activities and intercepts app
invocations by framework services during screen-off intervals by
either allowing or rejecting them.

7.1 HUSH Design
Figure 21 shows the architecture of HUSH design. The main al-

gorithm of HUSH is implemented inside BatteryStatsImpl, where
Android maintains runtime statistics of the whole system and for
each individual app such as the total screen-on time, total number
of wakeups caused by each app, and total time a wakelock was held
by each app. Other HUSH components directly interact with the
BatteryStatsImpl module. ActivityManagerService and BatteryS-

tatsImpl.Uid.Pkg.Serv notify the central components of any fore-
ground and background app activities, respectively.

Figure 21: Architecture of HUSH.

Most framework services including AlarmManagerService [9]
and GoogleCloudMessaging [8] send data to apps or simply wake
up apps’ BroadcastReceiver via lightweight asynchronous IPCmech-
anism – Intent. BroadcastQueue now only sends broadcasts when
allowHush returns true.

Other framework services such as LocationManagerService use
Android’s synchronous RPC mechanism– Binder. We directly edit
such framework services to only make the remote call if allowHush
returns true. HUSH does not intercept Binder remote calls since
upon allowHush failure, HUSH cannot (1) throw an exception, since
any remote exceptions are not sent back to the caller and hence
a caller generally does not expect an exception, or (2) return a
garbage value as it can break the caller’s code logic.

We note that none of these changes harm user-facing app com-
ponents. allowHush allows all requests when the screen is on and
when an app is perceptible to the user in screen-off, such as mu-
sic streaming apps and navigation apps. Users can also whitelist
apps and vary the aggressiveness of HUSH by changing the decay
parameter σ in Android settings, as shown in Figure 22.

In total, HUSH adds and modifies 450 and 272 lines of code,
respectively. The HUSH source code was released in March 2015
and can be downloaded at github.com/hushnymous.

50

(a) Disable background
suppression for selected
apps.

(b) Control background
suppression aggressiveness.

Figure 22: Hush allows users to control its behavior.

Table 4: Statistics of HUSH running on two Samsung Galaxy S3

phones with Android Jelly Bean for 6 days.

User-1 User-2

Number of installed apps 73 52
Daily screen-on intervals 85 29
Daily screen-on time (min) 82.35 49.95
Daily suppressions by HUSH 4400 5543

Android HUSH Android HUSH

Daily CPU busy time (min) 164.2 97.04 60.81 27.24
Maintenance power (mA) 12.76 12.76 12.12 12.12
Avg. screen-off power (mA) 15.57 5.27 3.19 2.18
Avg. screen-on power (mA) 316.8 323.5 271.4 273.0
Overall avg. power (mA) 45.50 36.34 27.32 18.99

7.2 Evaluation
We evaluate HUSH on two Samsung Galaxy S3 phones. Both

phones ran Android with HUSH for 3 days and unmodified Android
for the other 3 days. We installed and whitelisted eStar in HUSH so
we can use it to monitor the usage pattern and energy drain rate of
the phones.
Table 4 shows the usage pattern for the two users. User-1 uses

his phone heavily having 73 apps installed on the phone and keeps
the screen on for an average of 82 minutes daily. While User-2 has
52 apps and turns on the screen for 50 minutes daily. On average,
HUSH suppressed 4400 and 5543 app background activities on the
two phones daily, which reduced the daily CPU busy time by 1.69x
and 2.23x. The maintenance power, which includes the normalized
power draw by cellular paging, WiFi beacon, WiFi scanning, and
SOC in suspension, differ slightly between the two phones which
were connected to WiFi for different durations. HUSH significantly
reduced the average screen-off power, i.e., screen-off energy nor-
malized by screen-off duration, by 2.95x and 1.46x, while the av-
erage screen-on power is slightly increased, leading to an overall
average power reduction of 1.25x and 1.44x for the two users, re-
spectively.
Next, we sort all the apps by the ratio of the number of times

they were allowed to perform screen-off activity to the number of
times they were suppressed by HUSH. We only consider apps that
tried to perform screen-off activities at least 5 times.
Table 5 shows the top 5 most allowed and most suppressed apps

by HUSH on the two phones. The majority of apps in both al-
lowed and suppressed tables are from the Communication Google

Table 5: Most allowed/suppressed apps by HUSH.

User-1 User-2
App Allow-deny App Allow-deny

ratio ratio
Most allowed

Whatsapp 0.338 Sogou input 2.000
Google Hangout 0.333 iReader 0.473
Google Plus 0.182 Chrome 0.403
Meditation Helper 0.182 Skype 0.354
Gmail 0.142 Gmail 0.235

Most suppressed
Hydro Coach 0.041 Evernote 0.000
Cover Screen 0.042 Zaker 0.020
Email 0.048 QQ 0.035
Chrome 0.059 Wechat 0.091
Aviate 0.065 Weibo 0.097

Play category which comprises of IM clients, email clients and
browsers. The top most allowed app for User-2 is Sogou input
which is a keyboard app for typing Chinese characters and hence
comes to foreground often. Sogou input syncs with its server dur-
ing screen-off to get the current popular words and phrases.

We found that both users keep more than one app that perform
the same function, e.g.,messaging. However, out of these, the users
typically use one app to perform one function. Hence exactly one
app performing similar functionalities appears in the most allowed
app list; the alternates are in the most suppressed list, because they
hardly ran in foreground, with the sole exception of Whatsapp and
Google Hangout. For User-1, Gmail is in the most allowed app
list, but Email is the most suppressed list. In IM apps for User-2,
Skype is in the most allowed list but Wechat and QQ are in the most
suppressed list. Similarly, in news & magazines category, iReader
is among the most allowed but Zaker is among the most suppressed.

Limitations. Although we released the source code of HUSH in
March 2015, we have had limited experience with evaluating HUSH

on real users’ phones so far. The challenge stems from the diffi-
culty in performing controlled experiments, i.e., to subject a user’s
phone with and without running HUSH to the same user app usage
and external conditions. A related limitation is that we have not
performed any human subject study, i.e., to measure whether run-
ning HUSH on a user’s phone affects the user experience. We plan
to study ways of overcoming these challenges in our future work.

8. CONCLUSIONS
In this paper, we performed to our knowledge the first in-depth

large-scale measurement study of background activities on smart-
phones in the wild and their impact on battery drain. Our analysis
shows that across the 2000 Galaxy S3 and S4 devices, on average
45.9% of the total energy drain in a day occurs during screen-off
intervals, and the background apps and services and induced CPU
idle time during screen-off together contribute to 28.9% of the to-
tal energy drain. We then proposed the BFC metric to measure the
usefulness of background activities and showed the usefulness of
background activities is highly app-dependent and user-dependent.
Finally, we presented a screen-off energy optimizer called HUSH

that automatically identifies and suppresses background activities
of individual apps during screen-off periods that are not useful to
the experience of the user. We show HUSH can save the screen-off
energy across the 2000 smartphones by 15.7% on average.

Acknowledgment. We thank the anonymous reviewers and our
shepherd for their constructive comments which helped to improve
this paper. This work was supported in part by NSF grant CCF-
1320764 and by Intel.

51

9. REFERENCES
[1] Android background app usage restriction.

[2] Android service.
http://developer.android.com/reference/android/app/Service.html.

[3] AppBrain, top android phones.
www.appbrain.com/stats/top-android-phones.

[4] estar energy saver.
https://play.google.com/store/apps/details?id=com.mobileenerlytics.estar.

[5] Hi.
https://play.google.com/store/apps/details?id=com.didirelease.view.

[6] ios background app refresh.

[7] ios background execution.

[8] Receive a message.
developer.android.com/google/gcm/client.html#sample-receive.

[9] Using pending intent. devel-
oper.android.com/reference/android/app/AlarmManager.html#set(int,
long, android.app.PendingIntent).

[10] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.
Energy consumption in mobile phones: a measurement study and
implications for network applications. In Proc of IMC, 2009.

[11] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone energy drain in the wild: Analysis and
implications. In ACM SIGMETRICS, 2015.

[12] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice.
Characterizing and modeling the impact of wireless signal strength
on smartphone battery drain. In ACM SIGMETRICS, 2013.

[13] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A first look at traffic on smartphones. In Proc. of IMC, 2010.

[14] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A close examination of performance and power characteristics of 4g
lte networks. In Proc. of Mobisys, 2012.

[15] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck. Screen-off
traffic characterization and optimization in 3g/4g networks. In IMC,
2012.

[16] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance difference on smartphones. In
Proc. of Mobisys, 2010.

[17] C.-Y. Li, C. Peng, S. Lu, and X. Wang. Energy-based rate adaptation
for 802.11n. In Proc. of ACM MobiCom, 2012.

[18] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to
estimate app energy consumption. In Proc. of ACM MobiCom, 2012.

[19] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? fine grained energy accounting on smartphones with eprof.
In Proc. of EuroSys, 2012.

[20] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using system-call
tracing. In Proc. of EuroSys, 2011.

[21] A. Pathak, A. Jindal, Y. C. Hu, and S. Midkiff. What is keeping my
phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proc. of Mobisys, 2012.

[22] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck.
Profiling resource usage for mobile applications: a cross-layer
approach. In Proc. of Mobisys, 2011.

[23] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh. Appinsight: Mobile app performance monitoring
in the wild. In OSDI, 2012.

[24] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real
user activity patterns to guide power optimizations for mobile
architectures. InMICRO, 2009.

[25] J. Sommers and P. Barford. Cell vs. wifi: On the performance of
metro area mobile connections. In IMC, 2012.

[26] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proc. of
IMC, 2011.

[27] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and
L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones. In Proc.
of CODES+ISSS, 2010.

52

	Introduction
	Related Work
	Characterizing Background Activities in the Wild
	Trace Collection
	Screen-off Intervals
	Background Activities in Screen-off
	Background App Activities

	Energy Drain
	Methodology
	Background Energy Analysis

	Key Idea
	BFC Analysis
	BFC Analysis
	Prediction-based Online Algorithm
	Choosing Parameters
	Trace-driven Evaluation

	Hush Screen-off Energy Optimizer
	Hush Design
	Evaluation

	Conclusions
	References

