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ABSTRACT
Cellular networks have witnessed tremendous traffic growth re-
cently, fueled by smartphones, tablets and new high speed broad-
band cellular access technologies. A key application driving that
growth is video streaming. Yet very little is known about the char-
acteristics of this traffic class. In this paper, we examine video
traffic generated by three million users across one of the world’s
largest 3G cellular networks. This first deep dive into cellular video
streaming shows that HLS, an adaptive bitrate streaming protocol,
accounts for one third of the streaming video traffic and that it is
common to see changes in encoding bitrates within a session. We
also observe that most of the content is streamed at less than 255
Kbps and that only 40% of the videos are fully downloaded. An-
other key finding is that there exists significant potential for caching
to deliver this content.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements—web caching

General Terms
Networking Optimization

1. INTRODUCTION
Thanks to the emergence of user-friendly smartphones and

tablets, cellular networks have recently experienced a phenomenal
rise in data traffic. One US cellular operator observed a growth of
8000% over the last 4 years [4]. According to a network equip-
ment manufacturer [5], strong growth will continue at a rate of
92% per year over the next 5 years, driven primarily by video traf-
fic. Indeed, they estimate that video traffic accounts for half of the
cellular traffic today and that this share will increase to two thirds
of the traffic by 2015. Given such predictions, it becomes crucial
for network providers to understand and then determine how to op-
timize delivery of video traffic for cellular networks. This traffic
type is often referred to as Over The Top (OTT) video, as the con-
tent doesn’t typically come from the cellular carrier, but from third
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party providers that leverage the Internet connectivity of cellular
customers.

Unfortunately, little is known about the characteristics of cellular
video traffic. For example, today there does not even exist a study
on the popularity of the actual video streaming protocols used on
cellular networks: previous studies have either looked at general
cellular traffic usage or just focused on WiFi [10,11,13–16,18,19].
In cellular networks, the most constrained and expensive resource
is the wireless spectrum in the Radio Access Network (RAN) and it
is critical that the video delivery is optimized for this environment.
A key step in that direction is developing a deep understanding of
the video content. In particular, the frame size, encoding rate and
other video parameters are important factors to better undstand, to
evaluate how much optimization opportunity exists, identify the ap-
propriate optimization techniques and where (content provider, cel-
lular provider, user equipment ) to implement them. For instance,
the knowledge of the current encoding rates and video abandon-
ment probabilities (how much of a video is likely to be watched)
could suggest the need techniques such as video pacing or transcod-
ing at the source servers or at in the network middleboxes.

While not as expensive, and, therefore less critical, backbone
resources upstream of the RAN can also be optimized based on
the characteristics of video traffic. Indeed, on the wireline Inter-
net, [12, 17] have highlighted that 80% of multimedia stream-
ing traffic was delivered over HTTP, and in this paper, we will
show that the rate for cellular network is even higher with 98%.
Hence, proxy caching based techniques which have been proposed
for wired video distribution over HTTP might also be applicable to
cellular networks and should be investigated.

This paper is the first study to provide answers to these types of
questions about video traffic on a large cellular network. It is based
on a data set collected early in 2011 covering approximately three
million smartphones and tablets in the US over 48 hours. Some of
the key takeaways of our analysis are as follows:

Protocol mix: Video traffic accounts for 30% of the down-
stream cellular traffic during the busy hour and a couple of stream-
ing protocols running over HTTP dominate. HTTP Live Streaming
(HLS) [2, 7] accounts for 36% of the video traffic, while progres-
sive downloads (defined in Section 2) account for 60%.

Content Providers: 77% of the traffic is concentrated in just the
top 10 content providers.

Bitrate Encoding: 80% of the video objects are encoded at low
rates, at or below 255 kbps.

Video Abandonment: Most videos are downloaded partially.
Only 40% of the video objects are completely downloaded.

Cacheability: There exists substantial potential for caching.
24% of the bytes for progressive downloads requests can be served
from cache.
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Table 1: Data set overview
Data Set Location Start time Duration Objects Traffic (TB)

NE US N/E 2/16/2011 15:00 GMT 24 hours 4.8M 8.09 TBytes
WEST US West coast 2/16/2011 15:00 GMT 48 hours 5.0M 9.05 TBytes

2. METHODOLOGY
We categorize the videos downloaded over HTTP into three

classes based on the streaming method used:
Progressive Download (PD): A single video is downloaded

with a single HTTP request for the entire object from the client.
The client can access the partially downloaded data before the
download is complete.

PD with Byte-Range Requests (PD-byterange): A single
video download involves multiple HTTP byte-range requests to get
different portions of the content.

HTTP Live Streaming (HLS): This belongs to a broad class of
protocols called Adaptive Bit Rate Video streaming [3]. The HLS
protocol is a proposal to the IETF from Apple [2, 7]. In HLS, a
video is downloaded in a series of chunks that are encoded using
the MPEG4 H.264 Transport Stream. These chunks are typically
around 3 to 10 seconds of video. They allow the stream to adapt to
the changes in the network condition and also other factors, such as
the device CPU load - by increasing or decreasing the bit rate and
resolution of the video in real time when it requests the next chunk.
This protocol is used generally by content providers that have long
duration video content, such as Netflix or Hulu. Other examples of
Adaptive Bit Rate Videos include HTTP Smooth Streaming advo-
cated by Microsoft with Silverlight and HTTP Dynamic Streaming
advocated by Adobe [9].

For Android-based devices, we found usage of both PD and PD-
byterange based approaches in our analysis. The usage is depen-
dent on the type of video subsystem used on each device model.
In iOS-based devices, for most short-videos (less than 10 minutes)
PD-byterange is used; however, for some videos Apple’s developer
guidelines require the use of HLS [8]. We did not find any exam-
ples of the HTTP Smooth Streaming or HTTP Dynamic Streaming
from Adobe in the traffic from the devices we studied but this may
be biased based on the subset of devices in the network studied.

In addition non-HTTP based protocols do not account for a sig-
nificant amount of traffic as we show in Section 3, and therefore we
do not investigate them further.

2.1 Data Sets
The data for this study was collected in two national data centers

of a large US based wireless provider. More specifically, the traffic
is analyzed on the Gn interface between the Gateway GPRS Sup-
port Nodes (GGSN) and Serving GPRS Support Nodes (SGSN).
Table 1 shows the details of the two data sets. They were collected
at the same time and were covering a fraction of the traffic in each
data center which mainly contains traffic of smartphones and tablet
type devices. In total, the data sets represent usage from approxi-
mately 3 million subscribers between the two data sets. While this
is a large data set, the results may not be representative of other
networks or countries, depending on the combination of wireless
devices, the types of content providers and the behavior of users.
The collection was limited to 8-9TB of data traffic in each dataset
due to 3TB of storage available to each data collector to store flow
records. As the traffic volumes observed by each data collector dif-
fered between data centers, each data set was collected for different
durations.

To perform our analysis we collected flow records, HTTP head-
ers and the first 20KB of each video flow. Video flows were identi-

fied using real-time signatures. They include in particular all HTTP
objects with a "video" or "FLV" mime type as well as RTMP (Real
Time Messaging Protocol) and RTSP (Real Time Streaming Proto-
col) traffic. Limiting our collection to the first 20KB of each video
represents a compromise motivated by the fact that most video for-
mats contain sufficient information in the first 20KB of a video
stream to infer encoding rates and other video parameters neces-
sary for our analysis, and that collecting the entire video would
have severely limited our study period or the number of subscribers
in our study. The privacy of the subscribers was preserved, since
the flow data was not mapped to individual devices and the study
focused on the aggregate statistics across all the devices in the data
set. All the video content analysis was complete on the data collec-
tor using automated tools and no content was exported off the data
collector.

2.2 Data Preprocessing
After the data was collected it was preprocessed in multiple ways

to support our analysis.
* The HTTP requests and responses were correlated and the ac-

tual amount of user layer data was calculated using the flow records
and also the TCP sequence number differences for pipelined re-
quests, as in many cases the byte volumes in the HTTP headers
were unreliable (see Section 2.3). The device type is also deter-
mined from information set in the User-Agents of the request.

* Progressive video downloads (PDs) with multiple byte ranges
requests were combined to represent one video object based on the
URL used for the byte range requests.

* The multiple video chunks downloaded by HLS for a video
are combined into a single video object (i.e. session as a video
that is paused and later resumed in split into two seperate objects
in our analysis). As there is no generally agreed method on how to
combine HLS traffic, for each content provider we needed to de-
velop seperate hueristics based on the request patterns to combine
the HLS chunks to sessions. We only combined them for the major
content providers which utilize HLS in our trace. In combination
our heuristics allowed us to associate over 95% of all HLS traffic
volume with their video object.

* To compute such video characteristics as video duration,
codec, screen resolution and bitrate, the first 20KBytes of each
video object was reassembled and replayed into the popular ffm-
peg [6] tool, which provides such meta information to the user
in clear text after analyzing the video headers. This allowed for
45% of the video objects to be analyzed by ffmpeg and have their
video characteristics extracted. Unfortunately, not all videos con-
tain enough information in the first 20KB or else place the meta
data at the end of the video which does not allow ffmpeg to work
on our data. In addition, some HLS content providers use DRM
to encrypt their video objects which also limited ffmpeg’s ability to
extract these characteristics. Overall, ffmpeg was able to extract the
full set of additional characteristcs from 45% of the video objects.

2.3 Sample Video Behaviours
In the rest of the paper much of the results focus on the complete

video objects and HLS sessions. Figure 1 and 2 show two illustra-
tive examples of the more interesting detailed behaviours observed.
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Figure 1: Adaptive Bit Rate: Hulu example
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Figure 2: Malfunctioning Byte-Range Example

An example of an HLS video session is shown in Figure 1.
This was a Hulu video session where the adaptive protocol can be
seen changing between 64, 128, 200, and 300 Kbps encoding rates
quite frequently during the session. The interarrival times between
chunks is approximately 10 seconds in this example. On average,
we measure HLS flows changing bitrates 0.2 times per minute in
the video session for content provider which we could determine
the bitrate of the chunks. This highlights that available bandwidth
in cellular networks can change several times during the course of a
TV show or movie session and also that HLS protocols are actively
adaptiving their bitrates to these flucutations.

The second example is of an observed PD-byterange download
(Figure 2). The black bars show the range of the actual data down-
loaded and the green bars the byte-range requests size. The red
bars show data downloaded of the video that was already previ-
ously downloaded. As seen in the graph, the byte-ranges are much
larger than the actual content downloaded before the device closes
the HTTP connection and starts another. We also observe that for
longer videos a large initial download is typically followed by a se-
quence of smaller downloads for the same byterange. Further lab
testing showed that the behavior was reproducible. For instance,
after some larger videos were fully downloaded, and until the user
had finished watching the video, additional duplicate downloads
would occur. This case was observed frequently and generated a
significant amount of unnecessary duplicate video content in the
trace.

3. TRAFFIC CHARACTERIZATION
In this section, we show highlights of the video traffic we studied.

While our analysis was completed on both the NE and WEST data
sets, many of the results are quantitatively similar, therefore, we
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Figure 3: Application Mix of Overall Traffic using a stacked
line chart.
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Figure 4: Type of Video Traffic

have chosen for more clarity to provide the WEST data set results
only unless noted otherwise.

Overall, video streaming traffic accounts for 36% of the traffic in
the data studied. This is shown in Figure 3 in a stacked line chart.
During the busy hour the video streaming share is actually 30% but
peaks at 50% during the off peak hours.

The streaming video traffic is primarily delivered using HTTP-
based methods. The use of HTTP-based method is true across mul-
tiple smartphone OS’s as well. Traditional multimedia protocols
like RTSP and RTMP account for only 1.3 % and 0.4 % of the
traffic respectively. A more in depth analysis actually shows that
the use of RTSP and RTMP on smartphones and tablets is much
lower than reported as nearly all such traffic originates from either
a laptop with a cellular card or a laptop tethered to a smartphone.

The number of video objects and the data volume in each cat-
egory of the HTTP-based methods is shown in Table 2. One sur-
prising category of video content was being generated by one ad-
vertising company (labeled separately as Advertisement Objects in
the table). Interestingly, the number of objects of this category is
rather large accounting for 44.5% of the objects in the NE data set
and 44.8% in the WEST data set, even if by volume this type of
traffic accounts for less than 0.1% of all video traffic. On closer
examination we discovered that even though this content is marked
as video content in the mime header, it actually contains just text-
based user tracking information and no video content at all. As this
study is focused on understanding video content in cellular net-
works, we excluded this data from the analysis presented in the
remainder of this paper.

Table 3 shows the video characteristics per content provider and
have been obfuscated to hide marketshare. The % objects fields af-
ter the "Top" columns shows the share the top category account for,
and the UGC label refers to User Generated Content. In this table,
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Table 2: Video Object Types
Data Set HLS Objects PD Objects PD byterange Objects Adv. Objects HLS TBytes PD TBytes PD byterange TBytes Adv. TBytes

NE 0.2 (5.4%) 0.8M (15.2%) 1.9M (34.9%) 2.1M (44.5%) 2.6 (29.5%) 0.4 (4.6%) 5.9 (65.7%) < 0.1 (.1%)
WEST 0.2 (4.8%) 0.7 (15.3%) 1.7M (35.1%) 2.1M (44.8%) 2.9 (36.3%) 0.3 (4.2%) 4.8 (59.4%) < 0.1 (.1%)

Table 3: Content Provider Breakdown
Content Providers Objects Bytes HLS PD-BR PD Top Type Objects Top Screen Size Objects Avg Bitrate Avg Dur. Median Dur.

Video Stream 1 2.8% 33.2% 100% 0% 0% HLS 100% Unknown 100% 613.59 10.8 9.5
UGC 1 37.4% 19.2% 0% 99.53% 0.47% video/3gpp 92% 176x144 3% 161.59 4.09 3.5
Adult 1 2.8% 6.1% 0% 99.66% 0.34% video/mp4 100% 240x176 6% 955.8 4.82 7.0
Adult 2 1.5% 4.1% 0% 99.45% 0.55% video/mp4 98% 240x176 2% 1057.63 4.84 10.0
UGC 2 4.2% 4.0% 0% 94.25% 5.75% video/3gpp 58% 640x360 4% 334.44 3.95 3.4
Adult 3 2.1% 3.5% 0% 99.45% 0.55% video/mp4 100% 320x240 2% 498.71 5.98 3.5
Music 1 6.0% 2.3% 0% 15.43% 84.57% video/mp4 100% 480x270 63% 1146.51 0.26 0.3
Video Stream 2 0.3% 2.0% 99.21% 0% 0.79% HLS 99% Unknown 99% 435.05 9.16 4.8
Music 2 0.8% 1.4% 98.37% 1.45% 0.18% HLS 98% Unknown 98% 1339.04 0.96 0.6
Adult 4 0.6% 1.3% 0% 99.57% 0.43% video/3gpp 100% 640x480 0% 389 0.72 2.0
Social Network 1 2.8% 1.3% 0% 99.68% 0.32% video/mp4 100% 400x300 2% 364.4 0.85 0.6
Social Network 2 1.7% 1.0% 99.98% 0.01% 0.01% HLS 100% Unknown 100% 319.72 1.06 1.5
Adult 5 0.9% 0.7% 0% 99.68% 0.32% video/mp4 100% 320x240 5% 474.97 2.33 2.0
Adult 6 0.2% 0.6% 0% 99.78% 0.22% video/mp4 100% 320x240 3% 549.54 3.42 3.6

it can be seen that video content delivered is dominated by a few top
content providers: the top 10 account for 77% of the video stream-
ing. We also observe that each content provider is using mainly
a single method to deliver the videos. While some of the previ-
ous distributions had some distortions due to some smaller content
providers, comparing only the top 2 content providers, which are
also the top HLS and top PD-byterange providers, a clearer pic-
ture emerges. HLS has longer duration video sessions and a higher
average bitrate.

Table 4 is a similar table to the previous but shows the video
characteristics by device type. The most common container and
screen size resolutions of the videos with the % objects columns
after the "Top" columns showing the share the top value accounted
for in the data.

Figure 5 shows the average bitrate encoding for the HLS and
PD byte-range videos. The PD videos can be seen to be encoded
at 3 main rates of 87 Kbps, 255 Kbps, and 1150 Kbps. For the
HLS streams, the average bit rates are relatively stable with an av-
erage delivered bit rate around 500-600 Kbps. The similarity is
not surprising as HLS is an adaptive bit rate protocol that adapts
to the available bandwidth and resources on the device. Many of
the content providers using HLS have a variety of bitrates that are
available. For example, Video Stream 2 in Table 3 has 64, 128, 200,
300, 400, 650, 1000, 1500 Kbps, as encoded rates of the chunks
we saw delivered. Several other content providers using the same
CDN encode their video chunks at: 110, 200, 450 and 800 Kbps.
Unfortunately for Video Stream 1, this content provider encrypts its
traffic, so we do not know the exact encoding rate levels used the
individual chunks for this provider.

Figure 6 shows the object size distribution of the individual
"chunks" of the PD-byterange and HLS videos, as well as the
stitched total videos object sizes. As pointed out in Section 2.3 the
chunk sizes of byte range requests for one device are rather odd. In
fact, 70% of all requests in our data set are for small chunks which
follow the large initial chunk.

The average HLS chunk is 362 KB with most ranging between
100-300 KB in size. The interarrival times between chunk requests
are clustered around 3 and 10 second intervals, with a small number
of sessions at 20 and 30 second intervals as well. We were able
to verify the 10 second chunk encoding using the video durations
extracted on many of the video chunks decoded by ffmpeg.

Surprisingly, when comparing the HLS object sizes and dura-
tions to the PD-byterange results in Figure 6 and Figure 7, the HLS
durations are shorter than the PD-byte-ranges durations. This is
the result of HLS being influenced by a small number of content
providers. The video duration of one HLS content provider is al-
ways between 1 to 1.5 minutes long. While other content providers
have much longer session durations such as Video Stream 1 and
Video Stream 2. It is also interesting to note that, for these stream-
ing providers, few sessions last the entire movie or TV show length.
For many cases, sessions are interrupted and are then later seen to
be resumed. On average, for these content providers each video is
resumed 0.19 times.

Another interesting observation is that for HLS video the video
containers of the videos are already in an optimized state for mobile
video. For PD and PD-byterange video objects, we were expecting
to see more variety initially with different formats supported and
used on different types of devices. However, we found that not to be
the case, and that most videos were already in optimized containers
for 3GPP video. They were encoded using H.264 and are in either
"video/mp4" or "video/3gpp" containers for 80.7% of the objects
and 95.2% of bytes. Only 1.1% of objects and 0.8% of bytes were
in FLV format in the WEST data set and 2.1% and 1.2% of bytes
were in FLV format in the NE data set. This is also consistent
across different devices type that FLV is not a popular format as
observed in Table 4.

Finally, we studied how many videos were fully downloaded.
Fortunately for PD videos we were able to measure the total amount
of data actually downloaded before abandonment (Figure 8) and
compare it to the video size reported. Some videos are observed
to download more than 100% of video. This is a combination of
the issue observed in Section 2.3 and also from fastforwardng and
rewinding when a video is not fully cached. What can be observed
is that only 40% of videos are completely downloaded, and for
50% of videos only 60% of the video was downloaded. While this
does not show how much was watched, due to buffering, it gives
a glimpse into the amount of video that is abandoned before being
fully watched.

4. VIDEO POPULARITY AND CACHING
Having observed that streaming video accounts for a dominant

part of the cellular broadband traffic and that the lion’s share of this
traffic is carried over HTTP, a natural question is what are effec-
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Table 4: Devices Breakdown
Device Top Content Type % Objects Top Screen Size % Objects Average Bitrate Median Duration

Smartphone 1 video/mp4 58% 480x270 3% 278.9 2.85
Tablet 1 video/mp4 55% 320x240 2% 315.5 2.78
Laptop 1 video/x-ms-wmv 46% 640x360 7% 689.5 0.50
Smartphone 2 video/mp4 76% 320x240 2% 169.8 3.55
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tive ways to deliver this content. Even though the impact of video
caching on the RAN is limited, as highlighted in the Introduction,
the growth of video traffic in cellular network still warrants a close
study of the topic to understand the possible bandwidth savings in
the backkhaul networks and the potential to improve end-user ex-
perience by reducing delay. To answer how much potential exists
one must in particular consider multiple aspects of the traffic char-
acteristics: whether content providers allow their video objects to
be cached, the spatio-temporal popularity characteristics of the re-
quested video objects, and whether the content is encrypted, etc.

We first examine the requested objects based purely on the
cache control directives in the HTTP request response messages.
These enable specification of Cacheability : the server can specify
whether a requested object can be cached, and then can indicate if
a particular request can be served from cache or needs to be fetched
from the server. Freshness : the duration for which a downloaded
copy of a cacheable resource is valid for serving a request.

Combining the relevant information bits from the request-
response pairs for a video object, we can categorize all the requests
in terms of Cacheability as:
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Figure 9: Cache Hit Ratio of Video and Cache Size

uncacheable: the request can not be cached;
cacheable-local: the requested object is cacheable and the re-

quest can be served from the cache without contacting the server as
long as it is fresh;

cacheable-validate: the requested object is cacheable, but the
cache needs to check with the server that its local copy is valid
every time the object is served to a client.

We find that for PD-all (both PD and PD-byterange) traffic, 8.0%
of all the requested data are uncacheable, 63.2% are cacheable-
local and 28.8% are cacheable-validate. For HLS traffic the cor-
responding percentages are 78%, 11% and 11%, respectively. An
upper bound on the proportion of requests (by bytes) that can be po-
tentially served from the cache (assuming that the content is fresh
for cacheable-local cases and that the copy is still valid for the
cacheable-validate cases) is a very large 92.0% of all the requested
traffic for PD-all and only 22% for HLS.

We next consider the distribution of the freshness for object re-
quested with a server-specified freshness duration > 0. Across all
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Figure 10: Object Popularity of PD-all Videos
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Figure 11: Object Popularity of HLS Videos

the video types, we find that overall freshness duration is < 1hour
for 9.4% of the requested traffic, and exceeds 1 day for 32.3% of
the requested traffic. There are 2 concentrations: 14.5% of the
traffic has freshness duration of 1 hour and 43.8% of the traffic
have freshness duration of 1 day. The results show that substan-
tial fraction of the traffic seems to have very short freshness du-
rations set. Given that video objects normally do not change at
short timescales, and that increasing the freshness duration would
increase the likelihood of serving more requests from cache, con-
tent providers should examine whether longer freshness durations
(eg. a day) would meet their application needs.

4.1 Caching Simulation
In addition to the HTTP caching directives, the cache size and

the spatio-temporal pattern of request arrivals also determine the
extent to which requests can be served from the cache. To under-
stand the maximum obtainable benefits and to focus on the impact
of the spatio-temporal pattern of request arrivals, we consider an
unlimited cache size and simulate HTTP forward caching for the
entire traffic data for PD-all. Conceptually the result achieves the
spatio-temporal caching benefits of a cache located at the National
Data Center (NDC), which hosts the GGSNs through which all the
measured traffic flows. Our simulator is implemented to follow the
HTTP caching standard in [1].

Figure 9 depicts, for a given time instant t, the fraction of all
traffic that was served from the cache from the beginning of the
simulation until time t. At the end of the 48 hour trace, we see
that around 23.5% of all the requested traffic ( in terms of bytes)
was served from the cache. Recall that 92.0% of the PD-all traffic
was cacheable based on caching directives, therefore 25.5% of the
cacheable PD-all traffic was actually served from cache. The re-
maining 74.5% of the cacheable traffic had to be sourced from the
server - either because they accounted for the first download of an
object, or because the cached object was stale when requested.

Figure 10 shows the ranked list (red curve) of all the PD-all
videos requested, in decreasing order of popularity and their cumu-
lative contributions to the proportion of total traffic that was served
using cached content (green curve). There is significant skew in
popularity. The top-100 and top-1000 most popular objects ac-
count for 11.3% and 19.2% of all the requests respectively. The
caching simulation reveals that the traffic served from cache that
was associated with the top 100 and top 1000 objects is 4.5% and
7.7% of the total requested traffic respectively. Recalling that over-
all, 23.5% of all the requested traffic ( in terms of bytes) was served
from the cache, a policy that caches just the top-1000 objects of the
total 1.2 million unique PD-all videos would already realize a third
of the overall caching benefits. Detailed examination showed that

the top 5 objects were the same video being served from different
servers of a content provider and that most of the top 200 objects
were advertising videos. Another interesting point is that the popu-
larity distribution has a long tail which potentially limits the overall
caching that can be achieved: 50% of all requests for cacheable ob-
jects, were for objects that were requested once.

Recall that unlike PD-all videos, a relatively small proportion of
HLS traffic is cacheable because the HTTP cache control directives
set by the content provider do now allow it to be cached. In addi-
tion, we also found that much of the HLS objects were encrypted -
this adds complexity to using HTTP cache-based delivery for such
objects, as clients would also need appropriate keys to decrypt the
objects. While the combination of wide-spread non-caching direc-
tives and encryption are negatives from a caching viewpoint , it
is still interesting to examine the popularity characteristics of con-
tent being transmitted using HLS. Specifically, assuming HTTP di-
rectives were more permissive and it were possible to address the
encryption-induced challenges, would it make sense to use caching
for this content ? As a first step to answering this question, in Fig-
ure 11 we plot the ranked list (red curve) of all the HLS videos
requested, in decreasing order of popularity and their cumulative
contributions to the proportion of total traffic (green curve). Of the
total 66000 unique HLS objects, the top 1000 and the top 2800 ac-
count for 27.4% and 50% of all the HLS traffic respectively. This
popularity skew suggests that caching even a small fraction of the
popular HLS videos can lead to substantial caching gains.

5. CONCLUSION
This paper is the first large scale fine grain analysis of video traf-

fic generated by 3 million devices on a cellular network. Some
of the findings include the fact that one third of the cellular traffic
comes from Over The Top video traffic, that one third of that traffic
is HLS and that, in practice, adaptive bitrate encoding seems to be
effective as frequent bitrate adaptations are observed to sustain the
video stream (0.2 bitrate changes per minute). Moreover, we also
observed that only 40% of the videos are completely downloaded
and that 80% of the videos are encoded at or below 255kbps. Fi-
nally, we studied the cacheability of that video content. These re-
sults will help guide future video modeling and optimization work.
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Summary Review Documentation for 

“Over The Top Video: the Gorilla in Cellular Networks” 
Authors:  J. Erman, A. Gerber, S. Sen, O. Spatscheck, K. Ramakrishnan 

 
Reviewer #1 
Strengths: The authors collect data from the link connecting the 
SGSN and GGSN nodes in a large cellular network, and on two 
different locations. They analyze it to identify the videos, the 
protocol they are relayed on, the resolution, as well as 
cacheability. Very nice study. 
 
Weaknesses: The paper seems to be rushed at times. One figure 
is repeated the same in two places (5 and 8), the authors never 
introduce the content providers and make mention to them 
without and explanation. But these could be fixed in the final 
version. 
 
Comments to Authors: This is a very nice short paper. The 
authors use a new source of data, carefully collected for 24 and 48 
hours in two different locations in a large cellular network. They 
collect flow information and packet information (the first 20KB), 
thus being able to also look into the streaming bit rate of the 
video, the type of video, its resolution, information that is not 
easily accessible. Moreover, they are able to see the protocol that 
carries the video in question and study its properties. 
 
Interesting findings are: 
- majority of video is carried over HLS 
- the transmission of the video is done over varying bit rates that 
can be observed through the trace, indicating the actual need for 
streaming rate adaptation to wireless conditions 
- most content today is streamed at rather low streaming rates 
- 40% of the videos never complete 
- given that the majority of video traffic is transported over 
HTTP, the question of cacheability is asked and the authors 
simulate the actual gains one could expect from such a solution by 
replaying the collected traces. 
 
One question I had is whether the authors know if there are any 
content acceleration middleboxes in the path observed. That 
would be essential to understand since then your infrastructure 
monitors the behavior of the middlebox and not the origin video 
server. 
 
More detailed comments: 
- Section 2.1: I assume that the capacity for data collection is 9 
TB and not 3 (otherwise text disagrees with Table1) 
- Figure 3 says that it displays normalized volume, but in that case 
I would expect the x-axis to be between 0 and 1 or 0 and 100%. In 
your final version, you need to describe the metrics displayed in 
the figures more carefully. 
- The paragraph below Figure 5 points to Figure 4, but that figure 
does not contain the information discussed. 
- Video providers are discussed in page 4 without any prior 
reference and only appear in the next page. You need to 
reorganize the paper for better exposition. 

- I was actually surprised that the top resolution covers only 3% 
of the videos. How many resolutions do you see being used in 
total? 
 
All in all, I think this is a very decent attempt for this first study 
of its kind. The writing is rushed but I think the content is there 
and it’s interesting. I would be in favor of acceptance.� 
 
Reviewer #2 
Strengths: The paper presents characteristics of a large volume of 
video traffic on a cellular network. There are some interesting 
data points, e.g., the distribution of different types of video 
streaming methods.  
 
Weaknesses: The data seems not well analyzed, even for a short 
paper and some of the results are too anecdotal. The paper is 
poorly written in parts. 
 
Comments to Authors:  Video streaming over cellular networks 
is definitely a growing part of traffic, and this analysis from a 
large cellular network is certainly of great interest. However, I 
found the paper to have inadequately analyzed, what certainly is a 
very rich dataset. 
 
As an example, Figure 2 shows an anecdotal download using the 
PD-byterange method. The results are strange and unexplained in 
the paper. Does this kind of download happen a lot, or is it just a 
rare occurrence?  
 
Fig 5 and Fig 8 appear to be identical. 
 
Some of the results presented in the paper, i.e., choice of video 
adaptation rates used by different applications, are not really 
actionable. The only part of the paper that I personally found 
particularly useful was the cacheability discussion.  
 
Overall, this seems like a large dataset that requires more 
interesting analysis and the authors probably have barely 
scratched the surface with this work.  
 
Reviewer #3 
Strengths: Important topic. 
  
Weaknesses: This reader is somewhat concerned with the 
representativeness of the results from this study, due to various 
indications shown in the paper. For example, Section 2.3 stated 
that video objects were replayed into the popular ffmpeg tool to 
extract out the needed information, and “In our data set ffmpeg 
was able to parse 45% of the video objects”. 
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Another concern is the rather different ratio of uncacheable data 
between PD and HLS (8% vs 78%), which was stated but not 
clearly explained.  The paper explained this is largely due to 
encryption of HLP. But how should one view this result together 
with the Section 2.3 statement in the above (“was able to parse 
45% of the video objects” )? 
 
Section 4 stated that “ the impact of video caching on the RAN is 
limited”. Is this referring to the above result, or something else? 
 
Comments to Authors:  None. 
 
Reviewer #4 
Strengths: This is a classic network measurement paper. The 
measurements are strong, interesting, and provide some new 
insights. 
 
Weaknesses: The paper tends, at times, to feel like a data dump. 
 
At times some of the underlying issues of data quality seem a 
little brushed under the carpet. For instance, how do the authors 
account for a possible bias caused by some brands of devices 
more represented than others in their dataset, in comparison to 
other wireless networks? 
 
Comments to Authors:  The paper seems to be along the same 
lines as “P2P, the Gorilla in the Cable (2003)” by some of the 
same authors. Although the topic is actually different, the 
similarity of titles leads one to want to know the relationship 
between the two papers.  
 
There are a few statements that are just a little off. For instance, 
the two datasets were collected at the same time, but one is longer 
than the other. I guess it is just the same start time? The data 
collector had 3 TB storage, but the traces where both over 8 TB? 
Please clarify. 
 
There is a general statement about the number of subscribers 
covered in the study, but it isn’t made clear if this is a total of 
which we see a sample (in each area), or if this is the number 
sampled. 
 
Why does Figure 9 go above 100%? 
 
There are quite a few small bugs and typos in the paper.�
 
Reviewer #5 
Strengths: - Novelty: new aspect of mobile cellular network 
usage captured for the first time, with some important new 
insights (on the amount of incomplete videos, and the relative 
spread of their popularity).  
- Level of detail: practitioners and people working on detailed 
protocols of video encoding could find interesting bits. 
that there are a couple of anecdotal evidences it is nice to monitor 
how YouTube works in a systematic fashion. 
�
Weaknesses: - Not much, some limitations could be mentioned a 
bit more clearly, and naturally it would be awesome to understand 
spatial property as well, but there is so much one can do in 6 
pages. 

- The authors could have contrasted their findings with wire 
networks to emphasize the new characteristics found in this 
context. 
 
Comments to Authors: This paper is I think a no-brainer accept. 
It is not revolutionary but it provides detailed insights into video 
traffic on cellular network, by using collected measurements and 
presenting a very clear set of numbers. Among them one that 
stands out particularly is that a large part of the videos are not 
completed (although it is only seen on a part of the data set), and 
that caching is not going to reduce the traffic much, although it 
will be effective for the most popular videos.  
 
This is well done and contains quite clear description of video 
encoding characteristics. Seems a great match for a short paper. 
 
A few points to improve: 
 
1. I think that it is important to put some of the results in 
perspective of your limitation. In particular, the fact that only PD 
videos are examined from the completion standpoint is (1) only 
establishing this result on a part of the data set, (2) may be biased 
(some of these videos may take more time to load as they retrieve 
from multiple sources and needs reassembling, and hence may 
create too much impatience in the users). This point ought to be 
clarified. 
 
2. When you mentioned caching, it could also be the case that 
caching improves delay, which seems to be an important thing 
given the relative fraction of uncompleted download indicating 
that users are affected by delay. It would be nice to see that point 
discussed. 
 
3. I am surprised not to see any discussion of previous findings of 
videos on other networks. I imagine that the rate could be quite 
different (although it depends on which year we consider). But 
would the popularity be the same? Would the amount of abandons 
and video lengths be different? 
 
4. The restriction to remove ad-video seems appropriate, but it 
seems also a bit incomplete (you mention you remove another 
domain, but isnt there more like these ones)? Could you provide 
some numbers (based on duration) to justify that no more are 
present? 
 
This seems in particular important as you indicate later that the 
most popular videos are ads. 
�
Response from the Authors 
 
We thank the reviewers for their constructive comments. 
 
We have addressed all the minor issues in the paper and made the 
appropriate adjustments (e.g. we have removed the duplicate 
figure pointed out in the review).    
 
While we have done a careful example of the sample video 
behaviors in Section 2, this was more to illustrate the behavior 
than to come to our conclusions based on them. For example, we 
have observed that HLS sessions, in general, show their ability to 
adapt to changing conditions. Figure 1 is an example to illustrate 
this more carefully. The issue of duplicate downloads, as 
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highlighted in Figure 2 is not an exception, but a common 
behavior across multiple applications that we have observed on 
multiple platforms (device OSs). We have explained this 
anomalous behavior better in Section 2, and also described how 
the behavior can be reproduced. To further establish that this is 
not just based on the observation of a few example situations, 
Figure 8 shows that for a significant percentage of videos more 
than 100% of the content is downloaded by the end-point.  We 
believe that this adequately addresses the issue brought up by the 
fourth reviewer.  
 
In addition to providing a novel characterization of video traffic 
on 3G networks, we also make useful observations about how a 
carrier can appropriately handle this class of traffic. This study is 
also important for application developers to understand their 
impact on the network and to more optimally use the cellular 
network. 

This study and observations are based on traffic generated by 
millions of users in a large tier-1 network. The large footprint of 
the data set gives us a lot of confidence about the generality of 
our main findings. While there may be some idiosyncrasies e.g., 
the device mix studied, we have looked at other platforms with 
different devices and OS mixes and many of these conclusions 
still hold.  Finally, we have also reminded readers that the results 
naturally may not be completely representative of the video traffic 
in every cellular network, since the combination of wireless 
devices, the types of content providers and the behavior of users 
might be different.   
 
We leave the comparison of our results on cellular networks with 
video characteristics on wireline network for future work. Thanks 
for the suggestion 
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