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ABSTRACT
Improving users’ quality of experience (QoE) is crucial for sus-
taining the advertisement and subscription based revenue models
that enable the growth of Internet video. Despite the rich litera-
ture on video and QoE measurement, our understanding of Internet
video QoE is limited because of the shift from traditional meth-
ods of measuring video quality (e.g., Peak Signal-to-Noise Ratio)
and user experience (e.g., opinion scores). These have been re-
placed by new quality metrics (e.g., rate of buffering, bitrate) and
new engagement-centric measures of user experience (e.g., view-
ing time and number of visits). The goal of this paper is to develop
a predictive model of Internet video QoE. To this end, we identify
two key requirements for the QoE model: (1) it has to be tied in to
observable user engagement and (2) it should be actionable to guide
practical system design decisions. Achieving this goal is challeng-
ing because the quality metrics are interdependent, they have com-
plex and counter-intuitive relationships to engagement measures,
and there are many external factors that confound the relationship
between quality and engagement (e.g., type of video, user connec-
tivity). To address these challenges, we present a data-driven ap-
proach to model the metric interdependencies and their complex
relationships to engagement, and propose a systematic framework
to identify and account for the confounding factors. We show that
a delivery infrastructure that uses our proposed model to choose
CDN and bitrates can achieve more than 20% improvement in over-
all user engagement compared to strawman approaches.

Categories and Subject Descriptors
C.4 [Performance and Systems]: measurement techniques, per-
formance attributes; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/server
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1. INTRODUCTION
The growth of Internet video has been driven by the confluence

of low content delivery costs and the success of subscription- and
advertisement-based revenue models [2]. Given this context, there
is agreement among leading industry and academic initiatives that
improving users’ quality of experience (QoE) is crucial to sustain
these revenue models, especially as user expectations of video qual-
ity are steadily rising [3, 20, 26].

Despite this broad consensus, our understanding of Internet video
QoE is limited. This may surprise some, especially since QoE has
a very rich history in the multimedia community [5, 6, 11]. The
reason is that Internet video introduces new effects with respect to
both quality and experience. First, traditional quality indices (e.g.,
Peak Signal-to-Noise Ratio (PSNR) [7]) are now replaced by met-
rics that capture delivery-related effects such as rate of buffering,
bitrate delivered, bitrate switching, and join time [3, 15, 20, 28, 36].
Second, traditional methods of quantifying experience through user
opinion scores are replaced by new measurable engagement mea-
sures such as viewing time and number of visits that more directly
impact content providers’ business objectives [3, 36].

The goal of this paper is to develop a predictive model of user
QoE in viewing Internet video. To this end, we identify two key
requirements that any such model should satisfy. First, we want an
engagement-centric model that accurately predicts user engage-
ment in the wild (e.g., measured in terms of video play time, num-
ber of user visits). Second, the model should be actionable and
useful to guide the design of video delivery mechanisms; e.g., adap-
tive video player designers can use this model to tradeoff bitrate,
join time, and buffering [12, 13, 21] and content providers can use
it to evaluate cost-performance tradeoffs of different CDNs and bi-
trates [1, 28].

Meeting these requirements, however, is challenging because of
three key factors (Section 2):
• Complex relationship between quality and engagement: Prior

measurement studies have shown complex and counter-intuitive
effects in the relationship between quality metrics and engage-
ment. For instance, one might assume that increasing bitrate
should increase engagement. However, the relationship between
bitrate and engagement is strangely non-monotonic [20].
• Dependencies between quality metrics: The metrics have sub-

tle interdependencies and have implicit tradeoffs. For example,
bitrate switching can reduce buffering. Similarly, aggressively
choosing a high bitrate can increase join time and also cause
more buffering.
• Confounding factors: There are several potential confounding

factors that impact the relationship between quality and engage-
ment: the nature of the content (e.g., live vs. Video on Demand
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Engagement-centric Actionable
PSNR-like
(e.g., [17])

7 X

Opinion
Scores(e.g., [6])

X 7

Network-level
(e.g., bandwidth,
latency [35])

7 X

Single metric
(e.g., bitrate,
buffering)

7 X

Naive learning 7 7
Our approach X X

Table 1: A summary of prior models for video QoE and how they
fall short of our requirements

(VOD), popularity), temporal effects (e.g., prime time vs. off-
peak), and user-specific attributes (e.g., connectivity, device,
user interest) [26].

As Table 1 shows, past approaches fail on one or more of these
requirements. For instance, user opinion scores may be reflective of
actual engagement, but these metrics may not be actionable because
these do not directly relate to system design decisions. On the other
hand, network- and encoding-related metrics are actionable but do
not directly reflect the actual user engagement. Similarly, one may
choose a single quality metric like buffering or bitrate, but this ig-
nores the complex metric interdependencies and relationships of
other metrics to engagement. Finally, none of the past approaches
take into account the wide range of confounding factors that impact
user engagement in the wild.

In order to tackle these challenges, we present a data-driven ap-
proach to develop a robust model to predict user engagement. We
leverage large-scale measurements of user engagement and video
session quality to run machine learning algorithms to automatically
capture the complex relationships and dependencies [23]. A direct
application of machine learning, however, may result in models that
are not intuitive or actionable, especially because of the confound-
ing factors. To this end, we develop a systematic framework to
identify and account for these confounding factors.

Our main observations are:
• Compared to machine learning algorithms like naive Bayes and

simple regression, a decision tree is sufficiently expressive enough
to capture the complex relationships and interdependencies and
provides close to 45% accuracy in predicting engagement. Fur-
thermore, decision trees provide an intuitive understanding into
these relationships and dependencies.
• Type of video (live vs. VOD) , device (PC vs. mobile devices

vs. TV) and connectivity (cable/DSL vs. wireless) are the three
most important confounding factors that affect engagement. In
fact, the QoE model is considerably different across different
types of videos.
• Refining the decision tree model that we developed by incorpo-

rating these confounding factors can further improve the accu-
racy to as much as 70%.
• Using a QoE-aware delivery infrastructure that uses our pro-

posed model to choose CDN and bitrates can lead to more than
20% improvement in overall user engagement compared to other
approaches for optimizing video delivery.

Contributions and Roadmap: To summarize, our key contribu-
tions are
• Systematically highlighting challenges in obtaining a robust video

QoE model (Section 2);
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Figure 1: Our goal is to develop a predictive model of engagement
that accounts for the complex relationship between quality and en-
gagement, the interdependencies between quality metrics, and the
confounding factors that impact different aspects of this learning.
We do not attempt to model the impact of the control parameters on
quality or engagement in this paper.

• A roadmap for developing Internet video QoE that leverages
machine learning (Section 3);
• A methodology for identifying and addressing the confounding

factors that affect engagement (Section 4 and Section 5); and
• A practical demonstration of the utility of our QoE models to

improve engagement (Section 6)
We discuss outstanding issues in Section 7 and related work in Sec-
tion 8 before concluding in Section 9.

2. MOTIVATION AND CHALLENGES
In this section, we provide a brief background of the problem

space and highlight the key challenges in developing a unified QoE
model using data-driven techniques.

2.1 Problem scope
Multiple measurement studies have shown that video quality im-

pacts user engagement [20,26]. Given that engagement directly af-
fects advertisement- and subscription-based revenue streams, there
is broad consensus across the different players in the Internet video
ecosystem (content providers, video player designers, third-party
optimizers, CDNs) on the need to optimize video quality according
to these metrics. In this paper, we focus on the fraction of video
that the user viewed before quitting as the measure of engagement
and the following industry-standard quality metrics:
• Average bitrate: Video players typically switch between differ-

ent bitrate streams during a single video session. Average bi-
trate, measured in kilobits per second, is the time average of the
bitrates played during a session weighted by the time duration
each bitrate was played.
• Join time: This represents the time it takes for the video to start

playing after the user initiates a request to play the video and is
measured in seconds.
• Buffering ratio: It is computed as the ratio of the time the video

player spends buffering to the sum of the buffering and play
time and is measured in percentage.
• Rate of buffering: It captures the frequency at which buffering

events occur during the session and is computed as the ratio of
the number of buffering events to the duration of the session.

In this paper, we are not reporting the impact of rate of bitrate
switching due to two reasons. First, we were unable to collect this
data for the large time frames that we are working on. Second, the
providers use specific bitrate adaptation algorithms and we want to
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avoid reaching conclusions based on them. That said, the frame-
work and the techniques that we propose are applicable if we want
to later include more quality metrics to the above list.

Our goal in this paper is to develop a principled predictive model
of the user engagement as a function of these quality metrics. Such
a model can then be used to inform the system design decisions
that different entities in the video ecosystem make in order to tune
the video according to the quality metrics to maximize engagement.
For example, a video control plane may choose the CDN and bitrate
for a video session based on a global optimization scheme [28],
CDNs choose the servers and the specific bitrates [3], video player
designers can adaptively switch bitrates [13] and so on.

An alternative direction one may consider is building a predic-
tive model that relates the control parameters used (e.g., CDN,
CDN server, adaptive bitrate selection logic) to the user engage-
ment. While this is certainly a viable approach that a specific entity
in the video delivery chain (e.g., CDN, player, “meta-CDN”)1 can
employ, we believe that we can decouple this into two problems:
(a) learning the relationship between the quality metrics and en-
gagement (quality→ engagement) and (b) learning the relationship
between the control parameters and engagement (knobs→ quality).
We do so because these two relationships evolve at fundamentally
different timescales and depend on diverse factors (e.g., user be-
havior vs. network/server artifacts). First, the control parameters
available to different entities in the ecosystem may be very differ-
ent; e.g., the control plane [28] operates at a coarse granularity of
choosing the CDN whereas the CDN can choose a specific server.
Second, the control knobs for each entity may themselves change
over time; e.g., new layered codecs or more fine-grained bitrates.
One can view this as a natural layering argument—decoupling the
two problems allows control logics to evolve independently and
helps us reuse a reference QoE model across different contexts
(e.g., control plane, CDN, video player).

While modeling the knobs→quality problem is itself an interest-
ing research challenge, this is outside the scope of this paper; the
focus of this paper is on the problem of modeling the quality →
engagement relationship.2 As we discuss next, there are three key
challenges in addressing this problem.

2.2 Dataset
The data used in this paper was collected by conviva.com in

real time using a client-side instrumentation library. This library
gets loaded when users watch video on conviva.com’s affiliate
content providers’ websites. We collect all the quality metrics de-
scribed earlier as well as play time for each individual session. In
addition we also collect a range of user-specific (e.g., location, de-
vice, connectivity), content (e.g., live vs. VOD, popularity), and
temporal attributes (e.g., hour of the day).

The dataset that is used for various analysis in this paper is based
on 40 million video viewing sessions collected over 3 months span-
ning two popular video content providers (based in the US). The
first provider serves mostly VOD content that are between 35 min-
utes and 60 minutes long. The second provider serves sports events
that are broadcast while the event is happening. Our study is lim-
ited to clients in the United States.3

1Some services offer CDN switching services across multiple
physical CDNs to offer better cost-performance tradeoffs (e.g., [9]).
2To evaluate the potential improvement due to our approach, how-
ever, we need to model this relationship as well. We use a simple
quality prediction model in Section 6.
3These are distinct providers and there is no content overlap; i.e.,
none of the VOD videos is a replay of a live event.

500 1000 1500 2000
Average bitrate (Kbps)

20

22

24

26

28

30

32

34

Fr
ac

tio
n

of
co

nt
en

tv
ie

w
ed

(%
)

(a) Non-monotonic relationship be-
tween average bitrate and engagement

0.0 0.2 0.4 0.6 0.8
Rate of buffering (# of buff events/min)

20

30

40

50

60

70

80

Fr
ac

tio
n

of
co

nt
en

tv
ie

w
ed

(%
)

(b) Threshold effect between rate of
buffering and engagement

Figure 2: Complex relationship between quality metrics and en-
gagement

2.3 Challenges in developing video QoE
We use our dataset to highlight the main challenges in devel-

oping an engagement-centric of model for video QoE. Although
past measurement studies (e.g., [10, 15, 20, 22, 32, 33, 40, 41]) have
also presented some of these observations in a different context, our
contribution lies in synthesizing these observations in the context of
Internet video QoE.

Complex relationships: The relationships between different in-
dividual quality metrics and user engagement are very complex.
These were shown by Dobrian et al., and we reconfirm some of
their observations [20]. For example, one might assume that higher
bitrate should result in higher user engagement. Surprisingly, there
is a non-monotonic relationship between them as shown in Fig-
ure 2a. The reason is that videos are served at specific bitrates and
hence the values of average bitrates in between these standard bi-
trates correspond to clients that had to switch bitrates during the
session. These clients likely experienced higher buffering, which
led to a drop in engagement. Similarly, engagement linearly de-
creases with increasing rate of buffering up to a certain threshold
(0.3 buffering events/minute). Beyond this, users get annoyed and
they quit early as shown in Figure 2b.

Interaction between metrics: Naturally, the various quality met-
rics are interdependent on each other. For example, streaming video
at a higher bitrate would lead to better quality. However, as shown
in Figure 3a, it would take longer for the video player buffer to
sufficiently fill up in order to start playback leading to higher join
times. Similarly, streaming video at higher bitrates leads to higher
rates of buffering as shown in Figure 3b.

Confounding factors: In addition to the quality metrics, sev-
eral external factors also directly or indirectly affect user engage-
ment [26]. For instance, user-attributes like user interest, content
attributes like genre and temporal attributes like age of the content
have effects on user engagement. A confounding factor could af-
fect engagement and quality metrics in the following three ways
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Figure 3: The quality metrics are interdependent on each other

(Figure 1). First, some factors may affect user viewing behavior
itself and result in different observed engagements. For instance,
Figure 4a shows that live and VOD video sessions have signifi-
cantly different viewing patterns. While a significant fraction of
the users view VOD videos to completion, live sessions are more
short-lived. Second, the confounding factor can impact the qual-
ity metric. As Figure 4b shows, the join time distribution for live
and VOD sessions are considerably different. Finally, and perhaps
most importantly, the confounding factor can affect the relationship
between the quality metrics and engagement. For example, we see
in Figure 4c that users on wireless connectivity are more tolerant to
rate of buffering compared to users on DSL/cable connectivity.

3. APPROACH OVERVIEW
At a high-level, our goal is to express user engagement as a func-

tion of the quality metrics. That is, we want to capture a relation-
ship Engagement = f({QualityMetrici}), where Engagement
can be the video playtime, number of visits to a website, and each
QualityMetrici represents observed metrics such as buffering ra-

Machine Learning 
e.g., Decision Trees 

Quality Metrics 
e.g., buffering 

Engagement 
e.g., playtime 

å	
  

Refined Predictive Model 
e.g., Multiple decision trees 

Extract Confounding 
e.g., InfoGain 

Section 3 Section 4 

Section 5 

Figure 5: High level overview of our approach. We begin by us-
ing standard machine learning approaches to build a basic predic-
tive model and also to extract the key confounding factors. Having
identified the confounding factors, we refine our predictive model
to improve the accuracy.

tio, average bitrate etc. Ideally, we want this function f to be ac-
curate, intuitive, and actionable in order to be adopted by content
providers, video player designers, CDNs, and third-party optimiza-
tion services to evaluate different provisioning and resource man-
agement tradeoffs (e.g., choosing different CDNs and bitrates).

As we saw in the motivating measurements in the previous sec-
tion, developing such a model is challenging because of the com-
plex relationships between the quality metrics and engagement, in-
terdependencies between different quality metrics, and the pres-
ence of various confounding factors that affect the relationship be-
tween the quality metrics and engagement. In this section, we
begin by presenting a high-level methodology for systematically
tackling these challenges. While the specific quality and engage-
ment metrics of interest may change over time and the output of
the prediction model may evolve as the video delivery infrastruc-
ture evolves, we believe that the data-driven and machine learning
based roadmap and techniques we envision will continue to apply.

3.1 Roadmap
Figure 5 provides a high-level overview showing three main com-

ponents in our approach. A key enabler for the viability of our
approach is that several content providers, CDNs and third-party
optimization services today collect data regarding individual video
sessions using client-side instrumentation on many popular video
sites. This enables a data-driven machine learning approach to
tackle the above challenges.

Tackling complex relationships and interdependencies: We need
to be careful in using machine learning as a black-box on two ac-
counts. First, the learning algorithms must be expressive enough to
tackle our challenges. For instance, naive approaches that assume
that the quality metrics are independent variables or simple regres-
sion techniques that implicitly assume that the relationships be-
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tween quality and engagement are linear are unlikely to work. Sec-
ond, we do not want an overly complex machine learning algorithm
that becomes unintuitive or unusable for practitioners. Fortunately,
as we discuss in Section 3.2 we find that decision trees, which are
generally perceived as usable intuitive models [24, 27, 37, 39]4 are
also the most accurate. In some sense, we are exploiting the ob-
servation that given large datasets, simple non-parametric machine
learning algorithms (e.g., decision trees) actually work [23].

Identifying the important confounding factors: Even though
past studies have shown that external factors such as users’ de-
vice and connectivity affect engagement [26], there is no systematic
method to identify these factors. In Section 4, we propose a taxon-
omy for classifying potentially confounding factors. As we saw in
the previous section, the confounding factors can affect our under-
standing in all three respects: affecting quality, affecting engage-
ment, and also affecting how quality impacts engagement. Thus,
we need a systematic methodology to identify the factors that have
an impact on all three dimensions.

Refinement to account for confounding factors: As we will
show in Section 3.2, decision trees are expressive enough to cap-
ture the relationships between quality metrics and engagement. It
may not, however, be expressive enough to capture the impact of
all the confounding factors on engagement. In Section 5, we evalu-
ate different ways by which we can incorporate these confounding
factors to form a unified model.

3.2 Machine learning building blocks
Decision trees as predictive models: We cast the problem of mod-
eling the relationship between the different quality metrics as a dis-
crete classification problem. We begin by categorizing engagement
into different classes based on the fraction of video that the user
viewed before quitting. For example, when the number of classes
is set to 5 the model tries to predict if the user viewed 0-20% or 20-
40% or 40-60% or 60-80% or 80-100% of the video before quitting.
We can select the granularity at which the model predicts engage-
ment by appropriately setting the number of classes (e.g., 5 classes
means 20% bins vs. 20 classes means 5% bins). We use similar
domain-specific discrete classes to bin the different quality met-
rics. For join time, we use bins of 1 second interval; for buffering
ratio we use 1% bins; for rate of buffering we use 0.1/minute bins;
and for average bitrate we use 100 kbps-sized bins.

Figure 6 compares the performance of three different machine
learning algorithms: binary decision trees, naive Bayes, and classi-
fication based on linear regression. The results are based on 10-fold

4Decision trees can be directly mapped into event processing rules
that system designers are typically familiar with [39].

cross-validation—the data is divided into 10 equally sized subsets
and the model is trained 10 times, leaving out one of the subsets
each time from training and tested on the omitted subset [31]. Nat-
urally, the prediction accuracy decreases when the model has to
predict at a higher granularity. We observe that decision trees per-
form better than naive Bayes and linear regression. This is because
naive Bayes algorithm assumes that the quality metrics are inde-
pendent of each other and hence it does not attempt to capture in-
terdependencies between them. Similarly, linear regression is not
expressible enough to capture the complex relationships between
quality metrics and engagement. Also, as shown in Figure 6, per-
forming linear regression based on just a single “best" metric (av-
erage bitrate) yields even lower accuracy since we are ignoring the
complex metric interdependencies and the relationships between
other metrics and engagement.

Information gain analysis: Information gain is a standard ap-
proach for uncovering hidden relationships between variables. More
importantly, it does so without making any assumption about the
nature of these relationships (e.g., monotone, linear effects); it merely
identifies that there is some potential relationship. Information
gain is a standard technique used in machine learning for feature
extraction—i.e., identifying the key features that we need to use in
a prediction task. Thus, it is a natural starting point for systemati-
cally identifying confounding factors.

The information gain is based on the idea of entropy of a random
variable Y which is defined as H(Y ) =

∑
i P [Y = yi]log

1
P [Y =yi]

where P [Y = yi] is the probability that Y = yi. It represents the
number of bits that would have to be transmitted to identify Y from
n equally likely possibilities. The lesser the entropy the more uni-
form the distribution is. The conditional entropy of Y given another
random variable X is H(Y |X) =

∑
j P [X = xj ]H(Y |X = xj).

It represents the number of bits that would be required to be trans-
mitted to identify Y given that both the sender and the receiver
know the corresponding value of X . Information gain is defined
as H(Y ) − H(Y |X) and it is the number of bits saved on aver-
age when we transmit Y and both sender and receiver know X. The
relative information gain can then be defined as H(Y )−H(Y |X)

H(Y )
.

In the next section, we use the information gain analysis to rea-
son if a confounding factor impacts either engagement or quality.

Compacted decision trees: Decision trees help in categorizing
and generalizing the data given in the dataset and provide a vi-
sual model representing various if-then rules. One main drawback
while dealing with multi-dimensional large datasets is that these
techniques produce too many rules making it difficult to under-
stand and use the discovered rules with just manual inspection or
other analysis techniques [27]. In order to get a high-level intuitive
understanding of the impact of different quality metrics on engage-
ment, we compact the decision tree. First, we group the quality
metrics into more coarse-grained bins. For instance, we classify
average bitrate into three classes—very low, low, and high. The
other quality metrics (buffering ratio, buffering rate, and join time)
and engagement are classified as either high or low. We then run
the decision tree algorithm and compact the resulting structure to
form general rules using the technique described in [27]. The high-
level idea is to prune the nodes whose majority classes are signif-
icant; e.g., if more than 75% of the data points that follow a par-
ticular rule belong to a particular engagement class then we prune
the tree at that level. The tree formed using this technique may not
be highly accurate. Note that the goal of compacting the decision
tree is only to get a high-level understanding of what quality met-
rics affect engagement the most and form simple rules of how they
impact engagement. Our predictive model uses the original (i.e.,
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uncompressed) decision tree; we do not sacrifice any expressive
power. In the next section, we use this technique to test if a con-
founding factor impacts the relationship between quality metrics
and engagement—particularly to check if it changes the relative
importance of the quality metrics.

3.3 Limitations
We acknowledge three potential limitations in our study that could

apply more broadly to video QoE measurement.

• Fraction of video viewed as a metric for engagement: While
fraction of video viewed before quitting may translate into rev-
enue associated from actual advertisement impressions, it does
not capture various psychological factors that affect engage-
ment (e.g., user may not be interested in the video and might
be playing the video in the background). We use fraction of
video viewed as a measure of engagement since it can be eas-
ily and objectively measured and it provides a concrete starting
point. The high-level framework that we propose can be applied
to other notions of engagement.
• Coverage over confounding factors: There might be several

confounding factors that affect engagement that are not cap-
tured in our dataset (e.g., user interest in the content). Our
model provides the baseline in terms of accuracy—uncovering
other confounding factors and incorporating them into the model
will lead to better models and higher prediction accuracy.
• Early quitters: A large fraction of users quit the session after

watching the video for a short duration. These users might be
either “sampling" the video or quitting the session because of
quality issues. They can be treated in three ways: (1) Remove
them completely from the analysis, (2) Separate them into two
groups based on their quality metrics (high quality population
and low quality population) and learn a separate model for each
group (3) Profile users based on their viewing history and pre-
dict whether they will quit early or not based on their interest
in the video content. We use (1) in this paper as it provides a
clearer understanding of how quality impacts engagement. That
said, approaches (2) and (3) are likely to be useful and com-
plementary in a system-design context; e.g., to guide resource-
driven tradeoffs on which users to prioritize.

4. IDENTIFYING CONFOUNDING FACTORS
In this section, we propose a framework for identifying con-

founding factors. To this end, we begin with a taxonomy of po-
tentially confounding factors. Then, we use the machine learning
building blocks described in the previous section to identify the
factors that have a non-trivial impact on engagement.

4.1 Approach
We identify three categories of potential confounding factors from

our dataset:

• Content attributes: This includes the type of video (i.e., live
vs. VOD) and the overall popularity (i.e., number of views).
• User attributes: This includes the user’s location (region within

continental US), device (e.g., smartphones, tablets, PC, TV),
and connectivity (e.g., DSL, cable, mobile or wireless).
• Temporal attributes: Unlike live content that is viewed dur-

ing the event, VOD objects in the dataset are available to be
accessed at any point in time since its release. This opens up
various temporal attributes that can possibly affect engagement
including the time of day and day of week of the session and the
time since release for the object (e.g., day of release vs. not).

Confounding
Factor

Engagement Join
Time

Buff.
Ratio

Rate of
buff.

Avg. bi-
trate

Type of video
(live or VOD)

8.8 15.2 0.7 0.3 6.9

Overall popu-
larity (live)

0.1 0.0 0.0 0.2 0.4

Overall popu-
larity (VOD)

0.1 0.2 0.4 0.1 0.2

Time since re-
lease (VOD)

0.1 0.1 0.1 0.0 0.2

Time of day
(VOD)

0.2 0.6 2.2 0.5 0.4

Day of week
(VOD)

0.1 0.2 1.1 0.2 0.1

Device (live) 1.3 1.3 1.1 1.2 2.7
Device (VOD) 0.5 11.8 1.5 1.5 10.3
Region (live) 0.6 0.7 1.3 0.5 0.4
Region (VOD) 0.1 0.3 1.2 0.2 0.2
Connectivity
(live)

0.7 1.1 1.4 1.1 1.5

Connectivity
(VOD)

0.1 0.4 1.1 1.4 1.3

Table 2: Relative information gain (%) between different potential
confounding factors and the engagement and quality metrics. We
mark any factor with more than 5% information gain as a potential
confounding factor

We acknowledge that this list is only representative as we are
only accounting for factors that can be measured directly and ob-
jectively. For example, the user’s interest in the particular con-
tent is also a potential confounding factors that we cannot directly
measure. Our goal here is to develop a systematic methodology
to identify and account for these factors. Given more fine-grained
instrumentation to measure other types of factors (e.g., use of gaze
tracking in HCI), we can use our framework to evaluate these other
factors as well.

In Section 2, we saw that confounding factors can act in three
possible ways:
1. They can affect the observed engagement (e.g., Figure 4a)
2. They can affect the observed quality metric and thus indirectly

impact engagement (e.g., Figure 4b);
3. They can impact the nature and magnitude of quality → en-

gagement relationship (e.g., Figure 4c).
For (1) and (2) we use information gain analysis to identify if

there is a hidden relationship between the potential confounding
factor w.r.t engagement or the quality metrics. For (3), we iden-
tify two sub-effects: the impact of the confounding factor on the
quality→ engagement relationship can be qualitative (i.e., the rel-
ative importance of the different quality metrics may change) or it
can be quantitative (i.e., the tolerance to one or more of the qual-
ity metrics might be different). For the qualitative effect, we use
the compacted decision tree separately for each class (e.g., TV vs.
mobile vs. PC) using the method described in Section 3.2 and com-
pare their structure. Finally, for the quantitative sub-effect in (3),
we simply check if there is any significant difference in tolerance.

4.2 Analysis results
Next, for each user, content, and temporal attribute we run the

different identification techniques to check if it needs to be flagged
as a potential confounding factor. Table 2 presents the information
gain between each factor with respect to engagement (fraction of
video viewed before quitting) and the four quality metrics.

Type of video: Classified as live or VOD session, as Table 2
shows, the type of video has high information gain with respect
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Figure 7: Compacted decision tree for live and VOD are consider-
ably different in structure
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Figure 8: Anomalous trend : Higher bitrate led to lower engage-
ment in the case of TV in the VOD dataset

to engagement confirming our earlier observation that the viewing
behavior for live and VOD are different (Section 2.3). Again, since
join time distributions for live and VOD sessions are also different
(Section 2.3), it is not surprising that we observe high information
gain in join time. Similarly, the set of bitrates used by the live
provider and the VOD provider are quite different leading to high
information gain for average bitrate as well.

We learn the compacted decision tree for VOD and live sessions
separately as shown in Figure 7 and see that the trees are struc-
turally different. While buffering ratio and rate of buffering have
the highest impact for VOD, average bitrate has the highest im-
pact for live events. Somewhat surprisingly, some live users tol-
erate very low bitrates. We believe this is related to an observa-
tion from prior work which showed that users viewing live sporting
events may run the video in background and the player automati-
cally switches to lower quality to reduce CPU consumption [20].

Since the differences between live and VOD sessions are consid-
erably large, for the remaining attributes, we perform the analysis
separately for live and VOD data.

Device: We classify the devices as PC (desktops and laptops) or
mobile devices (smartphones and tablets) or TV (e.g., via Xbox).
In the VOD dataset, 66% of the traffic were initiated from PC and
around 33% were from TV. Mobile users formed a small fraction.
However, in the live dataset, 80% of the traffic were initiated from
PCs and almost 20% of the traffic from mobile users—users on TV
formed a small fraction.

For a subset of the VOD data, we observed that the compacted
decision tree for the TV users was different from that of mobile
and PC users. While PC and mobile users showed a tree structure
similar to Figure 7a, we observed Figure 9 in the case of TV. In-
trigued by this difference, we visualized the impact of bitrate on
engagement. Curiously, we find in Figure 8 that increased bitrate
led to lower engagement in the case of TV. This is especially sur-
prising as one would expect that users would prefer higher bitrates
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Figure 9: Compacted decision tree for TV for the VOD data that
showed the anomalous trend
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(a) Rate of buffering
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(b) Average bitrate

Figure 10: VOD users on different devices have different levels of
tolerance for rate of buffering and average bitrate

on larger screens. Investigating this further, we saw complaints
on the specific content provider’s forum regarding contrast issues
at higher bitrate when viewing the video on TV. This issue was
later corrected by the provider and the newer data did not show this
anomaly. As shown in Table 2, we observe a high information gain
in terms of join time and average bitrate for VOD data.

Even though the compacted tree was similar in structure for TV,
PC and mobile users (not shown), Figure 10 and 11 show substan-
tial differences in tolerance levels for average bitrate and rate of
buffering. This is consistent with a recent measurement study that
shows that mobile users are more tolerant toward low quality [26].
The one difference with live data, however, is that device does not
lead to high information gain for engagement or any of the qual-
ity metrics (Table 2). Because of the differences in tolerance, we
consider device as an important confounding factor.

Connectivity: Based on the origin ISP, we classify the video ses-
sion as originating from a DSL/cable provider or from a wireless
provider. In the VOD dataset, 95% of the sessions were initiated
from DSL/cable providers. In the live dataset, 90% were from
DSL/cable providers. We see that sessions with wireless connec-
tion had slightly lower bitrates and higher buffering values com-
pared to the sessions in cable and DSL connection. This accounts
for the slight information gain that we observe in Table 2.
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Figure 11: Live users on different devices have different levels of
tolerance for rate of buffering and average bitrate
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Figure 12: For live content, users on DSL/cable connection and
users on wireless connection showed difference in tolerance for
rate of buffering

The compacted decision trees had the same structure for cable
vs. wireless providers for both live and VOD data. But we observed
difference in tolerance to rate of buffering for both live and VOD
content. As we observed earlier in Section 2.3, users were more
tolerant to buffering rate when they were on a wireless provider
for VOD content. For live content, as shown in Figure 12, we ob-
served difference in tolerance for rate of buffering. Due to these
differences, we consider connectivity as a confounding factor.

Time of day: Based on the time of the day, the sessions were clas-
sified as during night time (midnight-9am), day time (9am-6pm)
or peak hours(6pm-midnight). We observed that 15% of the traf-
fic were during night time, 30% during day time and 55% during
peak hours. We also observed that users experienced slightly more
buffering during peak hours when compared to late nights and day
time. The compacted decision trees were similar for peak hours vs.
day vs. night. Users were, however, slightly more tolerant to rate
of buffering during peak hours as shown in Figure 13. Since we
want to take a conservative stance while shortlisting confounding
factors, we consider time of day to be a confounding factor.

Other factors: We did not observe high information gain or sig-
nificant differences in the compacted decision tree or the tolerance
to quality for other factors such as region, popularity, day of week,
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Figure 13: For VOD, users tolerance for rate of buffering is slightly
higher during peak hours

Confounding Factor Engmnt Quality Q→E
Qual

Q→E
Quant

Type of video - live or VOD X X X X
Overall popularity (live) 7 7 7 7
Overall popularity (VOD) 7 7 7 7
Time since release (VOD) 7 7 7 7
Time of day (VOD) 7 7 7 X
Day of week (VOD) 7 7 7 7
Device (live) 7 7 7 X
Device (VOD) 7 X X 7 X
Region (live) 7 7 7 7
Region (VOD) 7 7 7 7
Connectivity (live) 7 7 7 X
Connectivity (VOD) 7 7 7 X

Table 3: Summary of the confounding factors. Check mark
indicates if a factor impacts quality or engagement or the
quality→engagement relationship. The highlighted rows show the
key confounding factors that we identify and use for refining our
predictive model

and time since video release (not shown). Thus, we do not consider
these as confounding factors.

4.3 Summary of main observations
Table 3 summarizes our findings from the analysis of various

potential confounding factors. Our main findings are:

• The main confounding factors are type of video, device, and
connectivity.
• The four techniques that we proposed for detecting confound-

ing factors are complementary and expose different facets of the
confounding factors.
• Our model also reconfirmed prior observations on player-specific

optimizations for background video sessions. It was also able
to reveal interesting anomalies due to specific player bugs.

5. ADDRESSING CONFOUNDING FACTORS
Next, we describe how we refine the basic decision tree model

we saw in Section 3.2 to take into account the key confounding
factors from the previous section. We begin by describing two can-
didate approaches for model refinement and the tradeoffs involved.
We study the impact of both candidate approaches and choose a
heuristic “splitting” based approach.

5.1 Candidate approaches
There are two candidate approaches to incorporate the confound-

ing factors into the predictive model:
• Add as new feature: The simplest approach is to add the key

confounding factors as additional features in the input to the
machine learning algorithm and relearn the prediction model.
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Figure 14: Comparing feature vs split approach for the different
confounding factors

• Split Data: Another possibility is to split the data based on
the confounding factors (e.g., live on mobile device) and learn
separate models for each split. Our predictive model would then
be the logical union of multiple decision trees—one for each
combination of the values of various confounding factors.

Both approaches have pros and cons. The feature-addition ap-
proach has the appeal of being simple and requiring minimal modi-
fications to the machine learning framework. (This assumes that the
learning algorithm is robust enough to capture the effects caused by
the confounding factors). Furthermore, it will learn a single unified
model over all the data. The augmented model we learn, however,
might be less intuitive and less amenable to compact representa-
tions. Specifically, in the context of the decision tree, mixing qual-
ity metrics with confounding factors may result in different levels
of the tree branching out on different types of variables. This makes
it harder to visually reason about the implications for system de-
sign. For instance, consider the scenario where we want to know
the impact of quality on engagement for mobile users in order to
design a new mobile-specific bitrate adaptation algorithm for live
sports content. This is a natural and pertinent question that a prac-
titioner would face. To answer this question, we would in effect
have to create a new “projection” of the tree that loses the original
structure of the decision tree. Moreover, we would have to create
this projection for every such system design question.

In contrast, the split data approach will explicitly generate these
intuitive projections for different combinations of the confounding
factors by construction. It also avoids any doubts we may have
about the expressiveness of the machine learning algorithm. The
challenge with the split approach is the “curse of dimensionality”.
As we have more factors to split, the available data per split be-
comes progressively sparser. Consequently, the model learned may
not have sufficient data samples to create a robust enough model.5

Fortunately, we have two reasons to be hopeful in our setting. First,
we have already pruned the set of possibly confounding external
factors to the key confounding factors. Second, as Internet video
grows, we will have larger datasets to run these algorithms and that
will alleviate concerns with limited data for multiple splits.

Following in the data-driven spirit of our approach, we analyze
the improvements in prediction accuracy that each approach gives
before choosing one of these techniques.

5.2 Results
5Note that this dimensionality problem is not unique to the split
data approach. A decision tree (or any learning algorithm for that
matter) faces the same problem as we go deeper into the tree as
well. The split approach just elevates the dimensionality problem
to the first stage of the learning itself.

Model Accuracy (in %)
Simple decision tree 45.02

Without early-quitters 51.20
Multiple decision tree 68.74

Table 4: Summary of the model refinements and resultant accuracy
when number of classes for engagement is 10

For this study, we set the number of classes for engagement to
10. We observe similar results for other number of classes as well.
Figure 14 compares the increase in accuracy using the feature and
the split approach for the three key confounding factors.

As shown in Figure 14, splitting based on type of video vs.
adding it as a feature (Type) results in the same increase in accu-
racy. In the case of the split approach, we observe that both splits
(live and VOD) do not have the same accuracy—live is more pre-
dictable than VOD. However, splitting based on the device type
gives better improvement compared to adding device as a feature
for both VOD and live (VOD-Device, VOD-Device-2 and Live-
Device). But, we observed that the accuracy across the splits were
not the same. For the VOD dataset, splits corresponding to TV
and PC had higher accuracy compared to the split corresponding
to smartphones. This is because, as we saw in Section 4, only a
small fraction of users viewed VOD content on mobile phones in
our dataset. VOD-Device-2 corresponds to the data in which we
observed an anomalous trend in viewing behavior on TV. Here, we
observed that the split corresponding to TV had very high accuracy
leading to better gains from splitting. For the live dataset, we how-
ever observed that the TV split had lower gains compared to mobile
and smartphones. This is again because of the inadequate amount
of data—the fraction of users watching live content on TV in our
dataset was negligible.

Splitting works better than feature addition for both live (Live-
Conn) and VOD (VOD-Conn) in the case of connectivity and for
time of day in the case of VOD (VOD-Time of day). Time of day
did not lead to a huge improvement in improvement in accuracy and
hence we ignore it. The other external factors that we considered
in Section 4 led to negligible increase in accuracy when addressed
using both these approaches.

Why does split perform better? Across the various confounding
factors, we see that the split data approach is better (or equivalent)
to the feature addition approach. The reason for this is related to
the decision tree algorithm. Decision trees use information gain for
identifying the best attribute to branch on. Information gain based
schemes, however, are biased towards attributes that have multiple
levels [19]. While we bin all the quality metrics at an extremely
fine level, the confounding factors have only few categories (e.g.,
TV or PC/laptop or smartphone/tablet in the case of devices). This
biases the decision tree towards always selecting the quality metrics
to be more important. In the case of type of video, the information
gain in engagement is very high since user viewing behavior is very
different (i.e, it satisfies criteria number (1) that we have for iden-
tifying confounding factors). So it gets chosen at the top level and
hence splitting and adding as a feature led to same gain.

5.3 Proposed predictive model
As mentioned in Section 3.3, we observed many users who “sam-

ple" the video and quit early if it is not of interest [41]. Taking into
account this domain-specific observation, we ignore these early-
quitter sessions from our dataset and relearn the model leading to
≈ 6% increase in accuracy.

Further incorporating the three key confounding factors (type of
device, device and connectivity), we propose a unified QoE model
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based on splitting the dataset for various confounding factors and
learning multiple decision trees—one for each split. Accounting
for all the confounding factors further leads to around 18% im-
provement. Table 4 summarizes the overall accuracies when num-
ber of classes for engagement is set to 10. This implies that about
70% of the predictions are within the same 10% bucket as the actual
user viewing duration.

6. IMPLICATIONS FOR SYSTEM DESIGN
In this section, we demonstrate the practical utility of the QoE

model using trace-driven simulations. We simulate a video control
plane setting similar to previous work and use our QoE model to
guide the choice of CDN and bitrate [28]. We compare the potential
improvement in engagement using our QoE model against other
strawman solutions.

6.1 Overview of a video control plane
The QoE model that we developed can be used by various prin-

cipals in the Internet video ecosystem to guide system design de-
cisions. For instance, video player designers can use the model to
guide the design of efficient bitrate adaptation algorithms. Simi-
larly, CDNs can optimize overall engagement by assigning bitrates
for each individual client using our QoE model.

Prior work makes the case for a coordinated control plane for
Internet video based on their observation that a purely client- or
server- driven bitrate and CDN adaptation scheme for video ses-
sions might be suboptimal [28]. This (hypothetical) control plane
design uses a global view of the network and CDN performance
to choose the CDN and bitrates for each session based on a global
optimization framework. The goal of the optimization is to pick
the right control parameters (in this case, CDN and bitrate) in order
to maximize the overall engagement. As shown in Figure 15, this
control plane takes as input control parameters (CDN, bitrate) and
other attributes (device, region, ISP etc.) as input and predicts the
expected engagement.

Our QoE model can be used to guide the design of such a video
control plane. Note, however, that the QoE model from Section 5
takes various quality metrics and attributes that are confounding as
input and predicts the expected engagement. Thus, as discussed
in Section 2, we also need to develop a quality model which takes
CDN, bitrate, and client attributes as input and predicts the quality
metrics (buffering ratio, rate of buffering and join time) in order to
fully realize this control plane design. Figure 15 shows the vari-
ous components and their inputs and outputs. Our key contribu-
tion here is in demonstrating the use of the QoE model within this
control plane framework and showing that a QoE-aware delivery
infrastructure could further improve the overall engagement.

6.2 Quality model
We use a simplified version of the quality prediction model pro-

posed from prior work [28]. It computes the mean performance
(buffering ratio, rate of buffering and join time) for each combina-
tion of attributes (e.g., type of video, ISP, region, device) and con-
trol parameters (e.g., bitrate and CDN) using empirical estimation.
For example, we estimate the performance of all Comcast clients in
the east coast of the United States that streamed live content over
an Xbox from Akamai at 2500 Kbps by computing the empirical
mean for each of the quality metrics.

When queried with specific attributes (CDN and bitrate) the mod-
els returns the estimated performance. One challenge, however, is
that adding more attributes to model often leads to data sparsity. In
this case, we use a hierarchical estimation heuristic—i.e, if we do
not have sufficient data to compute the mean performance value for

Quality	
  model	
  

QoE	
  model	
  

Control	
  plane	
  model	
  

Quality	
  metrics	
  

CDN	
  

A7ributes	
  

Bitrate	
  

Engagement	
  

Figure 15: We use a simple quality model along with our QoE
model to simulate a control plane. The inputs and outputs to the
various components are shown above.

a specific attribute, CDN and bitrate combination, we use a coarser-
grained granularity of attribute elements [28]. For example, if we
do not have enough data regarding the performance of Xbox over
Akamai over Comcast connection from the east coast at 2500 Kbps,
we return the mean performance that we observed over all the de-
vices over Akamai at 2500 Kbps over Comcast connection from the
east coast. We follow the following hierarchy for this estimation:
{Type of video, ISP, region, device} < {Type of video, ISP, region}
< {Type of video, ISP}.

6.3 Strategies
We compare the following strategies to pick the control parame-

ters (CDN and bitrate):

1. Smart QoE approach: For our smart QoE approach, we use a
predicted quality model and a predicted QoE model based on his-
torical data. For choosing the best control parameters for a partic-
ular session, we employ the following brute force approach. We
estimate the expected engagement for all possible combinations of
CDNs and bitrates by querying the predicted quality model and
the predicted QoE model with the appropriate attributes (ISP, de-
vice etc.). This approach assigns the CDN, bitrate combination that
gives the best predicted engagement.

2. Smart CDN approaches: We find the best CDN for a given
combination of attributes (region, ISP and device) using the pre-
dicted quality model by comparing the mean performance of each
CDN in terms of buffering ratio across all bitrates and assign clients
to this CDN. We implement three variants for picking the bitrate:
2(a) Smart CDN, highest bitrate: The client always chooses to
stream at the highest bitrate that is available.
2(b) Smart CDN, lowest buffering ratio: The client is assigned the
bitrate that is expected to cause the lowest buffering ratio based on
the predicted quality model
2(c) Smart CDN, control plane utility function: The client is as-
signed the bitrate that would maximize the utility function (−3.7×
BuffRatio+ Bitrate

20
) [28].

3. Baseline: We implemented a naive approach where the client
picks a CDN and bitrate randomly.

6.4 Evaluation
To quantitatively evaluate the benefit of using the QoE model, we

perform a trace based simulation. We use week-long trace to sim-
ulate client attributes and arrival times. In each epoch (one hour
time slots), a number of clients with varying attributes (type of
video, ISP, device) arrive. For each client session, we assign the
CDN and bitrate based on the various strategies mentioned earlier.
For simplicity, we assume the CDNs are sufficiently provisioned
and do not degrade their performance throughout our simulation.
To evaluate the performance of these strategies, we develop actual
engagement models and an actual quality models based on the em-
pirical data from the current measurement epoch and compare the
engagement predicted by these models for each session. (Note that
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Figure 16: Comparing the predicted average engagement for the
different strategies

the models that we use for prediction are based on historical data).
Since the arrival patterns and the client attributes are the same for
all the strategies, they have the same denominator in each epoch.

Figure 16 compares the performance of the different strategies
for live and VOD datasets broken down by performance on each
device type. As expected, the baseline scheme has the worst per-
formance. The smart QoE approach can potentially improve user
engagement by up to 2× compared to the baseline scheme. We
observed that the smart CDN and lowest buffering ratio scheme
picks the lowest bitrates and hence the expected engagements are
lower compared to the other smart schemes (except in the case of
VOD on mobile phones where it outperforms the other smart CDN
approaches). The smart CDN with utility function approach and
smart CDN highest bitrate approaches have very comparable per-
formances. This is because the utility function favors the highest
bitrate in most cases. Our smart QoE approach picks intermedi-
ate bitrates and dynamically shifts between picking the lower and
the higher bitrates based on the various attributes and the predicted
quality. Thus, it can potentially improve user engagement by more
than 20% compared to the other strategies.

7. DISCUSSION
Other engagement measures: Content providers are also inter-
ested in other measures of engagement involving different time
scales of user involvement such as customer return probability to
the particular service. The quality metrics might impact these other
engagement measures differently [20]; e.g., join time may affect
the return probability of the customer even though it does not have
a huge impact on the user engagement during a particular session.
We may have to weigh in these different notions of engagement
to compute an aggregate engagement index. Having said that, we

believe the high-level data-driven approach we propose can be ap-
plied to other notions of engagement as well.

Evolution of the QoE model: As the network and the user expec-
tations for quality change with time, the QoE model also needs to
evolve to capture these effects. For instance, the specific bitrates
at which providers serve content might change with time. Simi-
larly, with time, users might have higher expectations with respect
to quality from the video delivery system. In this context, we envi-
sion a live refinement system that constantly observes and analyzes
the user viewing habits and continuously adapts the QoE model
based on these observations.

QoE model for other Internet services: The methodology that
we proposed can be generalized to be used for developing QoE
models for other Internet services as well. The specific metrics,
confounding factors and inferences might be different, but the gen-
eral methodology of developing a data-driven predictive QoE model
using machine learning techniques can be applied to new domains
like VoIP, online gaming etc.

8. RELATED WORK
Engagement in Internet video: Past measurement studies have
shown that video quality impacts user engagement [20, 26]. How-
ever, they provide a simple quantitative understanding of the impact
of individual quality metrics (e.g., buffering) on engagement. We
shed further light and provide a unified understanding of how all
the quality metrics when put together impact engagement by devel-
oping a QoE model. Similarly, previous studies have also shown
that a few external factors (e.g., connectivity) affect user engage-
ment [26]. Recent work suggests the use of Quasi Experimental
Design (QED) to eliminate any possible bias that can be caused by
confounding factors and establish causal relationships [26]. How-
ever, these factors have to be provided a priori and there does not
exist any techniques to identify if an external factor is potentially
confounding or not. We extend our previous work [15] by devel-
oping techniques to identify external factors that are confounding
and incorporate these factors to form a unified QoE model.

User studies: Prior work by the multimedia community try to
assess video quality by performing subjective user studies and vali-
dating objective video quality models against the user study scores [11,
18,25,30,32]. User studies are typically done at a small-scale with a
few hundred users and the perceptual scores given by users under a
controlled setting may not translate into measures of user engage-
ment in the wild. The data-driven approach that we proposed is
scalable and it produces an engagement-centric model.

Control plane: Liu et al., make a case for a co-ordinated video
control plane that uses measurement-driven parameters to improve
video quality by adapting CDN and bitrate of clients using a global
optimization scheme [28]. As we showed, our QoE model can be
used under a similar framework to further improve the benefits.

Adaptive video players design: Commercial video players to-
day perform client-side bitrate adaptation based on current band-
width conditions [4]. Studies that have analyzed these players have
found that there is significant scope for improving their adapta-
tion schemes [13]. Video player designers typically use ad hoc
mechanisms to trade-off between various network parameters [12,
13]. Our video QoE model can be potentially used to develop
engagement-centric video player adaptation algorithms.

Diagnosis: Past work has looked at techniques to proactively diag-
nose quality issues in video delivery in order to minimize its impact
on users [29, 38]. In Section 4.2, we show that our model can also
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detect anomalous behavior among users watching VOD content on
TV, and potentially other quality issues as well.

QoE metrics in other media: There have been attempts to study
the impact of network factors on user engagement and user satis-
faction in the context of other media technologies. For example,
in [16], the authors study the impact of bitrate, jitter and delay on
call duration in Skype and propose a unified user satisfaction metric
as a combination of these factors. Our approach derives a unified
QoE model in the context of Internet video and it is very timely
given that Internet video has gone mainstream in the past few years.

Other video measurement studies: Several measurement studies
of Internet video have focused on content popularity, user behav-
ior and viewing patterns [22, 41]. The observations made in these
works have implications on understanding measurement-driven in-
sights and performing domain-specific refinements to improve the
QoE model. For instance, Yu et al., also observed that users sample
videos and quit the session early [41]. Similarly, we observed that
some users tolerate low bitrate while watching live content. Pre-
vious work also observed this phenomena which is a result of the
player running in the background [20].

9. CONCLUSIONS
An imminent challenge that the Internet video ecosystem—content

providers, content delivery networks, analytics services, video player
designers, and users—face is the lack of a reference methodology
to measure the Quality-of-Experience (QoE) that different solutions
provide. With the “coming of age” of this technology and the es-
tablishment of industry standard groups (e.g., [34]), such a measure
will become a fundamental requirement to promote further inno-
vation by allowing us to objectively compare different competing
designs [8, 14].

Internet video presents both a challenge and an opportunity for
QoE measurement. On one hand, the nature of the delivery in-
frastructure introduces new complex relationships between qual-
ity and engagement and between quality metrics themselves. To
further make matters worse, there are many confounding factors
introduced by different aspects of this ecosystem that directly or
indirectly impact engagement (e.g., genre, popularity, device). At
the same time, however, we have an unprecedented opportunity to
obtain a systematic understanding of QoE because of the ability
to collect large client- and server-side measurements of actual user
behavior in the wild.

This paper is a significant first step in seizing this opportunity
and addressing the above challenges. We developed a data-driven
machine learning approach to capture the complex interactions as
well as confounding effects. We also demonstrated significant prac-
tical benefits that content providers can obtain by using an im-
proved QoE prediction model over current ad hoc approaches.
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