
Can you GET Me Now? Estimating the Time-to-First-Byte
of HTTP Transactions with Passive Measurements

Emir Halepovic, Jeffrey Pang, Oliver Spatscheck
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ, United States

{emir,jeffpang,spatsch}@research.att.com

ABSTRACT
Cellular network operators have a compelling interest to
monitor HTTP transaction latency because it is an impor-
tant component of the user experience. Existing techniques
to monitor latency require active probing or use passive anal-
ysis to estimate round-trip time (RTT). Unfortunately, it is
impractical to use active probing to monitor entire cellular
networks, and RTT is only one component of HTTP latency
in cellular networks. This paper presents a new passive tech-
nique to estimate HTTP transaction latency that overcomes
the scaling and completeness limitations of prior approaches.
We validate our technique in an operational cellular network
and present results for traffic in the wild.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

Keywords
Time To First Byte, Round-Trip Time, Network measure-
ment, Cellular, Wireless, Mobile

1. INTRODUCTION
Quick application response time has always been a cru-

cial component of a satisfactory user experience [10], and
recent studies suggest that differences of only 250 millisec-
onds will cause a user to visit a Web site less often [2]. As
more and more applications migrate to the Web and inter-
act with the cloud, the latency of network protocol transac-
tions is an increasingly important component of overall user
response time. In particular, this trend implies a growing
importance of HTTP transaction latency, as HTTP is the
dominant protocol for the mobile Web, RESTful APIs, and
video streaming [3].

Cellular network operators have a compelling interest to
monitor the latency of HTTP transactions because changes
in their networks can directly influence these latencies. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’12, November 14–16, 2012, Boston, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1705-4/12/11 ...$15.00.

standard measure of HTTP transaction latency is the total
time-to-first-byte (TTFB). The total TTFB is informally de-
fined as the time elapsed from a user’s request for an object
to the reception of the first byte of that object. This time
represents the lower bound on the delay the user will experi-
ence before an application can start rendering the requested
content. Of particular interest to network operators is the
TTFB of a single HTTP transaction, i.e., time between the
start of the TCP handshake and the arrival of the HTTP
response at the user device. This elapsed time, which we
refer to as TTFB hereafter for brevity, captures all the la-
tency components that a cellular network can directly in-
fluence.1 Unfortunately, conventional methods to measure
TTFB rely on using active probing tools,2 which in practice
limits the scale and representativeness of measurements to
a small number of vantage points. This limitation is par-
ticularly problematic for wireless network operators because
it is impractical to run probes at all physical locations that
their users will visit and physical context plays a large role
in the wireless network latency users experience.

As a consequence, passive estimation techniques are gen-
erally preferred to measure latency at scale. For exam-
ple, well-known passive techniques estimate round-trip time
(RTT) by measuring the arrival times of packets at the probe
location [7, 8, 9, 16]. However, these prior approaches have
drawbacks that limit their usefulness as a proxy for TTFB.
First, prior approaches do not capture additional delays that
may occur prior to the first packet being sent over the net-
work. These delays are common and significant in cellular
networks due to layer 2 connection setup signaling [13]. Sec-
ond, approaches that only measure TCP handshake time
don’t account for the transmission delay of the HTTP re-
quest and response, which can be significantly larger than
TCP handshake packets. Finally, the same approaches don’t
account for server delay in processing the HTTP request. As
a result, prior passive latency estimation techniques provide
only limited visibility into changes that can impact HTTP
response time in cellular networks.

In this paper, we design and evaluate a new passive mea-
surement technique to estimate TTFB, taking into account
the signaling and large packet transmission delays specific
to cellular networks. Our approach works at a large scale
and only requires information available within the network

1The TTFB of a single HTTP transaction excludes potential
delays due to DNS and HTTP redirects included in the total
TTFB, but we find that a large fraction of HTTP transac-
tions are not preceded by these delays (Section 3.3).
2E.g.: keynote.com, webpagetest.org, loadimpact.com

115

InternetGn

GGSNSGSNRNCNode B
UE

CNUTRAN

Figure 1: UMTS network architecture.

core, which meets two key challenges faced by a network op-
erator. The main insight in our TTFB estimation approach
is to utilize TCP timestamps (user domain) as well as the
arrival times of packets at the probe location (network do-
main). Our approach addresses the limitations of previous
techniques and challenges caused by peculiarities of traffic
in the wild. This allows the operator to fully quantify the
influence on TTFB of RTT, cellular network latency, con-
nection setup delay, transmission time of HTTP messages,
and server processing delay.

Finally, we present measurement results of TTFB in a
deployment on a large U.S. cellular network. We find that
TTFB can better reflect user response time than RTT, as
connection setup signaling, which RTT ignores, comprises
up to 68% of total TTFB. Comparison of TTFB values
reveals up to 72.5% difference across domains, and up to
36% across applications, whereas RTT shows no apprecia-
ble difference. We believe our work demonstrates a practical
method for operators to monitor a critical component of the
mobile user experience.

2. BACKGROUND AND RELATED WORK
The most significant component of TTFB is the network

latency. In cellular data networks, the network latency of
delivering a packet comprises of three components: radio
connection setup time, radio access network (RAN) schedul-
ing and transmission, and core network transmission. To
illustrate, consider a UMTS network (Figure 1). When
a User Equipment (UE) such as a smartphone wants to
send a packet, the UMTS Terrestrial Radio Access Network
(UTRAN) must first allocate a radio resource control (RRC)
connection for the UE if it has not already done so. Second,
the UTRAN must schedule and then deliver the packet from
the UE to the Core Network (CN). Finally, the packet is sent
through the core network and the Internet to the destina-
tion. RAN scheduling and core network transmission typi-
cally incur RTTs of 100s of milliseconds on 3G networks [15]
and 50-60 milliseconds in 4G Long Term Evolution (LTE)
networks [5]. A new HTTP connection will typically incur
two RTTs in a TTFB, one for the TCP 3-Way Hand Shake
(3WHS) and one for the HTTP request and response. While
these latencies are significant, radio connection setup time
often adds an order of magnitude higher delay.

Radio connection setup delay is the time it takes for the
UTRAN to allocate a radio connection to the UE. To under-
stand why the connection setup delay is significant, we must
understand the RRC state machine [11]. To efficiently uti-
lize the radio resources, both UTRAN and UE maintain the
state machine, which is synchronized via signaling on the
control channel. There are typically three RRC states in
a UMTS network: IDLE, CELL-FACH, CELL-DCH.3 The
state machine transitions to a higher resource state (state

3The same state machine mechanism applies when addi-

promotion), i.e., IDLE to CELL-DCH, when the UE has
more data to send/receive and to a lower resource state
(state demotion), i.e., CELL-DCH to CELL-FACH, when
the UE has less data to send/receive. The reason for a sig-
nificant connection setup delay is a state promotion, which
involves signaling latency between the UE and the UTRAN.
This latency is variable because signaling messages can be
lost due to contention. Since RRC state is demoted after
only a few seconds [12], a connection setup delay will typi-
cally occur for each user-initiated request.

The state promotion time is 1.5 to 2 seconds in UMTS [12],
260 milliseconds in LTE [5], and 80 ms in Wi-Fi [5]. These
delays are an order of magnitude larger than the correspond-
ing RAN scheduling and core network transmission delays,
and they grow even larger when there is contention for radio
resources. In addition, operators will evolve existing cellu-
lar networks by introducing new RRC states and by tuning
RRC timers, which will change the magnitude and frequency
of the connection setup delay [11]. Hence, to effectively mon-
itor TTFB in cellular data networks, it is imperative that
any estimation technique has the capability to measure all
three components of network latency.

2.1 Limitations of Existing Techniques
Previous passive techniques attempt to estimate the RTT

of TCP connections that pass through a passive packet mon-
itor along the connections’ end-to-end path. In a UMTS cel-
lular data network, the monitor is typically located on the
Gn link (Figure 1), where all cellular data traffic passes, be-
cause they are usually located in a small number of physical
locations [4, 14].4

There are several approaches to estimate RTT. SYN-ACK
estimation uses the interval between the SYN and acknowl-
edgment (ACK) packets of the TCP 3WHS, and Slow-Start
estimation measures intervals between bursts of data packets
within a minimum of 5 consecutive data packets [8]. Jaiswal,
et al. [7] estimate RTT by replicating the sender’s state ma-
chine to infer congestion window size. Veal, et al. [16] es-
timate RTT as inter-arrival time between data and ACK
packets matched by TCP timestamps.

All these techniques estimate network latency by record-
ing the arrival time of IP packets at the monitor. Thus,
a crucial limitation of these approaches is that they can
not capture the connection setup delay that occurs before
the first IP packet of a transaction leaves the UE for the
UTRAN. Moreover, they don’t measure the transmission
time incurred for the HTTP request and response. In this
paper, we design a new approach that overcomes this lim-
itation by passively inferring the timing of packets at the
UE.

3. DESIGN
In order to capture all potential components of cellular

network latency, we focus on measuring the TTFB of HTTP
transactions that begin with new TCP connections.5 Fig-
ure 2 depicts the typical packet exchange at the beginning

tional states are used, such as URA-PCH, and in LTE and
Wi-Fi with PSM [5].
4In LTE, the equivalents to the Gn link are the S1u and S11
links.
5These transactions are most likely to be user initiated be-
cause typical web servers tear down persistent HTTP con-
nections after only a few seconds [1].

116

r0

t0

t1
r1

t2
r2

SYN

SYN-ACK

ACK

HTTP-GET

HTTP-DATA

GET-ACK

DATA-ACK

SERVERUE (OS)

RTT1

PROBE

TTFB

Q

UE (Radio)

STT

RTT2
r21

r22

TS0

TS1

TS2

t11

Figure 2: Typical HTTP data transfer.

Table 1: TTFB and its components.
Metric Actual Estimate

TTFB t2 − t0 G(TS2 − TS0)

STT t11 − t0 G(TS1 − TS0)− (r1 − r0)

RTT1 t1 − t11 (r1 − r0)

RTT2 t2 − t1 (r2 − r1)

Q unknown (r22 − r21)

G unknown r2−r1
TS2−TS1

of such HTTP transaction. The vertical lines represent
elapsed time at the UE operating system (OS), radio inter-
face, probe, and server. Bubbles labeled ti and ri represent
arrival times of packets, and TSi are TCP timestamps in
packets, which we describe in Section 3.1. The SYN, SYN-
ACK, and ACK packets comprise the TCP 3WHS, while
the HTTP-GET and HTTP-DATA packets correspond to
the HTTP request and the first packet of the response. As
RRC state transition is the largest part of the radio connec-
tion setup, we refer to this delay as State Transition Time
(STT) hereafter. Q is the server processing delay.
We define the actual TTFB as the time elapsed between

the SYN packet departure and the arrival of the first HTTP-
DATA packet at the UE, i.e. t2 − t0. We stress that our
definition of TTFB differs from the conventional one by not
including DNS latency, as explained later. However, it in-
cludes the complete TCP 3WHS, STT when it occurs, as
well as the HTTP request and the first packet of the re-
sponse. Previous estimation techniques only used arrival
times ri to estimate latency (e.g., RTT = r1 − r0 [14, 8]),
thereby missing the crucial STT that occurs between t0 and
r0. Unfortunately, t0 and t2 are only directly measurable at
the UE and available only for active probing techniques. In
this section, we describe how we can estimate t2 − t0 and
break down its constituent latency components using only
information measured at the probe. Our approach is sum-
marized in Table 1.

3.1 Challenges
The näıve approach to estimating TTFB at the probe

would be as the inter-arrival time between the SYN and
DATA-ACK, i.e., r2 − r0. This estimate would be correct
if the latency between the UE and the probe is always the
same. However, as we already explained, the delay r0 − t0

is often much larger than the delays r1 − t1 and r2 − t2 due
to STT . To overcome this limitation of the näıve approach,
we need to estimate t0 and t2 directly.

To do this estimation, we leverage the observation that
many TCP connections include the TCP timestamp option
(75% of the top 500 servers in previous work [16] and 85%
of TCP connections in our dataset). This option adds two
fields to the TCP header: Timestamp Value (TSval) and
Timestamp Echo Reply (TSecr) [6]. The sender sets TSval
to the time at which the segment was sent, and the receiver
echoes the TSval of the most recently received segment in
TSecr. Therefore, each ti is represented by the correspond-
ing TSi in each TCP packet (Figure 2).

Under the assumption that the clock the sender uses to
compute TS0 and TS2 has a known frequency 1

G′ ticks/sec,
we would have the simple equivalence t2 − t0 = G′(TS2 −
TS0). Unfortunately, 1

G′ is not known and it depends on the
device generating the timestamp. Moreover, we will not be
able to measure TTFBs with any finer time resolution than
G′ because the timestamps are quantized to integral values.
Thus, two challenges are to reliably estimate G′ using only
information at the probe and to evaluate whether G′ is suffi-
ciently granular in real traffic to effectively measure TTFB.
We also want to ensure that TTFB estimation is robust
against changes in the rapidly evolving mobile technology.

Finally, typical probes at the Gn interface will encounter
traffic rates of tens of Gbps, if not larger. Thus, in order to
capture as many real-time samples as possible, the TTFB
estimation approach should be light-weight in terms of pro-
cessing cost and memory footprint. While sampling can be
employed, a large number of samples is required to monitor
the real-time health of the individual elements in the entire
spatial extent of a cellular network, e.g., NodeBs (Figure 1)
can number in the hundreds of thousands.

3.2 TTFB Estimation
Recall that the actual TTFB = t2 − t0. We would like

to estimate TTFB directly as TS2 − TS0. However, as we
explained in the previous section, the units of TSi, i.e., the
timestamp granularity, are unknown and UE-specific, so we
have to convert them into comparable time units. For this
purpose, we define the granularity factor, G, as an estimate
of timestamp granularity:

G =
r2 − r1

TS2 − TS1
. (1)

The granularity factor G is effective in estimating the times-
tamp granularity because we expect that the time elapsed
between the HTTP-GET and DATA-ACK at the UE (t2−t1)
is the same as at the probe (r2−r1), and we record r2 and r1
in known time units. Since we use sender’s TCP timestamps
only, there is no need for any kind of clock synchronization
between the sender and receiver.

Our TTFB estimate, thus, is defined as follows:

TTFB = G(TS2 − TS0) . (2)

We can also estimate the TTFB’s constituent components
using the formulas in Table 1.

With the above formulation, we need only collect the fol-
lowing values for each TCP connection: r0, r1, r2, TS0,
TS1, and TS2. Since ri times will almost never differ by
more than several seconds, we can use a 16 bit clock to gen-
erate the ri timestamps with millisecond granularity and

117

compute the differences modulo 216. The TCP timestamps
themselves are 4 bytes each, so the total state tracked per
TCP connection can be only 18 bytes. We identify packets
belonging to distinct TCP connections using the standard
IP 4-tuple (12 bytes for IPv4). The tuple can be hashed
to 8 bytes if memory is more constrained than processing
resources.

Alternative Formulation. We also consider an alter-
native formulation which requires tracking less state. This
formulation uses twice the conventional estimate of RTT and
the state transition delay STT in connection setup, i.e.

TTFB′ = 2(r1 − r0) + STT . (3)

STT is the difference between G(TS1−TS0), which includes
STT , and (r1− r0), the conventional RTT estimate without
STT . This option assumes that RTT1 ≈ RTT2. This option
does not need to track the HTTP request/response packets
if we can obtain the timestamp granularity G without the
HTTP request/response.

One way to obtain G without looking at the HTTP re-
quest/response is to maintain a database of timestamp gran-
ularities for each model of UE, since G is typically deter-
mined by the operating system and the device. We can
then map each flow to the device model that generated it
to obtain the correct G.6 This requires a post-processing
step after the measurement, but enables us to avoid track-
ing HTTP-GET and DATA-ACK packets.

The state required for the alternative option is only: r0,
r1, TS0, TS1 (12 bytes), and there would be no need to
track the HTTP-GET and DATA-ACK, allowing the probe
to release memory resources sooner for each connection. Un-
fortunately, we found that RTT2 = 2.2RTT1 on average,
which violates the underlying assumption of this approach
and significantly alters the TTFB estimate (by up to 60%
without STT).

Distinguishing State Transitions. Not all TTFB mea-
surements will include STT , but we need to know which ones
do to effectively understand if the change in STT impacted
the observed TTFB. To estimate if a packet incurred a state
transition, we use a Finite State Machine (FSM) to emulate
a simplified RRC state machine for each UE IP address. We
use the FSM model from [13], but only estimate transitions
from IDLE to CELL-DCH, the most common transition for
new user-initiated transactions. We validate the accuracy of
this approach in the next section.

3.3 Limitations
Our approach assumes that TTFB transactions will look

like Figure 2. While there are exceptions, which we de-
scribe here, the next section shows that enough follow this
pattern to accurately estimate TTFB. First, our estimate
assumes that the DATA-ACK immediately follows HTTP-
DATA packet. The UE could use a delayed ACK after the
first HTTP-DATA packet, but the error introduced would
likely be small (e.g., 3.7% for a 40 ms delayed-ACK timer, in
our data described in the next section). Second, we assume
that the SYN packet is not lost before reaching the probe, so
that the timestamp will represent initial user activity. Loss
rather than delay of the SYN at the IP layer is unlikely, as
the cellular link layer employs hybrid ARQ to retransmit

6In a UMTS or LTE network, the device type can be ob-
tained from GTP-C messages [4].

lost packets. The delay of the uplink ACK that completes
the 3WHS on the radio link may reduce the observed in-
terval r2 − r1 and, in turn, introduce error into G, because
G assumes this interval is proportional to TS2 − TS1. In
the next section, we show error in G introduced by typical
delay variance does not result in appreciable error in TTFB
estimates.

Since TTFB estimation is performed per TCP connection,
distinguishing between HTTP responses that carry content
vs. redirect instructions is not a part of the estimation tech-
nique. This does not diminish the value of the estimates,
which may be filtered or aggregated in the post-processing
stage to produce the estimates for different case studies, such
as video stream start-ups, aggregated redirects and initial
content, discarding advertising and analytics, etc. (e.g., see
Section 5).

Finally, our TTFB definition does not include the DNS re-
quest and response latency that precede many HTTP trans-
actions (30-39% in our data). While our estimate will be
affected by all network latency components that can also af-
fect the DNS exchange, it may miss state transitions that
are initiated by the DNS request. We note that our defini-
tion already captures state transitions for 7-14% of HTTP
transactions in our data. We are currently exploring ways
to estimate state transition delays caused by the DNS ex-
change, e.g., by leveraging the fact that DNS clients retry
requests after just 1 second, which is shorter than STT in
today’s UMTS networks. DNS packets do not include any
data comparable to TCP timestamps, hence the technique
to estimate TTFB is not applicable to DNS delay.

4. VALIDATION
To validate the estimation of TTFB on real traffic, we

collect two packet traces at Gn links of a major U.S. cellu-
lar carrier (Figure 1), which we refer to as “network traces”
hereafter. The traces include the first 128 bytes of each data
packet, capturing extended TCP/IP headers. The traces do
not include any personally identifiable information. Each
TCP connection is identified by the standard IP 4-tuple.
The arrival timestamp, TCP flags and timestamps are ex-
tracted from packet headers for TTFB estimation. All other
data is discarded. The first trace captures 2 minutes of
traffic on September 2, 2011 (754,082 TCP connections and
61,362 unique UE IPs), while the second captures 9 hours
and 5 minutes of traffic March 2, 2012 (5,626,320 TCP con-
nections and 73,058 unique UE IPs). The two Gn links
where traces were obtained serve large regions of the west-
ern U.S. with significantly different traffic load.

During the capture of network traces, we also capture tcp-
dump traces from active experiments on four popular UE de-
vices. These traces, referred to as “UE traces” hereafter,
record packets as they enter the UE’s operating system.
During the time of the second network trace, we simulta-
neously capture radio event logs from the RNC that our
UE was connected to, which will be used to validate state
transitions.

4.1 Validation of TTFB estimates
Timestamp Granularity Validation. The key ingredi-
ent of our estimation technique is the TCP timestamp gran-
ularity, estimated according to Equation 1. Since the times-
tamp granularity determines the time resolution at which we

118

0%

10%

20%

30%

0 1 2 5 10 15 50 100 150R
el

at
iv

e
%

 o
f

fl
o

w
s

Estimated TCP timestamp granularity (ms)

Sep 2011

Mar 2012

Figure 3: Distribution of G estimates.

can resolve TTFB estimates, we want to determine whether
most TCP connections have a fine enough granularity. Reso-
lutions from 1 to 10 ms are sufficient to differentiate changes
in TTFB latencies since they are several multiples of this res-
olution. By examining packet traces of several popular UE
devices, we find that common timestamp granularities are
1, 5, 10, and 100 ms. Next, we estimate G for TCP connec-
tions from the network traces and plot the distribution in
Figure 3. Our estimates of G using Equation 1 correspond
to the expected granularities, though the 5 ms granularity
does not appear in a significant number of connections. For
both network traces, we are able to see clusters around ex-
pected values of G from 96% of connections. In our valida-
tion below, we evaluate whether quantizing these estimated
G values to 1, 5, 10, and 100 ms would result in higher ac-
curacy, since other values are most likely due to estimation
errors. Threfore, G is indeed accurate in the face of actual
variance in scheduling and transmission delays.

We see a shift toward finer timestamp granularity over
6 months between trace collections, which corresponds to
newer devices. If this trend continues, estimation accuracy
will improve.

TTFB Validation. In order to determine the accuracy
of our approach, we compare the TTFB estimates derived
from the network traces against the actual TTFB as seen in
the UE traces. Latencies from UE traces closely reflect the
approach used in most popular active probing tools that ex-
ecute within the Web browser or a standalone application,
with the exception of the DNS exchange that we exclude.
We use a UE with a 1 ms timestamp granularity in three
scenarios: a) manual browsing, b) scripted browsing (with-
out state transitions), and c) scripted browsing with state
transitions. We find similar scripted browsing results for a
UE with a 100 ms granularity (omitted for brevity). Sce-
nario (a) consists of 731 connections to arbitrary Web sites,
and (b) and (c) have 5,149 and 278 connections (respec-
tively) to 26 popular Web sites (20% are mobile versions).
Manual browsing connections may or may not include STT
as the delay between page loads is arbitrary. Scripted brows-
ing does not include STT as the delay is 1 second between
loads. Scripted browsing with state transitions does include
STT induced by a 20-second delay between loads.
The CDFs of the actual and estimated TTFB are shown

in Figure 4 for all three scenarios. For competitive reasons,
latency values in all plots are consistently normalized by the
same constant. All scenarios show that our estimate (Equa-
tion 2) produces a distribution of estimates fairly close to
the actual TTFB. A question posed earlier is how much
the estimates would improve if we quantized estimated G
values, since we know the actual timestamp granularity is
usually 1 or 10 ms. To answer this question, we apply the
following heuristic: when the G estimate falls in the range

Table 2: MSE for TTFB estimations.
Estimate Quantized Proposed Alternative
Manual 3.95 4.86 7.05
Scripted 0.03 0.03 0.17

Scripted with STT 1.65 2.09 2.26

Table 3: Composition of TTFB (normalized).
State STT RTT1 RTT2 −Q Q
No ST 0 (0%) 0.15 (32%) 0.31 (50%) 0.08 (18%)

With ST 0.79 (68%) 0.08 (7%) 0.29 (12%) 0.15 (13%)

(0.5, 1.5) ms, quantize G to 1 ms. This range is determined
empirically from Figure 3. Figure 4 shows that using this
approach (labeled Quantized) provides a slightly better es-
timate of TTFB. However, since the improvement is small
and quantizing would result in incorrect results for fractional
timestamp granularities, which are allowed, we do not use
quantizing in our implementation.

The mean-squared-error (MSE) of estimates is shown in
Table 2. The quantized estimate has the same error as the
proposed one (Equation 2) in the scripted scenario, and a
moderate advantage for other scenarios is indicated by lower
MSE, as expected. For completeness, we also evaluate the
alternative formulation (Equation 3) and it has higher error,
especially for the scripted scenario. The error in scenarios
that include STT is moderated by the relative magnitude of
STT that dominates total TTFB. Due to its high error, we
did not implement the alternative formulation.

State Transition Validation. Finally, to validate that
our FSM can approximately distinguish TTFBs with and
without state transitions, we compare our FSM’s estimated
transitions, which are based on the network trace, to the
RNC radio event logs, which record when the UE really has
a state transition.7 We find that over 76% of our estimated
transitions are correct. 10% of incorrect estimates are edge
cases, such as starting and ending a measurement session,
while the remaining 14% are cases when signaling traffic
that is not observable at the Gn keeps the UE in active
state. Since the FSM classifies a large majority correctly, it
is sufficient to determine whether changes in TTFB values
are due to changes in the STT .

5. DEPLOYMENT AND RESULTS
We have implemented our TTFB estimation technique in

a probe platform on the production network of a major U.S.
cellular carrier. In addition to performance estimation, the
platform categorizes TCP flows by application, domain, and
device type using HTTP signatures and GTP-C informa-
tion [18]. In this section, we describe some early results
from this deployment.

TTFB Latency Breakdown. The difference in TTFB
for connections with and without a state transition is shown
using CDFs in Figure 5. The averages of key constituent
latencies in the TTFB, estimated using formulae in Table 1,
are listed in Table 3. Both results demonstrate the large
contribution of STT to total response time. STT comprises
68% of TTFB, on average, when a state transition occurs

7Due to load, resource, and vendor limitations, it is not
practical to collect and process RNC logs continuously [17],
which is why an estimation approach is needed.

119

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0

CD
F

TTFB (norm)

Quantized
Actual
Estimate

(a) Manual browsing

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

CD
F

TTFB (norm)

Actual
Quantized
Estimate

(b) Scripted browsing

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

CD
F

TTFB (norm)

Estimate
Quantized
Actual

(c) Scripted browsing with STT

Figure 4: Validation of TTFB estimates.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LTE
tablet

HSUPA
tablet

HSUPA
phone

HSPA+
phone

HSDPA
phone2

HSDPA
phone

HSDPA
tablet

La
te

nc
y

(n
or

m
)

RTT TTFB TTFBwST

(a) Devices

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 1 2 3

portals social nets

La
te

nc
y

(n
or

m
)

RTT
TTFB

(b) Domains

0.0

0.1

0.2

0.3

0.4

0.5

st
re

am
in

g
ap

ps
to

re
br

ow
sin

g
ga

m
e

th
um

bn
ai

ls
ht

tp
 o

th
er

ja
va

sc
rip

t
an

al
yt

ic
s

br
ow

sin
g

m
ap

s
ja

va
sc

rip
t

ph
ot

oa
pp

so
ci

al
 1

so
ci

al
 2

ga
m

e
1

ga
m

e
2

A B C D E

La
te

nc
y

(n
or

m
) RTT

TTFB

(c) Applications

Figure 6: Comparison of mean RTT vs. mean TTFB. Error bars indicate 95% confidence intervals.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

CD
F

TTFB (norm)

With state transition
No state transition

Figure 5: TTFB with and without STT.

(Table 3). In addition, we observe that the average server
delay Q is non-negligible.

TTFB by Device, Domain, and Application. Next,
we present three examples where TTFB offers a more com-
plete picture of user experienced delay than RTT, using 5 1

2
hours of network data collected from 4:50PM ET on May 2,
2011. Figure 6 shows estimated RTT (as per [8]) and TTFB
by device, domain, and application. Mobile devices with
newer radio technology are expected to offer a better user
experience, but we observe that the improvements can be
subtle. Figure 6a shows that devices with HSUPA/HSPA+
have lower RTT and TTFB over those without (HSDPA),
while there is no significant difference for TTFB with state
transitions. However, the LTE device shows better perfor-
mance across all metrics. This is due to the fact that LTE
technology has both higher data rates and shorter state tran-
sition delays, while both HSDPA and HSUPA/HSPA+ de-
vices have the same state transition delay.

Figure 6b compares the RTT and TTFB for different Web
portals and social network domains. We observe up to 72.5%
difference in TTFB between domains that have nearly iden-

tical measured RTT (social networks 2 and 3). This can be
mostly attributed to varying processing delays and HTTP
packet transmission delays, which RTT estimates do not
capture. As cellular technologies with lower transmission
delay are deployed, such as LTE, server processing delay
will make up a larger faction of the TTFB (Table 3).

Figure 6c shows the RTT and TTFB of different appli-
cations, grouped by domain (all apps under the same letter
are transactions to the same domain). We again see exam-
ples where TTFB differentiates user-perceived performance
but RTT does not. For example, we have cases where there
is no correlation between RTT and TTFB (domains B and
C). The three application classes that stand out are analyt-
ics, http-other and javascript, which are served up to 36%
slower than browsing and photoapp in domains B and C,
respectively. The higher TTFB is likely the consequence of
such transactions occurring in parallel with others.

6. CONCLUSION AND FUTURE WORK
This paper presented an accurate and light-weight tech-

nique to estimate TTFB of HTTP connections. Our early
results from a deployment in a large cellular carrier demon-
strate that TTFB, a large component of user response time,
can vary substantially along many dimensions, even when
measured RTT does not. Hence, measuring TTFB provides
a more complete picture of the user experienced delay. In
addition, our technique allows each component of TTFB to
be studied separately, such as state transitions and server
delay. While presented technique is applicable not only to
cellular networks, there may be simpler methods available,
depending on the transmission technologies in each particu-
lar case. In the future, we plan to improve the accuracy of
our state estimation FSM by including more states. We are
also evaluating ways to include the DNS exchange into our
definition of TTFB.

120

7. REFERENCES
[1] Apache 2.2 keepalivetimeout directive.

http://httpd.apache.org/docs/2.2/mod/core.html#
keepalivetimeout.

[2] For impatient web users, an eye blink is just too long
to wait. http://www.nytimes.com/2012/03/01/
technology/impatient-web-users-flee-slow-loading-
sites.html,
2012.

[3] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen,
and O. Spatscheck. Over the top video: The gorilla in
cellular networks. In ACM Internet Measurement
Conference, pages 127–136. ACM, 2011.

[4] A. Gerber, J. Pang, O. Spatscheck, and
S. Venkataraman. Speed testing without speed tests:
Estimating achievable download speed from passive
measurements. In ACM Internet Measurement
Conference, pages 424–430. ACM, 2010.

[5] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance
and power characteristics of 4G LTE networks. In
ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2012.

[6] IETF. RFC 1323: TCP extensions for high
performance, supersedes RFC 1072, RFC 1185, 1992.

[7] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP connection characteristics
through passive measurements. In IEEE INFOCOM,
volume 3, pages 1582–1592 vol.3, 2004.

[8] H. Jiang and C. Dovrolis. Passive estimation of TCP
round-trip times. SIGCOMM Comput. Commun.
Rev., 32(3):75–88, 2002.

[9] S. Khirman and P. Henriksen. Relationship between
quality-of-service and quality-of-experience for public
Internet service. In Passive and Active Measurement
Workshop, 2002.

[10] R. B. Miller. Response time in man-computer
conversational transactions. In Proceedings of the
December 9-11, 1968, fall joint computer conference,
part I, AFIPS ’68 (Fall, part I), pages 267–277, 1968.

[11] J. Perez-Romero, O. Sallent, R. Agusti, and M. A.
Diaz-Guerra. Radio Resource Management Strategies
in UMTS. Wiley, 1 edition, 2005.

[12] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck,
and W. Willinger. TCP revisited: A fresh look at
TCP in the wild. In ACM Internet Measurement
Conference, pages 76–89. ACM, 2009.

[13] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing radio resource
allocation for 3G networks. In ACM Internet
Measurement Conference, 2010.

[14] P. Romirer-Maierhofer, A. Coluccia, and T. Witek. On
the use of TCP passive measurements for anomaly
detection: A case study from an operational 3G
network. In 2nd COST TMA Workshop, Zurich,
Switzerland, 2010.

[15] P. Romirer-Maierhofer, F. Ricciato, A. D’Alconzo,
R. Franzan, and W. Karner. Network-wide
measurements of TCP RTT in 3G. In International
Workshop on Traffic Monitoring and Analysis (TMA),
pages 17–25, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] B. Veal, K. Li, and D. Lowenthal. New methods for
passive estimation of TCP round-trip times. In
Passive and Active Measurement Workshop, 2005.

[17] Q. Xu, A. Gerber, Z. M. Mao, and J. Pang. AccuLoc:
Practical localization of performance measurement in
3G networks. In ACM MobiSys, 2011.

[18] Q. Xu, A. Gerber, Z. M. Mao, J. Pang, and
S. Venkataraman. Identifying diverse usage behaviors
of smartphone apps. In ACM IMC, 2011.

121

