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Abstract— Using a large Web search service as a case
study, we highlight the challenges that modern Web services
face in understanding and diagnosing the response time ex-
perienced by users. We show that search response time
(SRT) varies widely over time and also exhibits counter-
intuitive behavior. It is actually higher during off-peak hours,
when the query load is lower, than during peak hours. To re-
solve this paradox and explain SRT variations in general, we
develop an analysis framework that separates systemic varia-
tions due to periodic changes in service usage and anomalous
variations due to unanticipated events such as failures and
denial-of-service attacks. We find that systemic SRT varia-
tions are primarily caused by systemic changes in aggregate
network characteristics, nature of user queries, and browser
types. For instance, one reason for higher SRTs during off-
peak hours is that during those hours a greater fraction of
queries come from slower, mainly-residential networks. We
also develop a technique that, by factoring out the impact of
such variations, robustly detects and diagnoses performance
anomalies in SRT. Deployment experience shows that our
technique detects three times more true (operator-verified)
anomalies than existing techniques.

Categories and subject descriptors: C.4 [Performance of sys-
tems] Performance attributes; H.3.5 [Information storage and re-
trieval] Online information services
Keywords: Search response time; Web services; performance
monitoring; anomaly detection and diagnosis

1. INTRODUCTION
Web services are the dominant enabler for a wide range

of online activities such as searching and accessing content,
shopping, and social interactions. Their performance is crit-
ical because even small increase in response time hurts user
experience and impacts the monetization ability of service
providers [22,27]. It is thus extremely important for service
providers to understand the key factors that impact perfor-
mance and to quickly detect and diagnose any degradation.
This task, however, is challenging because the performance
of modern Web services depends on a variety of diverse, in-
teracting factors that span servers in data centers, CDN edge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

M T W Th F S Su
t

300+t

S
R

T
 (

m
s)

 

 
houly daily

t

200+t

S
R

T
 (

m
s)

M T W Th F S Su

n

4*n

#
 q

u
e
ri
e
s

 

 
weekday peak

remaining hours

weekday
peak

weekday

weekendweekday
off−peak

(c)

(b)

(a)

Figure 1: Variation in SRT and query load at a large
search provider.

servers, network paths, client machines and Web browsers,
and user behavior.

Using a large Web search service as an example, we high-
light the challenges in understanding and diagnosing end-
to-end search response time (SRT), that is, the delay be-
tween when the query is sent and when the response page
is completely rendered. As an example, Figure 1(a) shows
the average SRT for the service over the course of a week.
Each data point is an average over all queries received in
an hour from clients in the USA. We hide the absolute SRT
values for confidentiality. We see that the SRT varies widely
with hour of the day and day of the week. Surprisingly, as
Figure 1(b) shows, it is higher during off-peak hours and
weekends, when, as Figure 1(c) shows, the query load is in
fact much lower. We have confirmed that this behavior is
not due to operational practices such as switching off a sub-
set of data center servers or changing routing policies during
off-peak hours. We have also verified that this phenomenon
is not unique to this service provider but holds for another
large search provider as well.

To characterize and explain SRT variations, we develop
an analysis framework that uses ideas from analysis of vari-
ance [15] and time series decomposition [26]. Our framework
separates the observed SRT variation into two components:
i) systemic variations that are caused by periodic changes
in how the service is used, and ii) anomalous variations that
are caused by unanticipated events such as server or network
failures, network congestion, and denial-of-service attacks.

We use our framework to analyze over 6 months of data
collected using detailed client- and server-side instrumenta-
tion. We find that the systemic variations in SRT can be
attributed to three primary factors: the network character-
istics of clients, the nature of queries, and the Web browser.



In contrast, the query processing time at the server has only
a small impact on SRT variations.
The variations and interactions of the three primary fac-

tors explain almost all of the observed SRT variation, in-
cluding the paradoxical behavior shown in Figure 1. Al-
though the query load decreases significantly during off-peak
hours, a greater fraction of the queries during these times
come from slower, mainly-residential networks than faster,
mainly-enterprise networks. Further, a greater fraction of
the queries during off-peak hours result in media-rich re-
sponse pages which take longer to download and render by
browsers. This behavior likely stems from users perform-
ing more work-related queries (e.g., “correlation coefficient”)
during peak hours and more leisure-related queries during
off-peak hours (e.g., “Lady Gaga” or “tourist attractions in
Bali”). While the former class of queries tend to have text-
based response pages, the latter class often has response
pages with images and videos. Finally, a greater fraction
of queries come from faster browsers during off-peak hours.
However, the improvement in SRT due to this factor is not
sufficient to counterbalance the impact of slower networks
and richer response pages. The net effect is higher average
SRT during off-peak hours and weekends.
The systemic variations in SRT make it difficult to detect

and diagnose performance anomalies because the anoma-
lies get masked by these variations. The operators of the
search service, who employ visual inspection and conven-
tional techniques (e.g.. outlier detection) to detect anoma-
lies, inform us that it sometimes takes them multiple days
to detect anomalies. Building on our analysis framework,
we develop a technique for detecting anomalous variations
in SRT, by factoring out the systemic variations, and for
localizing where the root cause is likely to lie. We imple-
ment this technique as part of a tool that is deployed by
the service. During the first five months of its deployment,
it detects over 90% of the anomalies that operators detect
using current practice. It also detects three times more true
(operator-verified) anomalies than conventional techniques
that do not account for systemic variations in SRT.
To our knowledge, our work is the first detailed analy-

sis of variations in aggregate performance of a large-scale
Web service. While it focuses on Web search, we believe our
analysis framework and insights also apply to other Web ser-
vices; their performance too is a function of variations in and
interactions of user, network, and browser characteristics.

2. BACKGROUND: SEARCH SERVICES
Before describing our analysis, we provide a brief back-

ground on how modern Web services such as search are de-
livered. Figure 2 shows a typical infrastructure for such ser-
vices. It consists of data centers that sit deep in the cloud
and compute query responses, and of content distribution
network (CDN) servers that sit close to the network edge
and serve as intermediaries between users and data centers.
Each data center has a number of servers that are orga-

nized in tiers and play different roles in serving incoming
queries. A tier-1 server, also known as a front door server,
parses the request, invokes one or more tier-2 servers, and
ranks and aggregates the answers from them into the re-
sponse page that is sent to the user. Different tier-2 servers
index different types of content such as Web pages, images,
news, videos, and advertisements, and their answers are spe-
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Figure 2: Infrastructure of a large Web service.

cific to that content. The front door server decides during
aggregation which types of content answers are most rele-
vant for a given query, based on hints provided by the tier-2
server, and includes only those answers in the response page.
Due to their high cost, large data centers with all types of
servers are located in only a few locations.

For performance, search services employ a large number of
CDN edge servers. These servers help improve performance
by terminating TCP connections closer to the user, which
leads to a faster growth of the congestion window. They
establish one or more long-lived, high-throughput TCP con-
nections to front door servers and multiplex users on these
connections. Due to the large diversity of queries across
users and the personalization of responses, the CDN edge
servers do not cache query results but fetch them from a
data center. However, the results of popular queries may be
cached in the data center.

User queries start with a DNS lookup, which returns IP
addresses of one or more nearby CDN edge servers. The user
then opens a TCP connection to an edge server and sends
her query. Edge servers relay queries to a close data center
and relay responses to the users.

Figure 3 shows the interaction between the front door
server and the user, after abstracting out the CDN edge
server. As soon as the query is received, the front door
server relays it to various tier-2 servers. In parallel, it starts
preparing the response which goes out in three chunks [29],
shown as shaded areas in the figure. The first chunk con-
tains the part of the result page that is the same across all
types of queries, including the HTML header elements and
the header portion containing the brand information (e.g.,
Google or Bing logo image). Personalized user information
is also sent in this chunk.

The second chunk begins after the front door server has
finished ranking and aggregating the results from the tier-2
servers. It contains the HTML portion of the response fol-
lowed by BoP (bottom of page) javascript that is executed
right after the entire HTML page is loaded, to refresh cook-
ies, set image hovering properties, etc. The content of the
chunk is typically compressed and must be decompressed by
the browser before it can be parsed.

The response commonly contains pointers to additional
assets that are needed to render the page. These include
images, CSS, and more javascript. Some of these images
are sent as objects embedded in the response itself. The
front door server decides which images should be embedded
and transmits them as the third chunk after fetching those
images from their locations. The remaining assets, which
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Figure 3: Timeline of a search query.

are referenced, are fetched by the user by issuing additional
queries to servers that belong to the search provider or third-
parties. These queries are pipelined and issued in parallel
to the reception and parsing of the HTML content.
After all the content is received and objects in the page are

fully loaded (tc10 in Figure 3), the browser fires the “onload”
event and starts executing the javascript that corresponds
to this event. After the script finishes executing (tc11), the
browser finishes rendering the page and issues a post-load
request for a tiny (1x1 pixel) image to the front door server
using the same TCP connection. As described below, the
time at which this request is received by the front door server
is used to estimate the SRT for the query.

3. DATA COLLECTION
To gain insight into SRT behavior and factors that impact

it, we collect detailed data from one of the largest search
providers in the world. The granularity of the data is at the
level of individual queries. For each query, a set of server-
side and client-side metrics are collected. The server-side
metrics include all timestamps shown on the right in Figure 3
(ts∗). The client-side metrics include the type of browser
(user-agent) and the timestamps on the left (tc∗), which are
collected using javascript and HTML instrumentation. The
timestamps are taken by the browser and returned to the
server as part of the post-load request (at tc11). Through
controlled experiments, we have verified that the overhead
of collecting this data, including its impact on SRT, is neg-
ligible.
We use the collected timestamps to compute the time de-

lay measures (T∗) that are shown in the figure. Each mea-
sure captures the time taken for a certain activity to com-
plete on the client or the server side. For instance, Tfc is the
time it takes for the front door server to transmit the first
byte of the first chunk after receiving the query and Tintchk1

is the time the client has to wait between the last byte of
the first chunk and the first byte of the second chunk.

We approximate three delay measures that cannot be di-
rectly computed from the timestamps. The first is SRT it-
self. While considering SRT, we ignore the time for perform-
ing the DNS lookup and establishing the TCP connection
with the CDN edge server. Both these activities are rela-
tively quick as they involve one round trip to a nearby server
and DNS names are often cached. (We have empirically ver-
ified this fact using a separate data source.) Ignoring these
two factors, the SRT for a query is tc11 − tc1. But our data
does not have tc1 because HTML instrumentation does not
allow us to log the time when the query is sent. We thus
estimate SRT as ts5 − ts1, which closely approximates tc11 − tc1
when the one-way delay of the original query is similar to
that of the post-load query [2, 24].

The second measure that we approximate is network round
trip delay, Tnet (not shown in Figure 3). We approximate
it as Tnet = (ts5 − ts2) − (tc11 − tc2). The first parenthetical
quantity is the time between the server starting to send the
first chunk to receiving the post-load query, and the sec-
ond parenthetical quantity is the time between the client
starting to receive the first chunk and sending the post-load
query. Their difference approximates the round trip network
delay. It includes the time taken by CDN edge servers to
relay queries and responses between clients and front door
servers. Data from the CDN edge servers confirm that this
time is negligible compared to network delays; relaying in-
volves minimal processing and uses passthrough techniques.

The third measure that we approximate is Tfs, the time
it takes for the first byte of the first chunk to arrive at the
client. We approximate it as Tfs =Tfc +Tnet.

In addition to the query-level metrics, we obtain from
our CDN information about the clients. This includes the
client’s location and the ASN (Autonomous System Num-
ber) of its ISP. The CDN also provides us a coarse estimate
of the client access link bandwidth, categorized into six buck-
ets: [1, 56], [57, 256], [257, 999], [1000, 1999], [2000, 5000],
and [5000, ∞] Kbps. As the access bandwidth of a client
is not susceptible to fast change, our CDN measures it once
every two months.

The data used in this paper was continuously collected
for a span of over 6 months. We only consider Web search,
which is the most common type of search. To focus on
clients that experience roughly similar conditions, we ex-
clude queries from outside the USA and from mobile de-
vices. These clients experience disparate conditions and the
responses to their queries are also different. In compliance
with confidentiality constraints, all results in this paper are
anonymized and normalized.

4. SYSTEMIC SRT VARIATIONS
To identify the key factors that contribute to SRT varia-

tions and dissect their complex interactions, we develop an
analysis framework that helps separate the observed SRT
variations into systemic and anomalous variations. In this
section we present our framework, with a focus on systemic
variations. Detecting and diagnosing the anomalous varia-
tions will be discussed in the next section.

4.1 Analysis Framework
The observed SRT variations are likely due to a confluence

of complex, interacting factors such as network bandwidth,



Measure Impact factors
Tfs network, server
Thead browser, network
Tbrand browser, network
Tintchk1 query, server

TresHTML browser, query, network
TBoP browser, query

Tintchk2 query, server
Tembed query, network
Tref browser, query, network

Tscript browser, query
Tfc server
Tsc query, server
Ttc query, server
Tnet network

Table 1: Factors that impact each measure.

end-to-end latency, server-side processing time, and browser
speed. To isolate and identify the key contributing factors,
we start by decomposing the overall SRT into individual
measures shown in the first column of Table 1. See Figure 3
for what each measure represents. The relationship between
individual measures and underlying factors of interest (e.g.,
network) is in general not one-to-one. As shown in Table 1,
most measures are impacted by multiple factors, and each
factor impacts multiple measures. A factor may also influ-
ence different measures in different degrees (i.e., the effects
are unbalanced). These complex dependencies make it hard
to tease out the factors that cause SRT variations; we can-
not simply correlate SRT to measures that cleanly capture
individual factors. We describe below how we identify which
factors cause most variation and quantify their impact.

4.1.1 Methodology
Let Y be a random, response variable that represents the

observed SRT, and let Xk, k = 1, 2, . . . , n, be a set of ran-
dom, explanatory variables. Each Xk represents one of the
constituent measures in Table 1. We assume a linear model
M := Y = a0 +

∑
k akXk + η, where η represents random

noise in measurements. This model is an approximation
because the dependence between Y and Xk may not be lin-
ear in practice. Further, because of dependencies between
explanatory variables, the model may not have a unique so-
lution. But we find this simple model to be useful in analysis
and we are careful to account for variable interaction when
using the model. We use measurement data to learn a0 and
ak’s that best match the model M .
Given this model, our analysis proceeds in three steps.

First, we separate the variance due to random noise in the
measurement from the the variance captured by the model.
The latter is what we refer to as systemic variance. Second,
given the systemic variance thus extracted, we quantify the
contribution of individual measures Xk, which in turn lets
us identify the primary factors that cause SRT variation. Fi-
nally, we investigate the contribution of each primary factor
by controlling the other primary factors. In this subsection
(§4.1), we described the first two steps, followed by their re-
sults. Investigations that correspond to the final step are in
§4.2–4.4.
In the first two steps of our analysis, we apply ideas from

analysis of variance (ANOVA) [15]. The first step starts by
computing the variance in the response variable, SST (Y ) =∑

i(yi−ȳ)2, where yi is an individual (independent) observa-
tion of the response variable and ȳ is the mean value across
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Figure 4: Analysis of variance results.

all observations. We then partition SST (Y ) into SSR(M,Y )
and SSE(M,Y ), i.e., SST (Y ) = SSR(M,Y ) + SSE(M,Y ),
where SSR(M,Y ) is the variance in Y explained by the
model M and SSE(M,Y ) is the variance that is not ex-
plained by the model.1 Let ŷi = a0 +

∑
k akxki, where

xki is an individual observation of the explanatory variable
Xk. Then SSR(M,Y ) =

∑
i(ŷi − ȳ)2, and SSE(M,Y ) =∑

i(yi − ŷi)
2.

In the second step of our analysis, we partition the model
variance SSR(M,Y ) into n components, each of which is
attributable to an explanatory variable and helps quantify
the extent to which that variable explains SRT variance. For
this purpose, we focus on two important metrics:

i) 1st order variance SSR(Mk, Y ): It quantifies the vari-
ance explained by only one explanatory variableXk, as if the
SRT depends on only one variable. That is, SSR(Mk, Y ) is
the model variance of the model Mk := Y = bk0 + bkXk + η.
Formally, SSR(Mk, Y ) =

∑
i(b

k
0 + bkxki − ȳ)2, where values

for bk0 and bk are learned from the measurement data.
ii) n-th order variance SSR(M¬k, Y ): It quantifies the

left-over variance that is explained by Xk but cannot be
explained by the interactions of the other n − 1 variables.
That is, SSR(M¬k, Y ) is the model variance of the model
M¬k := Y = ck0+

∑
j ̸=k c

k
jXj+η. Formally, SSR(M¬k, Y ) =∑

i(c
k
0 +

∑
j ̸=k c

k
jxji − ȳ)2, where values for ck0 and ckj ’s are

learned from the measurement data.
We apply the steps above on 1-hour averages of SRT and

the individual delay measures listed in Table 1. For com-
putational efficiency and minimizing redundancy, we con-
sider only those individual measures that have a noticeable
impact on SRT. Specifically, we exclude from our analysis
measures that either constitute a minuscule fraction of SRT
or are highly correlated with another measure. The first cri-
terion excludes Tintchk2 and Tembed because they represent
less than 1% of the SRT. The second excludes Tfs, Tintchk1,
and Tbrand because they are highly correlated with, respec-
tively, Tnet, Tsc, and TresHTML; the Pearson’s correlation
coefficients are 0.99, 0.79, 0.99. (High correlation between
Tfs and Tnet indicates that Tfs is largely determined by net-
work latency, and the server-side processing time to generate
the first chunk (Tfc) has only a minute effect.)

4.1.2 Results: Primary factors
Figure 4 shows the amount of variation in SRT that is

explained by each of the 9 remaining measures. Focusing
on the 1st order variance first, we see that the two mea-
sures that explain the most variations, roughly 60% each,
are Tnet and TBoP . Tnet is impacted by the network latency
between the client and the (tier-1) server. TBoP is impacted

1In this notation, SS is short for sum of squares. The sub-
scripts T , R, and E are short for total, regression, and error.
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Figure 5: Variation in network characteristics.

mainly by the browser speed and query type (e.g., results
pages with more images have more complicated bottom-
of-page scripts). The next three measures explain roughly
equal amounts of variations, around 30% each. Of these,
TresHTML and Tref are impacted by network latency and
bandwidth since they involve downloading, respectively, of
the results page and referenced content, by the query type
since size of the results page and referenced content depend
on query, and by the browser’s speed of rendering the re-
sults and referenced content. Tscript depends mainly on the
browser’s speed of javascript execution.
The measures that are impacted by the server processing

time, Tfc, Tsc, and Ttc, explain relatively small amount of
variations in SRT. (Some of these measures are impacted
by the query type as well.) Thus, all measures that explain
significant SRT variations are impacted by network, query,
and browser, but not by the server-side processing time.
Interpreting these results requires some care. Our results

do not imply that server-side processing time is not an im-
portant contributor to the total SRT. Server time could be a
big fraction of SRT and yet not be responsible for significant
systemic variation because of its relative stability. This sta-
bility could stem from techniques in the data center that
generate response within a configured deadline (e.g., 250
ms) [6, 10]. Further, since we study average SRT across all
queries in an hour, our results also do not imply that server
processing time is stable at the level of individual queries.
Various short-lived issues (e.g., OS-level scheduling) could
lead to high server delays for individual queries [13] and yet
those delays may not be a factor behind systemic variations
across hours of the day.
Next, looking at the n-th order variance, we see that most

variables explain only a small amount of variance that can-
not be explained by other variables. This underscores the
high degree of interaction among various variables. Tnet is
the only variable with notable n-th order variance.
Though not shown in the figure, we also find that col-

lectively these measures capture almost all of the variance
in SRT. The amount of SRT variations that cannot be ex-
plained by them (i.e., SSE) is only 0.66%.
In summary, we find that the systemic variations in SRT

stem primarily from network characteristics, query type, and
browser speed; server-side processing time has a relatively
small impact. That these three factors lead to systemic SRT
variations implies that they must be systemically varying
across times of day and days of week. The following sections
investigate how and why these three factors vary.

4.2 Variation in Network Characteristics
We begin by studying variation in network characteristics.

We show that it stems from changes in the relative fraction of
queries that come from residential and enterprise networks.

Figure 5 shows the network characteristics observed across
all of our clients. For a week-long period, it plots the hourly
average of network latency (Tnet) and the bandwidth (BW)
reported by our CDN. All the graphs in this paper that show
a week’s worth of data correspond to the same week; unless
there is a weekday holiday, other weeks have similar behav-
iors. We see the network characteristics do vary systemically
over time. During off-peak hours, network latency increases
by as much as 20% and the bandwidth decreases by a simi-
lar percentage. These systemic changes explain why network
characteristics is a key factor underlying SRT variations.

Now, the question is why network characteristics vary as
shown. If anything, we would have expected the opposite:
due to possible congestion during peak hours, network la-
tency should have been higher during peak hours. As we
explain below, the variations we see are due to the variations
in the fraction of queries that come from residential networks
which tend to have higher latencies and lower bandwidths
compared to enterprise networks.

We use a simple heuristic to classify a network as resi-
dential or enterprise, based on the expectation that enter-
prise networks send relatively few queries during weekends.
For each of the 13,349 ASNs observed in our data, we com-
pute the ratio of the number of queries they send during
the weekend days (i.e., Saturday and Sunday) to the num-
ber during weekdays. Across all ASNs, this ratio varies be-
tween 0 and 10. For a conservative classification, we deem
one-third of the ASNs with the lowest ratios as mainly-
enterprise and one-third of the ASNs with the highest ra-
tios as mainly-residential. The middle third is deemed as
mixed-or-unknown. The weekend-to-weekday query ratio of
all mainly-enterprise ASNs is lower than 0.0074. We do not
expect the ratio to be perfectly zero for many enterprises if
some employees work on the weekends or connect their lap-
tops through corporate VPNs (Virtual Private Networks).
We manually verified the classification of many ASNs that
are deemed mainly-residential or mainly-enterprise, based
on their names. For instance, Microsoft (ASN 3598) is clas-
sified as mainly-enterprise.2

With this classification in place, we can now explain the
variation in network characteristics. As shown in Figure 6,
the mainly-residential ASNs send a greater proportion of
queries during off-peak hours (left graph) and they have
poorer network characteristics (middle two graphs). Their
share is 70% during peak hours but almost 100% during the
off-peak hours, and their network latency is 25% higher than
that of mainly-enterprise ASNs.

The poorer network characteristics of mainly-residential
ASNs translate, expectedly, to higher SRTs (right graph).
On average, the SRT for these ASNs is 11.2% higher than
that of mainly-enterprise ASNs. Due to the low traffic vol-
ume from mainly-enterprise ASNs during off-peak hours, we
only plot their performance during weekday peak hours. To
illustrate this behavior without conflating with the impact
of browser speed and query type on SRT, the graph is plot-

2We tried initially to use ASN names to classify ASNs but
dropped that effort because of the names of many ASNs are
hard to interpret.
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Figure 7: Image count vs. other measures of re-
sponse page complexity.

ted using data that corresponds to only one type of browser
and queries that generate similar response pages (specifi-
cally, pages without images). Other browsers and query
types show a similar effect.

4.3 Variation in Query Type
We now investigate the variation in query type. The na-

ture of the query can impact SRT in two ways. First, it
can impact the time it takes the server to compute the re-
sults. Second, because different queries have different re-
sponse pages, it can impact the time it takes to download all
content (which includes HTML and multimedia content) and
for the browser to load the page (which includes javascript
execution and rendering). We showed earlier that server pro-
cessing time is not a primary factor in SRT variations, and
detailed measurements based on different types of queries
confirms that the variation in server processing time is small.
Thus, variations in SRT due to query type must largely

stem from the diversity and variations in type of responses
generated. While most queries generate ten Web answers
(HTML links), depending on the query, the response page
can also contain other types of answers such as news, images,
videos, and maps. These differences lead to high degree of
diversity in response pages. The number of HTML bytes in
the response page varies by an order of magnitude across in-
dividual queries, and the number of embedded or referenced
images vary by more than a factor of two. Consequently,
different response pages take different times to download,
parse, and render.
Though researchers have recently proposed general mea-

sures of Web page complexity [11], we use a simple metric
that is specific to the domain of search. Because most non-
Web answers contain images, we use the number of images
on the response page as a metric for page complexity. It
turns out that, as shown in Figure 7, this metric is correlated
with other possible measures of page complexity such as
time to download all referenced content (Tref in left graph),

time to load the page after all content has been downloaded
(Tscript in left graph), and HTML size (right graph).

Figure 8 shows that the number of images in query re-
sponses varies systematically across hours of day and days
of week. Further, Figure 9 shows that the SRT is higher
for queries with more images in their responses. The spread
in SRT values is about 30%. To factor out the impact of
network and browser type, this figure is plotted for one type
of browser and mainly-residential ASNs. We obtain quali-
tatively similar results for other browser and ASN types.

Taken together, the two effects—variation in query rich-
ness and its impact on SRT—explain why the nature of the
queries is a primary factor behind SRT variations.

One interesting question is why query richness varies with
time. An in-depth look at the data reveals that richer queries
tend to be leisure-oriented such as queries about celebrities,
holiday events, and travel destinations. Users tend to issue
more of such queries during off-peak hours or when they
are at home. As shown in Figure 10, the number of images
contained in the queries from mainly-residential ASNs are
higher than those from mainly-enterprise ASNs. Therefore,
the shift of the “user intent” from peak to off-peak hours is
what leads to variations in query richness.

4.4 Variation in Browser Types
We now show that browsers are a primary factor behind

SRT variations because i) the relative mix of browsers ac-
cessing the search service varies over time; and ii) different
browsers have different speeds.

There are eight types of browsers in our data that issue at
least 1% of the queries. Different major versions of the same
browser (e.g., Internet Explorer 8 and 9) are considered dif-
ferent types of browsers because they can have significantly
different rendering and script execution engines.

Figure 11 shows the variations of the fraction of queries
for the two most popular browsers, Browser-X and Browser-
Y. These two browsers account for 35% and 40% of the total
queries, respectively. We see that the fraction of queries from
these browsers varies substantially with time. Their relative
popularity swings by over 25%: Browser-X goes from gen-
erating 15% more queries during peak hours to generating
10% fewer queries. The relative popularity of other six ma-
jor browser types varies as well. Two of them vary like
Browser-X, i.e., they send a higher fraction of their queries
during peak hours. The remaining four vary like Browser-Y.

In addition to generating different fractions of queries over
time, different browsers have disparate performance. As an
indicator of browser performance, we use Tscript, which is
not impacted by the time it takes to download the page be-
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cause it captures the time from downloading all content to
fully loading the page. Figure 12 shows the performance
of the two popular browsers. On average, Browser-X is
slower by a factor of 1.82. To minimize the impact from
network and query type, we only plot it for queries whose
response pages do not contain images and come from mainly-
residential ASNs; other types of queries and ASNs show a
similar behavior. As we can see from the figure, the two
browsers have disparate performance. Controlled experi-
ments on the same machine with different browsers confirm
that the differences in Tscript times that we see in the wild
reflect real differences in browser performance, and not just
differences in the capabilities of host machines.
The combination of the two observations—variations in

the browser mix and the differences in browser speed—explains
why browsers are a primary factor behind SRT variations.
To understand why the mix of browsers varies with time,

we investigated where their users come from. Figure 13
shows the fractions of queries coming from three different
categories of networks for the two popular browsers. We see
that the vast majority of the Browser-Y’s queries come from
mainly-residential networks. For Browser-X, however, there
is a significant shift (around 40%) during peak hours away
from mainly-residential networks. We speculate that these
trends stem from the fact that Browser-X, at the time of
this study, is more likely to be the standard browser that is
adopted and supported officially by many enterprises. This
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speculation is supported by the fact that Browser-X is an
older browser, while Browser-Y is newer; many enterprises
in the USA do not immediately upgrade to newer browsers
as they must first test compatibility of the new browser with
their internal services (called line-of-business applications).
On the other hand, residential machines in the USA are
likely upgraded sooner due to automatic updates. Thus, as
the users of the search service move from work to home, the
service sees a move from Browser-X to Browser-Y.

Observe that the impact of browsers on SRT is the oppo-
site of the impact of network and query type. During off-
peak hours, a greater fraction of queries come from Browser-
Y, which has better performance. This should have a pos-
itive impact on SRT during off-peak hours. But the nega-
tive impact on SRT due to variations in network and query
type dominates, and we see higher SRTs as the net effect.
Without the corrective effect of browsers, the SRTs during
off-peak hours would have been even higher.

5. ANOMALOUS SRT VARIATIONS
In addition to systemic variations that we study above,

SRT also experiences irregular variations. These variations,
which we call anomalies, stem from events such as failures in
the network or data center, congestion, and attacks on the
search infrastructure. For a good user experience, anomalies
must be detected and resolved quickly. However, operators
inform us that it frequently takes them several days before
they even detect that the SRT is anomalous, as the systemic
variations often hide the real anomalies. Once detected, di-
agnosing the root cause of an anomaly is also challenging as
it can lie in any part of the infrastructure.

We develop a technique to assist the operators in quickly
detecting and diagnosing SRT anomalies. Below, we first
describe how it detects anomalies and then how it localizes
their root causes. We have implemented our technique in a
tool that has been deployed on the real system.



5.1 Detecting Anomalies
The main challenge in accurately detecting SRT anomalies

is that they co-exist with systemic variations due to other
factors, including the weekly, daily and hourly fluctuations,
and the long-term evolution of SRT. As we show later, due
to these variations, common anomaly and outlier detection
methods both fail to detect many anomalies and flag events
that are not anomalies.

5.1.1 Methodology
We use an approach based on time series decomposition [26],

which we call WoW (week-over-week) analysis. The basic
idea is to view SRT as a composition of three components:
i) the long-term trend; ii) the seasonality or periodic behav-
ior; and iii) fast variations or noise.
Consider the SRT time series, where SRTt is the average

over the t-th hour. The long-term trend component, denoted
by L, of this series can be computed as a centered moving
average with the window size set to T :

Lt =
1

T + 1

T/2∑

i=−T/2

SRTt+i (1)

T should be greater than or equal to the maximum period-
icity in the data. We use T=168 hours (1 week).
Let Yt=SRTt–Lt be the time series after removing the

long-term trend. Then, the seasonal component, S, can be
computed as seasonal moving average:

St =
1

M + 1

M∑

i=0

Yt−iT ,M = ⌊t/T ⌋ (2)

What remains now is the noise component, N, which can
be computed by removing the long-term trend and season-
ality components:

Nt = SRTt − Lt − St (3)

By definition, this component is neither part of the long
term trend nor a periodic event. It captures the irregularity
that cannot be explained by the other two factors.
We deem as anomalous time instances where the noise is

abnormally high. To infer high abnormality, we assume that
noise follows a Gaussian distribution based on the central
limit theorem [1]. However, due to the diurnal patterns and
the day of week effect, the distribution parameters can differ
for different times of week.
Thus, based on historical data, we learn 168 Gaussian

models, one for each hour of the week. We flag as anomalous
values outside the 95th percentile of the distribution (i.e.,
±1.96). This threshold is commonly used in many statistical
areas [25] and we find that it works well in our setting too.
Thus, we deem that the SRT at time t is anomalous if:

|Nt − µt̂|
σt̂

> 1.96 (4)

where µt̂ and σt̂ are the mean and standard deviation of the
Gaussian distribution built from all data collected at the
same hours as t within a week.
The quantity on the left in Eq. 4 is the severity of the

anomaly, and we report it in the notifications that are gen-
erated for the operators. It captures the extent to which
current SRT has deviated from expectation. Larger values
indicate more serious anomalies.
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Figure 15: Time series decomposition results. Cir-
cles in the bottom graph denote anomalies.

We repeat the above steps for each incoming data point to
conduct online anomaly detection. If an hour is anomalous,
its data is excluded while learning the Gaussian model. We
find that including data from anomalous hours leads to less
robust anomaly detection.

5.1.2 Results
To evaluate our method, we compare it to two common

methods for anomaly detection that do not account for the
interference from systemic variations. The first method builds
a single Gaussian model of SRT using recent history, and it
detects anomalies when the current value is an outlier. The
second method is based on change point detection [30]. To
eliminate the potential trend change, sudden changes in SRT
are detected as change points using cumulative sum and
bootstrapping techniques [30]. A Gaussian model is built
for all the hourly data points between each pair of change
points. In both methods, a value v is deemed anomalous
if |v−µ|

σ > 1.96, where µ and σ are the parameters of its
learned model.

We first illustrate the behavior of the three approaches and
then quantify their overall performance. For an examplary
four-week period, Figure 14 shows the anomaly detection
results (overlaid on top of SRT) for each approach. Figure 15
shows the time series decomposition results of WoW analysis
for the corresponding period.

As we see in Figure 14, the three approaches do behave dif-
ferently. The simple Gaussian model approach only detects
globally huge spikes, which can overlap with the systemic
variations. The change point approach detects only local
spikes between any two change points. The WoW approach
can detect not only globally huge spikes, but also anoma-
lies that are not visually apparent due to interference from
systemic variations. As one example, for 5AM on the 3rd
Friday, an anomaly was detected by WoW approach but was
missed by the other approaches. This was a real anomaly;
historical behavior of SRT, shown in Figure 16, reveals that
the SRT at 5AM on Fridays is generally much lower.

The conventional approaches are fooled by systemic vari-
ations from the other perspective too. That is, they flag
non-anomalies. As one example, these approaches detected
an anomaly at 6PM on the 3rd Monday in Figure 14, but
WoW did not flag that time period. As the historical data
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Figure 16: Historical behavior for the anomalies flagged or missed by Gaussian and change point techniques.

in Figure 16 displays, this time period does not have signif-
icantly degraded SRT compared to 6PM on past Mondays.
We now perform a more systematic evaluation. The per-

formance of anomaly detection can be quantified using false
negative and positive rates. False negatives are cases in
which a real anomaly is missed, and false positives are cases
in which a non-anomaly is flagged. The results below are
based on five months of data.
False negatives: Quantifying the false negative rate re-
quires as a reference a complete list of all anomalies in the
system. However, such a list is rarely available for a com-
plex, real system. We use instead the ticket database that
is maintained by the search provider. The anomalies doc-
umented in this database have been manually detected by
the operators based on visual inspection of the data or user
complaints, or they have been flagged by an existing tool
(which does not account for SRT variations) and later veri-
fied manually.
We find that 90%, 65%, and 60% of all the anomalies

present in this database are identified by WoW, Gaussian,
and change point approaches. That is, while WoW missed
10% of the anomalies, the other approaches miss 3-4 times
as many.
Comparing the ticket database and our tool, we find that

the anomalies in the database tend to have high severity
values (> 2.5, or outside the 99th percentile of the Gaus-
sian model). This implies that with the current practice,
operators could detect only highly anomalous events. Fur-
ther, our tool flags many anomalies that are not in the ticket
database. If these anomalies are not false positives, which
we study next, they represent anomalies that the current
practice misses.
False positives: Estimating the false positive rate of an
anomaly detection tool is challenging. Investigating an anomaly
can take a huge amount of effort and thus operators do not
investigate each anomaly. For instance, short-lived anoma-
lies that disappear before an operator has had a chance to
investigate are not investigated. (However, operators still
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Figure 17: Distribution of largest severity across all
measures.

want to detect and log all anomalies; this record helps quan-
tify service reliability and determine if some components fail
repeatedly.) Thus, we cannot be sure if a certain anomaly
that was flagged by our tool but not investigated is a true
or a false positive.

To estimate the false positive rate, we emulate the method
used by the operators as a first step towards investigating
an anomaly. The operators observe the behavior of other,
fine-grained measures (e.g., Tnet) during the anomaly pe-
riod. If one or more of those measures is anomalous as well,
the anomaly is deemed as likely real and further investiga-
tion is conducted. If none of those measures is anomalous,
the anomaly is deemed as false. The assumption is that if
the anomalous behavior in SRT correlates to anomalous be-
havior in at least one of the fine-grained measures, then we
can be confident that this is a real anomaly.

Thus, we apply the same WoW technique to the 14 fine-
grained measures (§4) and compute the largest severity value
across all measures. Figure 17 shows the distribution of the
largest severity value as an SRT anomaly is detected using
three different techniques. We consider an SRT anomaly
to be a false positive, if the largest severity value does not
indicate an anomaly, that is, it is under 1.96. Based on
this criteria, we see that the false positive rate of WoW is
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Figure 18: %-age of anomalies for pairs of measures.

7%, while that of Gaussian (17%) and change point (19%)
approaches is at least twice as much.

5.2 Diagnosing Anomalies
In addition to detecting anomalies, our tool helps oper-

ators diagnose those anomalies, by identifying at a coarse-
level the most likely source of the problem. For our purposes,
possible sources are client behavior, the data center, and the
network between the clients and the data center (which in-
cludes the CDN servers). Client behaviors can be a source
of anomalies due to attacks (e.g., bots generating a lot of
queries), among other possibilities.
The inference of our tool is then combined with other

lower-level measures (e.g., output of tools that monitor net-
work or server health and utilization) to localize the root
cause at a finer granularity. These low-level measures are
by themselves insufficient for root cause localization as they
are noisy and their impact on SRT is otherwise unclear [9].

5.2.1 Methodology
The anomaly diagnosis functionality of our tool is invoked

whenever an SRT anomaly is detected. Its starting points
are the time series of the 14 measures that we used to study
systemic SRT variations.
We face two main challenges. First, due to complex inter-

actions among different measures, simply using the anomaly
severity value of individual time series does not suffice. For
example, when an anomaly happens in the network, both
TresHTML and Tnet can be anomalous. Second, during anoma-
lies, the relationships among the different measures may vary
from the normal case. For example, under normal circum-
stances, Tfs (which is Tnet + Tfc) and Tnet are highly cor-
related usually, but if Tfc is anomalous due to a failure in
the data center, this correlation disappears.
Thus, a better understanding of the relationships among

the various measures during SRT anomalies is important. To
obtain insight into these relationships, we investigate how of-
ten two measures are simultaneously anomalous during SRT
anomalies. Figure 18 shows the percentage of SRT anoma-
lies in which a pair of measures, specified on the x- and
y-axis, appear as anomalies at the same time. The diagonal
values are the percentage of SRT anomalies when the mea-
sures, specified on the x (or y)-axis, appear as an anomaly
by themselves. The graph is symmetric along the diagonal.
We make the following observations from this figure. First,

focusing on Tnet, a pure network-side measure, we see that
Tfs is almost always anomalous along with it. The server-
side measures (Tfc, Tsc, Ttc) and client-side measures that
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Figure 19: Example anomalies.

are highly dependent on the server behavior (Tintchk1 and
Tintchk2) are rarely anomalous in conjunction with Tnet.
Other browser-side measures are sometimes anomalous in
conjunction with Tnet. Second, let us focus on pure server-
side measures (Tfc, Tsc, Ttc). They appear anomalous mostly
on their own, except for i) Tintchk1, which is a browser
side measure that is highly dependent on server-side la-
tency; and ii) Tintchk2 and Tembed, which we can ignore
as they contribute less than 1% of the total SRT. Third,
the anomalies in browser-side measures (TresHTML, Tbrand,
TBoP , Thead, Tref , and Tscript) are weakly correlated with
server- and network-side measures, indicating their anoma-
lies likely stem from client issues.

Based on the observations above, to diagnose anomalies,
we first divide the measures into three classes: Network
(Tnet and Tfs), Server (Tfc, Tsc, Ttc), or Client (TresHTML,
Tbrand, TBoP , Thead, Tref , and Tscript). If only one class of
measures is anomalous, then we deem the problem likely lies
in the corresponding class. We saw above that, frequently,
only one class is anomalous when SRT is anomalous.

If measures in more than one class are anomalous, we
use the following decision logic to determine the likely root
cause (or prioritize the investigation). First, if any Server
measures are anomalous, we deem that the anomaly is in
the data center. This heuristic is based on the second obser-
vation above and the fact that the server-side measures are
collected using a separate instrumentation (not Javascript),
which is not supposed to be affected by the impact from the
network or client-side behaviors.

Second, if Tnet is anomalous, but not any Server mea-
sure, then we consider it as an anomaly associated with the
network. The underlying rationale is that because of the
way we compute Tnet (§3), it is not intimately dependent
on client behavior. This is also supported by the first obser-
vation above. Finally, we consider that the remaining cases
are due to client behaviors (e.g., bot attacks).

5.2.2 Results
Using the diagnosis method described above, we deter-

mine the root cause for each of the detected anomalies and
compare them with what is inferred and logged by the oper-
ators in the ticket database. We find that our results are per-
fectly consistent with the ticket database for those anomalies
that are common to both methods.



Figure 19 shows three example anomalies. For each, SRT
uses (blue) crosses and the left y-axis, another metric of in-
terest uses (green) dots and the right y-axis, and the anoma-
lous periods are marked using (red) circles. In the case of
Figure 19(a), our tool diagnosed that the backend data cen-
ter was the likely culprit because Tsc and SRT were anoma-
lous at the same time. Figure 19(b) was diagnosed as a net-
work failure (due to a re-configuration of the routing weights
between the CDN edge servers and the backend data cen-
ters) using our tool, as it was accompanied by anomalous
Tnet. On the other hand, the culprit in Figure 19(c) was
the change of query richness during a major holiday event.
Although no action needs to be taken to resolve this perfor-
mance degradation, our tool helped the operators eliminate
the possibilities of failures in the data centers or the network.
Across all SRT anomalies that our tool detected, we find

that the fractions of the anomalies that were attributed to
the wide-area network, data center, and client behaviors are
37%, 27%, and 36%, respectively. That the culprits are al-
most evenly distributed (with the data center being slightly
lower), means that there is no silver bullet to significantly
reduce the bulk of the SRT anomalies. The provider must
work on reducing the impact of failures and unexpected be-
haviors on all three fronts. Perhaps the most surprising
aspect is that client behaviors account for a third of the
anomalies. Most of these are attacks on search infrastruc-
ture, but some are also caused by sudden changes in query
richness (e.g., following a major newsworthy event).

6. IMPLICATIONS AND DISCUSSION
Our work has several implications for managing, under-

standing, and diagnosing the performance of large-scale Web
services. We discuss a few of them in this section.

Performance management: A key goal of many Web
services is to provide consistently good performance to their
users. Work on this front has mainly focused on consis-
tent request processing delays within the data center [6,10].
Our findings, however, show that focusing on server pro-
cessing time alone is insufficient and much of the variation
in users’ performance stems from factors such as network
paths, browsers, and query types. While these factors are
not under direct control of the service provider, there are
ways in which their impact can be minimized.
For network paths, the service provider can send simpler

pages for queries that come from clients behind slow last mile
links. Using a data source that is different from the one used
in this paper we find that the middle mile between the data
center and the edge exhibits significant performance varia-
tions as well. This variations can be controlled through ded-
icated capacity between these points. One major provider
appears headed in that direction already [23].
To ensure consistently fast SRTs across browsers, the providers

can customize the responses and scripts to account for the
strengths and weaknesses of individual browsers. Our data
indicates that customization for the top three or four browsers
would cover the vast majority of the queries.
To ensure fast SRTs for rich queries, the CDN edge servers

can help reduce the burden on the user’s end (browser) by
simplifying dynamically the layout of the page and pre-
processing some of the scripts. They can also cache more
of the CSS, images, and javascript. Caching on the edge is
not used heavily today because bits of the response pages

are personalized. Small amount of computational capabili-
ties on the edge servers (for generating personalized portions
of the page) and a different layout of the response page can
improve the amount of the content that users can fetch from
the edge servers.

Performance monitoring: Our work highlights the dif-
ficulty of reasoning about service performance when it is
measured across all users because such a measure is tainted
by systemic changes in behaviors and characteristics of user
population. This holds not only for search but for other
Web services as well. For instance, Zander et al. [34] ob-
served different fraction of users with IPv6 capabilities on
weekends vs. weekdays for many services. (They could not
fully explain this variation. Our results confirm their sus-
picion that it stems from residential and enterprise users
having different characteristics.)

To provide greater insight into service performance, we
are developing techniques to partition requests into equiv-
alence classes that account for expected performance dif-
ferences across network paths, browsers, and query types.
This would enable the operators to better monitor and un-
derstand performance variation within a class, which other-
wise gets masked by changes in the fractions of queries in
individual classes.

Performance diagnosis: Another difficulty highlighted by
our work is that of detecting and diagnosing performance
anomalies. Past research has argued for using end-to-end
performance metrics, rather than relying on low-level met-
rics such as server processing time, CPU or network utiliza-
tion, because the anomalies in low-level measures may or
may not cause anomalies in user experience [9,20]. But our
work shows that using such measures is challenging due to
systemic variations. Prior work has looked at systems with
roughly stationary response time characteristics because of a
lack of significant diversity in query types, browsers, and net-
work paths, as may be the case in enterprise networks [9,20].
But in the Web services context, effective diagnosis of re-
sponse time requires factoring out systemic variations and
appropriately combining high- and low-level metrics.

7. RELATEDWORK
Our work builds upon much prior work on the perfor-

mance of Web services. One thread of work takes a client-
side perspective to monitor the performance that a client
experiences at various Web sites or to uncover factors that
impact Web page load times. For example, WProf [32] and
WebPagetest [4] are tools to measure the performance to
any Web site and provide a timeline of relevant events that
occur while the page is being loaded; and Butkietz et al. [11]
examines the impact of page structure and server location
of various Web sites on a client’s performance. In contrast,
our work takes a provider-side perspective, to uncover fac-
tors that impact the performance delivered by a Web service
to all its active clients.

Another thread of work focuses on improving different
aspects of Web services such as request processing, page
design, and content delivery. For example, several works
seek to make request processing predictable in a data cen-
ter [7,33]; tools exist to help developers follow the best prac-
tices for site layout and design [3, 5]; and many researchers
have studied several facets of CDN design such as placement



and TCP behavior of edge servers [8, 12, 17, 19, 31] and pro-
posed enhancements such as better redirection and caching,
and hybrid CDNs [14,16,18,21,28]. In contrast to this body
of work, we take an end-to-end view, which includes all rele-
vant aspects, of the performance of a Web service. Further,
instead of focusing on specific design enhancements, we seek
to explain and diagnose performance variations given the
design of a modern, large-scale service.

8. CONCLUSIONS
Our work addresses the challenges in understanding and

diagnosing the performance of large-scale, Web services. We
showed that the response time for a large service varies
widely and, surprisingly, increases during off-peak hours when
the query load is lower. We developed an analysis frame-
work that reveals that this variation stems from systemic
shifts in user characteristics—the source networks, the na-
ture of queries, and the browsers used. In contrast, server
processing times are relatively stable. We also developed
and deployed a technique that detects and diagnoses service
performance anomalies by factoring out the impact of such
systemic variations. We found that our technique detected
three times more anomalies than conventional methods that
do not account for systemic variations.
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