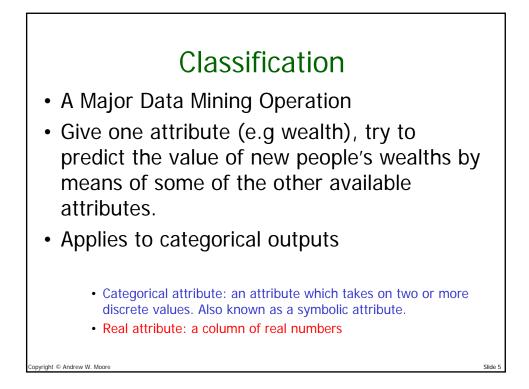
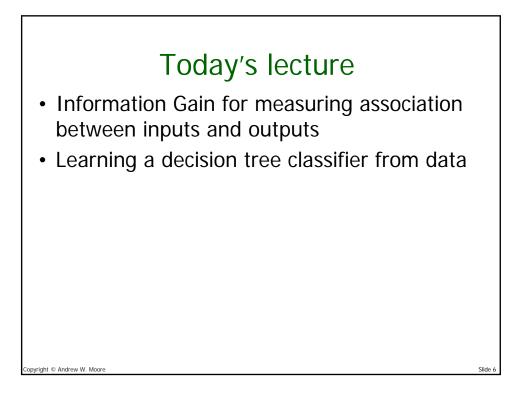


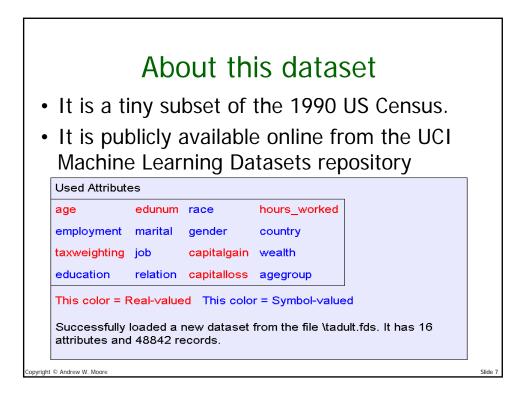
▶	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 2

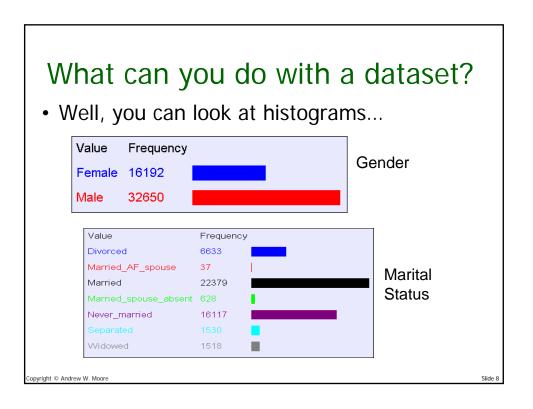
		State_gov			Never_mar			Not_in_fan		Male		United_St	
		Self_emp_			Married			Husband		Male		United_St	
		Private	HS_grad		Divorced			Not_in_fan		Male		United_St	1
		Private	11th		Married		Handlers_			Male		United_St	apoor
,		Private	Bachelors		Married		Prof_spec			Female		Cuba	poor
		Private	Masters		Married		Exec_mar			Female		United_St	1
		Private	9th		Married_sp			Not_in_fan		Female			poor
		Self_emp_			Married			Husband		Male		United_St	
		Private	Masters		Never_mar			Not_in_fan		Female		United_St	1 .
		Private Private	Bachelors		Married Married		Exec_mar			Male Male		United_St	
			Some_coll		Married		Exec_mar Prof spec			Male		United_St India	rich
		State_gov Private	Bachelors		Never mar			Own_child		Female		United St	
		Private	Assoc act		Never mar		Sales	Not in fan		Male		United_St	
		Private	Assoc_act					Husband		Male		*MissingV	
			7th 8th						Amer India			Mexico	poor
		Self emp			Never mar			Own child		Male		United St	1
		Private	HS grad		Never mar			Unmarried		Male		United St	
	38	Private	11th	7	Married		Sales	Husband	White	Male		United St	
	44	Self_emp_	Masters	14	Divorced		Exec_mar	Unmarried	White	Female	45	United_St	rich
	41	Private	Doctorate	16	Married		Prof_spec	Husband	White	Male	60	United_St	rich
	:	:	:	:	:	:		:	:	:	:	:	:

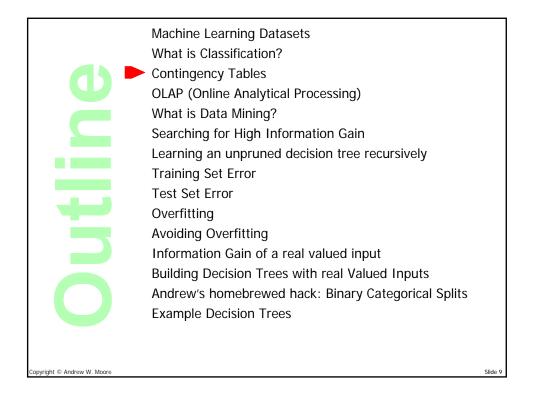
	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 4

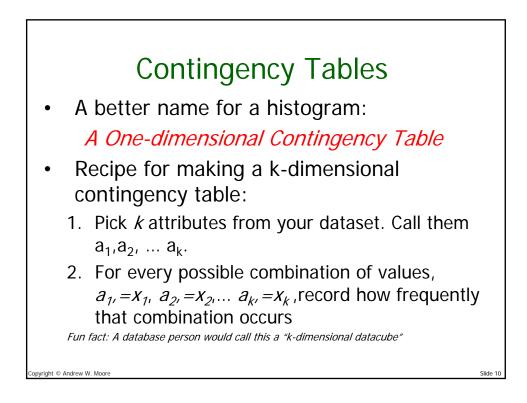




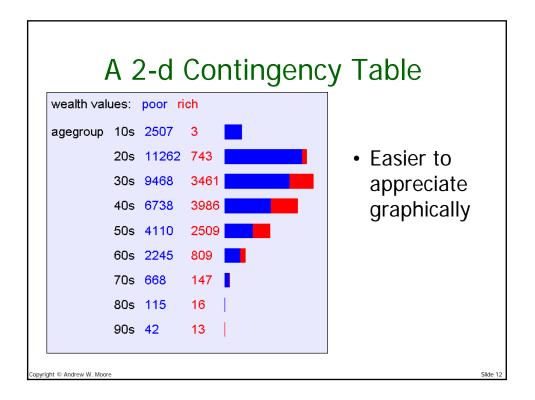


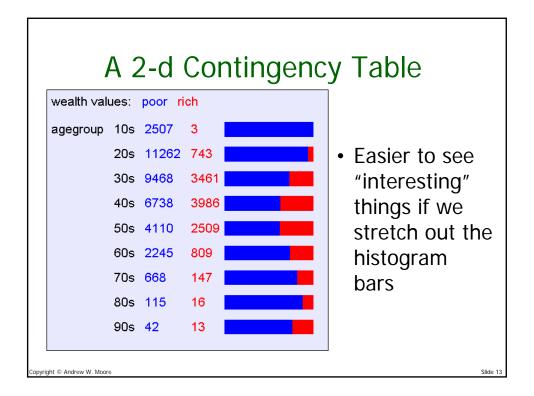




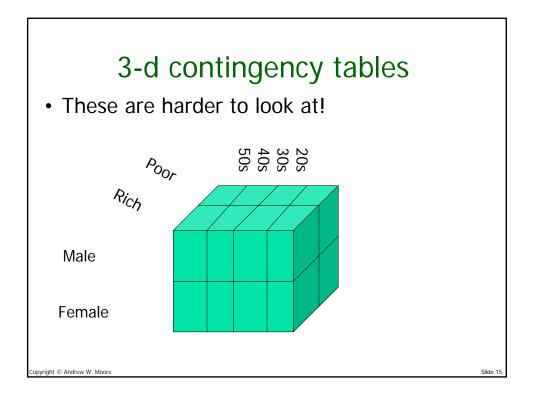


A wealth valu agegroup





narital Divorced 270 1192 0 679 890 90 197 434 762 46 795 121 664 239 254 1 Married_AF_spouse 5 6 0 4 3 1 1 1 5 0 4 1 5 0 1 1 1 5 0 4 1 5 0 1 1 1 1 5 0 1 1 1 1 5 0 1 1 1 1 1 5 0 1 1 1 1 1 5 0 1 1 1 1 1 5 0 1	
Married 928 1495 7 3818 3600 869 724 1469 1088 27 3182 583 2491 609 1489 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	
Never_married 1242 2360 8 1301 1260 434 1029 872 2442 99 1849 237 1992 506 486 📕	
Separated 97 224 0 160 126 23 63 123 275 21 145 23 146 48 56	
Wildowed 222 250 0 73 155 38 26 86 259 40 133 11 151 35 39	

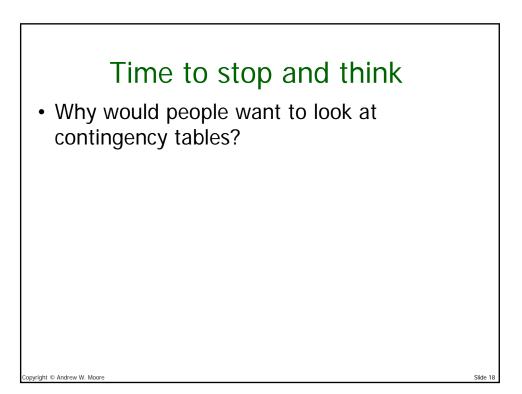


	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 16

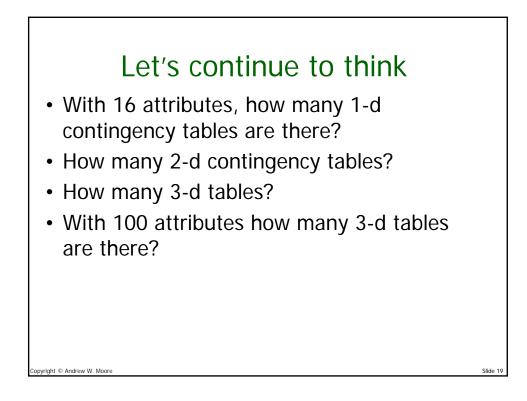
On-Line Analytical Processing (OLAP)

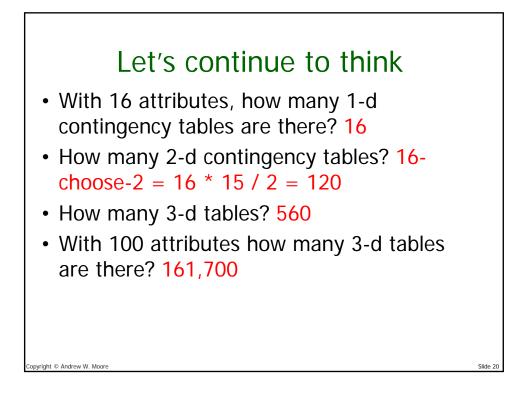
- Software packages and database add-ons to do this are known as OLAP tools
- They usually include point and click navigation to view slices and aggregates of contingency tables
- They usually include nice histogram visualization

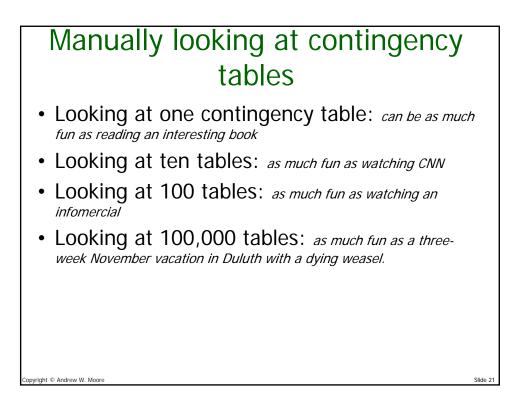
pyright © Andrew W. Moor

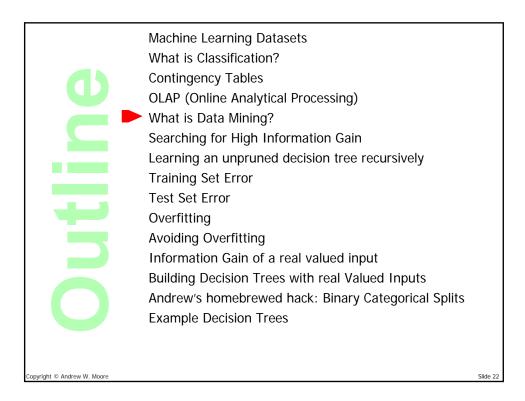


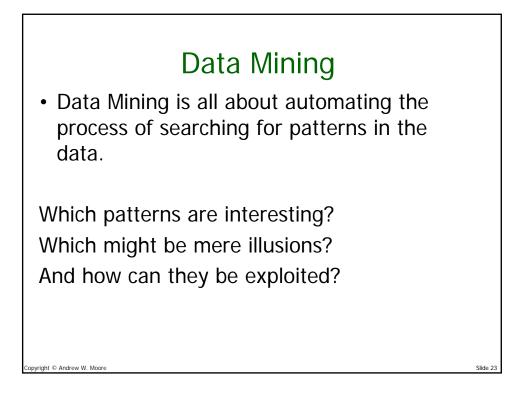
Slide 1

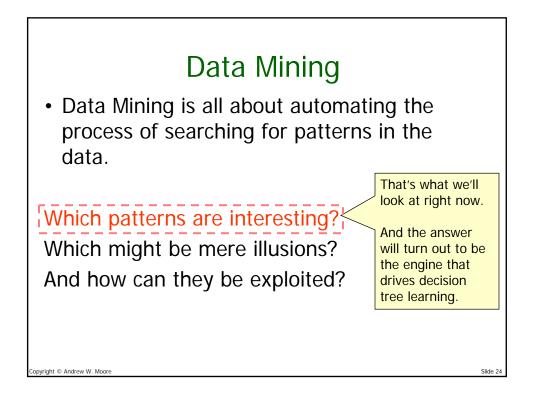


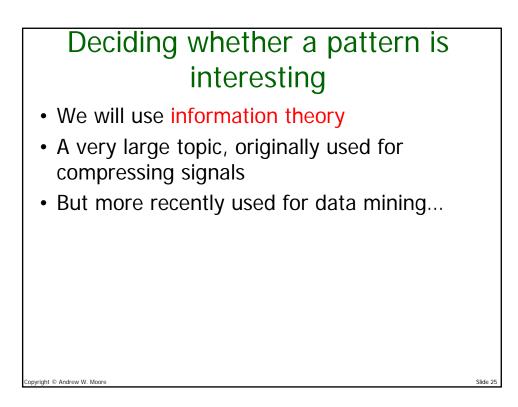












Deciding whether a pattern is interesting

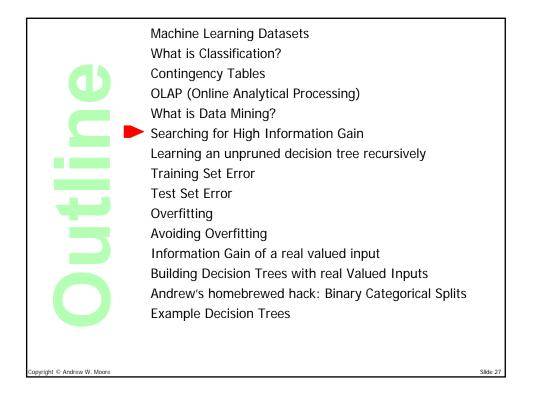
• We will use information theory

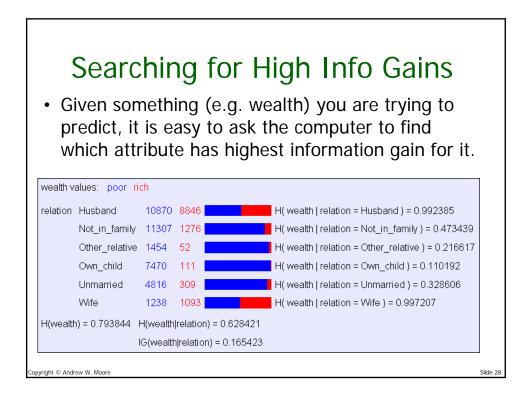
opyright © Andrew W. Moo

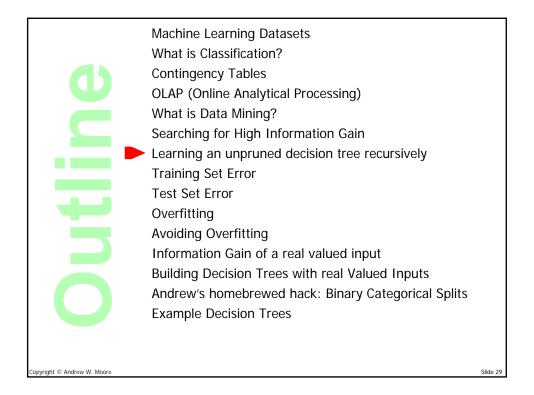
- A very large topic, originally used for compressing signals
- But more recently used for data mining...

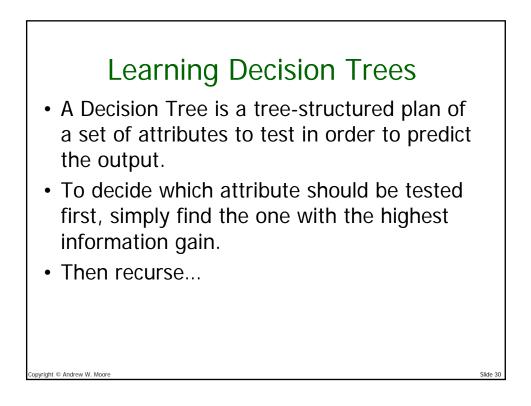
(The topic of Information Gain will now be discussed, but you will find it in a separate Andrew Handout)

Slide 20

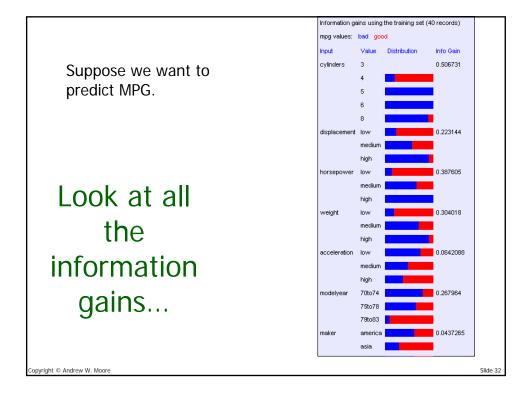


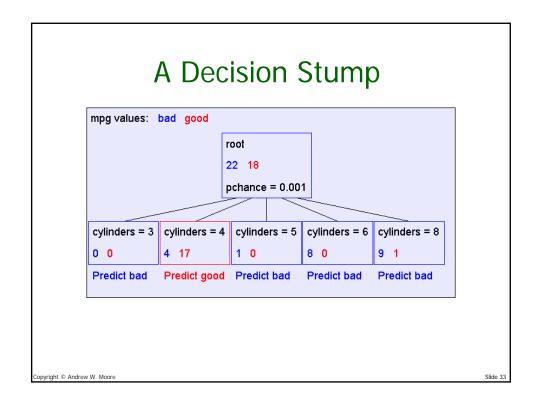


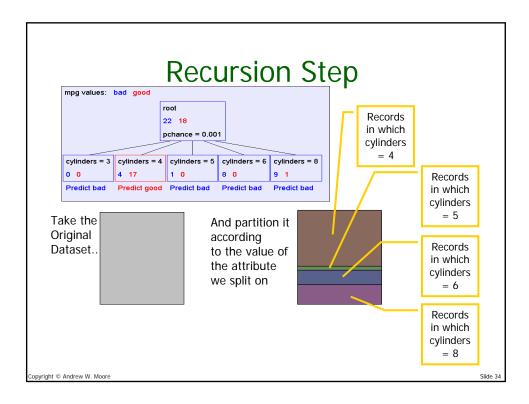


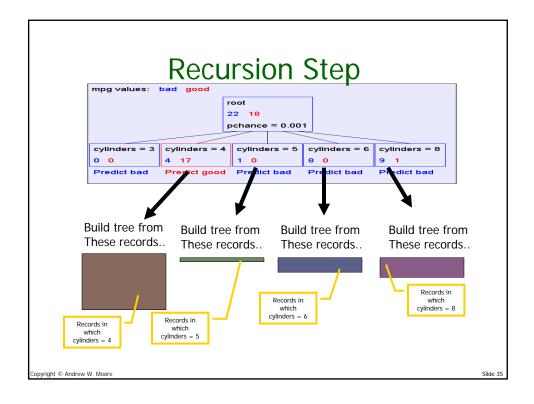


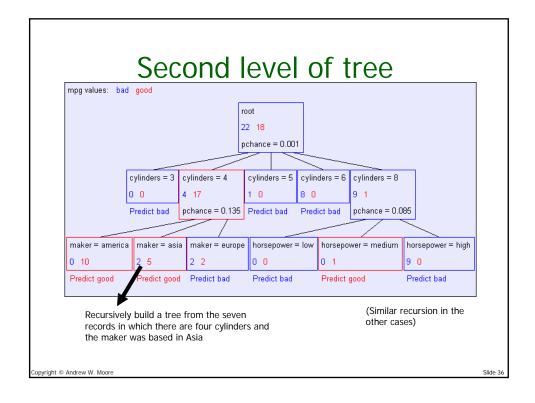
			displacement		weight	acceleration			-
	good	4 lo	ow	low	low	high	75to78	asia	
	bad	6 n	nedium	medium	medium	medium	70to74	america	
	bad		nedium	medium	medium	low	75to78	europe	
40	bad	8 h		high	high	low	70to74	america	
	bad	-	nedium	medium	medium	medium	70to74	america	
Records	bad	4 10	•••	medium	low	medium	70to74	asia	
	bad	4 10		medium	low	low	70to74	asia	
	bad	8 h	nigh	high	high	low	75to78	america	
	:	: :		:	:	:	:	:	
	:	: :		:	:	:	:	:	
	:	: :		:	:	:	:	:	_
	bad	8 h		high	high	low	70to74	america	_
	good	-	nigh	medium	high	high	79to83	america	_
	bad	8 h		high	high	low	75to78	america	
	good	4 10		low	low	low	79to83	america	-
	bad		nedium	medium	medium	high	75to78	america	-
	good		nedium	low	low	low	79to83	america	-
	good	4 10		low	medium	high	79to83	america	_
	bad	8 h		high	high	low	70to74	america	-
	good	4 10	ow nedium	medium	low medium	medium	75to78	europe	-
	bad	5 n	neaium	meaium	meaium	meaium	75to78	europe	

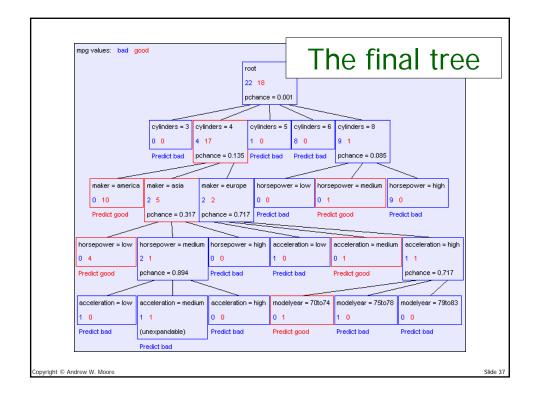


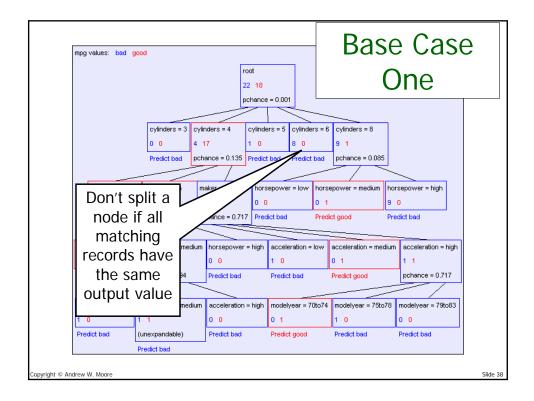


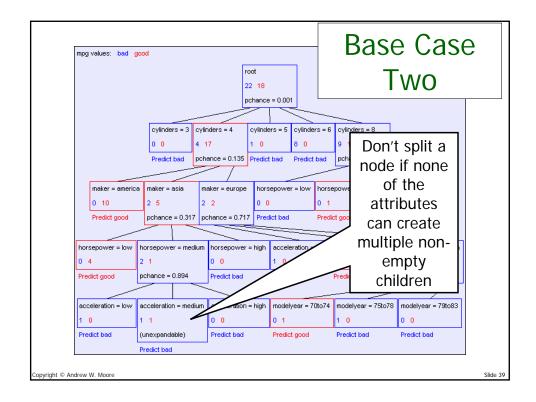


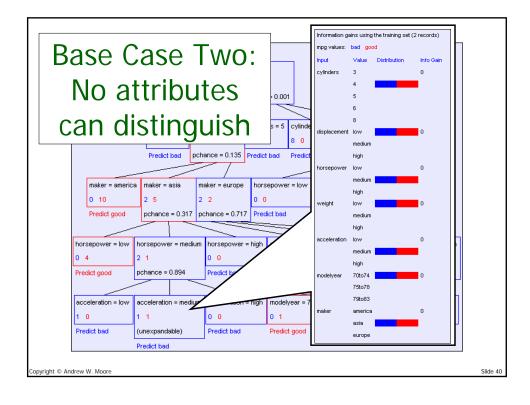


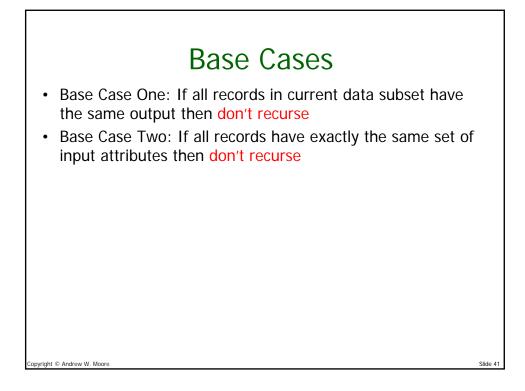


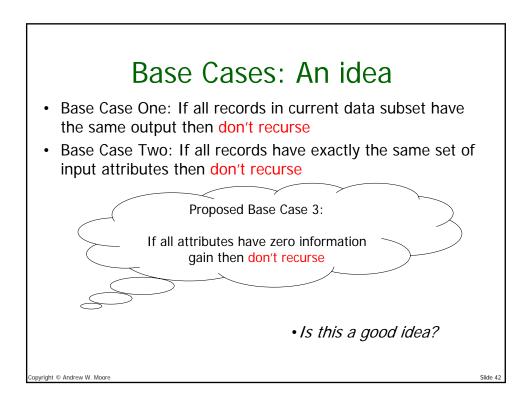


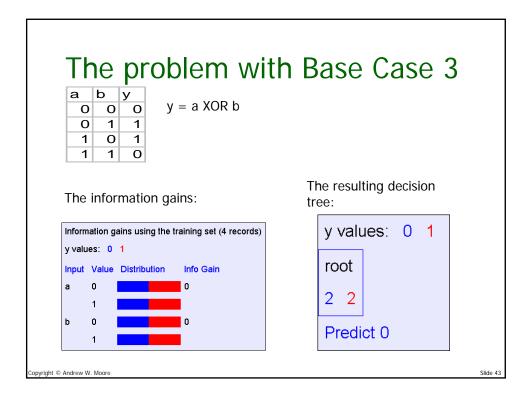


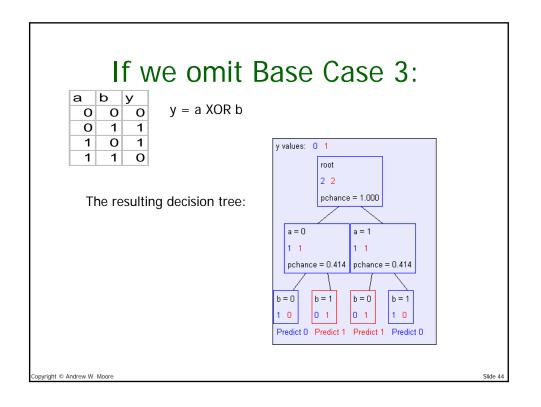












Basic Decision Tree Building Summarized

BuildTree(DataSet, Output)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_{χ} children.
 - The *i*th child should be built by calling

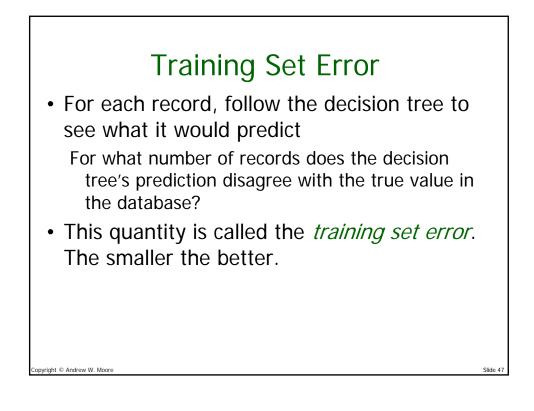
BuildTree(DS_i, Output)

Where DS_i built consists of all those records in DataSet for which X = th distinct value of X.

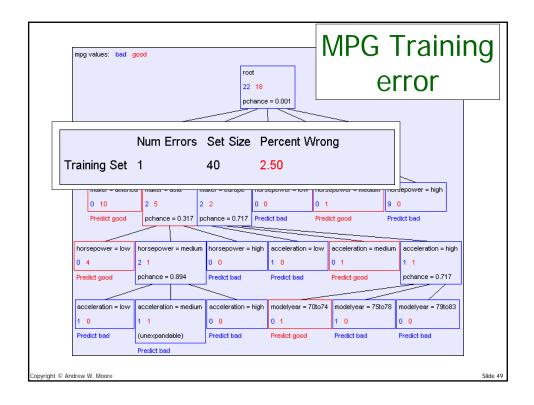
Slide 45

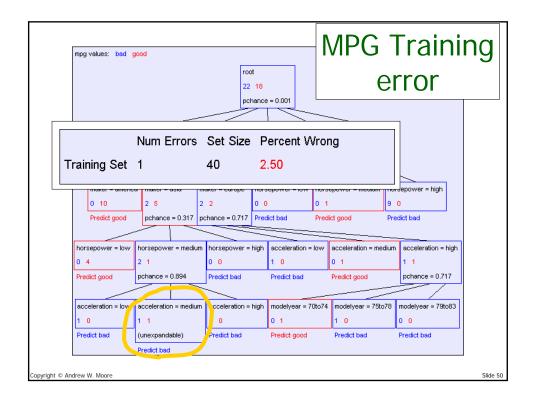
Copyright © Andrew W. Moore

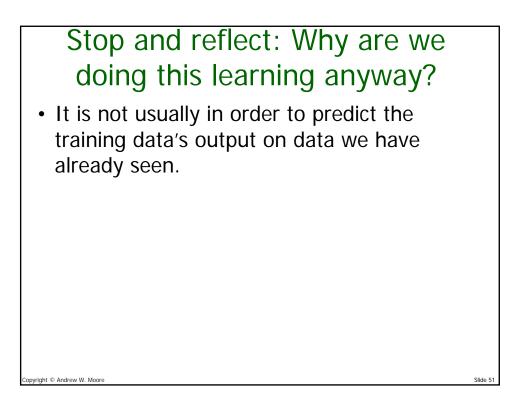
	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	 Training Set Error 	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 46

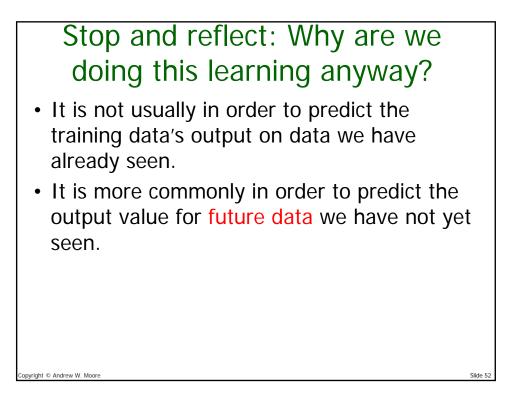


mpg values: bad g	lood			Ν	/IPG	Tr	aini	ng
		root 22 1	8 nce = 0.001		e	erro	or	
	cylinders = 3 cyli 0 0 4	inders = 4 cylir	nders = 5 cylinder	 ′s = 6	cylinders = 8 9 1			
maker = americ		<u> </u>	dict bad Predict		pchance = 0.085	horsepow	er = high	
0 10 Predict good	2 5 2 pchance = 0.317 p		0 redict bad	0 1 Predic		9 0 Predict bad	d	
horsepower = low	horsepower = medium				acceleration = medi	um acce	leration = high	
0 4 Predict good	2 1 pchance = 0.894	0 0 Predict bad	1 0 Predict bad		0 1 Predict good	1 1 pcha	nce = 0.717	
acceleration = low	acceleration = medium	acceleration = hig	nh modelyear = 70		modelyear = 75to7	8 modely	/ear = 79to83	
1 0	1 1	0 0	0 1		1 0	00		
Predict bad	(unexpandable)	Predict bad	Predict good		Predict bad	Predict	t bad	
	Predict bad							
ndrew W. Moore								Slide 48









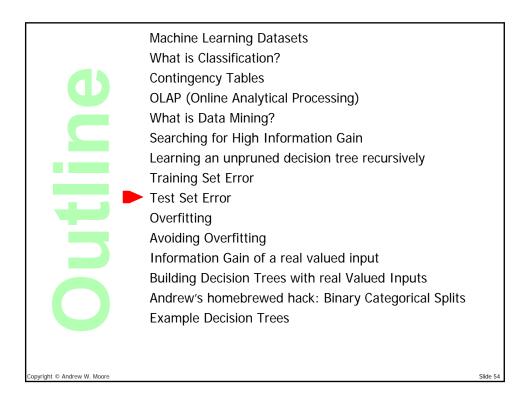
Stop and reflect: Why are we doing this learning anyway?

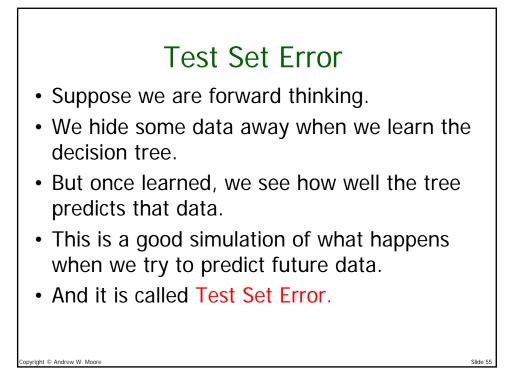
- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Warning: A common data mining misperception is that the above two bullets are the only possible reasons for learning. There are at least a dozen others.

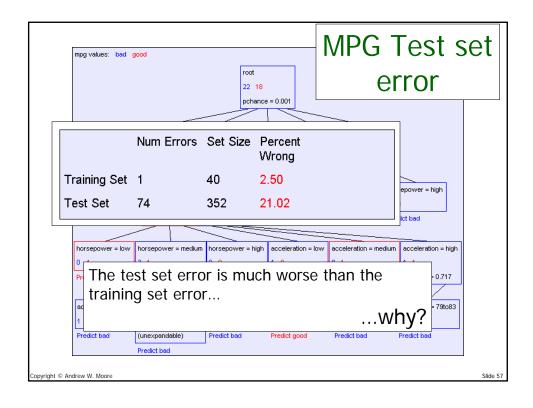
Slide 53

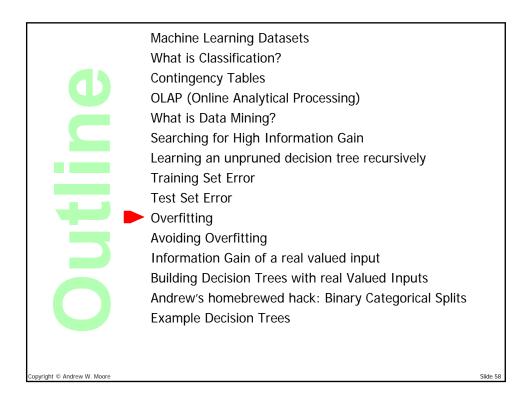
Copyright © Andrew W. Moore

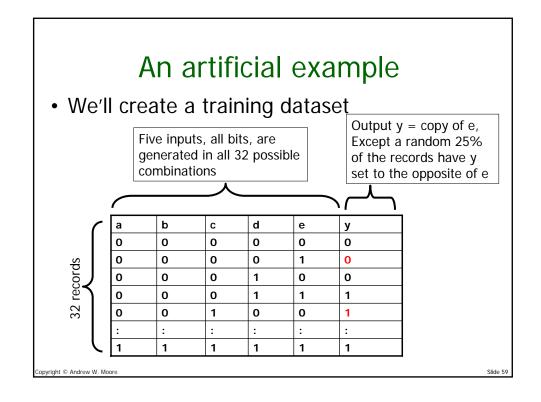


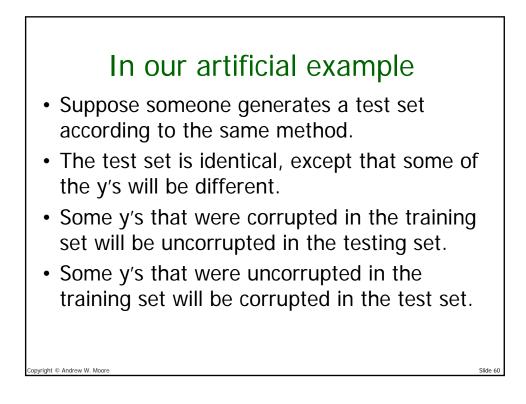


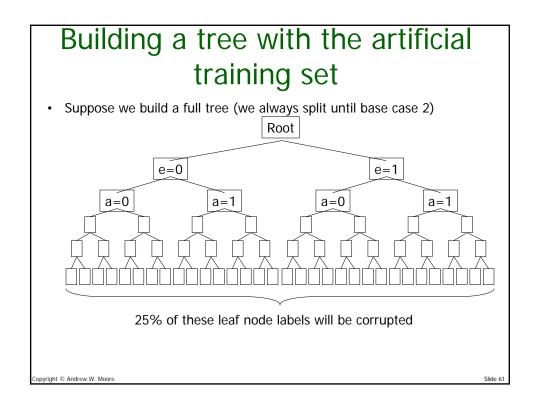
[mpg values: bad <u>ç</u>	jood				MPG ⁻	Test se
				root 22 18	ce = 0.001	e	rror
							1
		Num E	rrors	Set Size	Percent Nrong		
Tr	aining Set	1		40	2.50		epower = high
Те	est Set	74		352	21.02		
			~	_			ict bad
[horsepower = low	horsepowe	r = medium	horsepower = hig	n acceleration = lov	w acceleration = medium	acceleration = high
	04	2 1		0 0	1 0	0 1	1 1
	Predict good	pchance = I	D.894	Predict bad	Predict bad	Predict good	pchance = 0.717
						71	701-00
	acceleration = low	acceleration	n = medium	acceleration = hig	- i - i		modelyear = 79to83
	10	1 1		0 0	0 1	1 0	0 0
	Predict bad	(unexpanda	able)	Predict bad	Predict good	Predict bad	Predict bad
L		Predict bad					
ight © And	rew W. Moore						

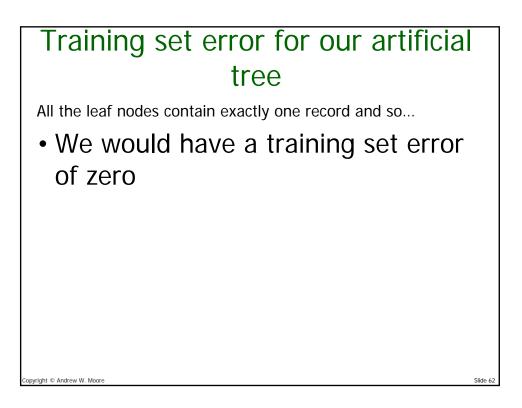




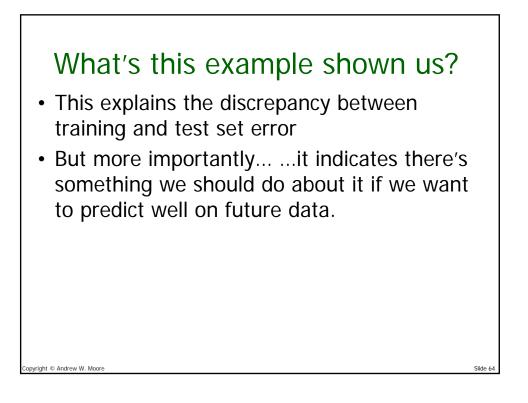


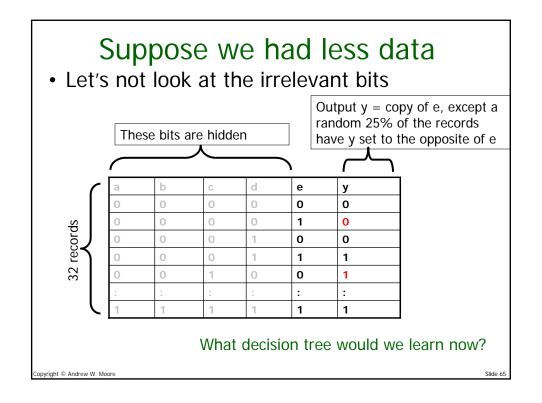


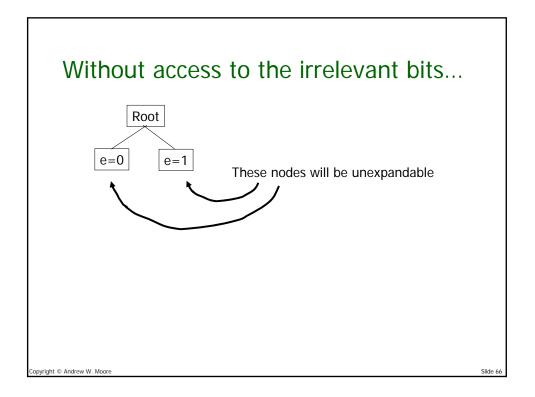


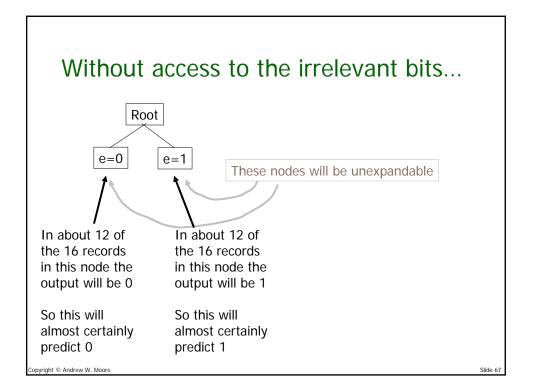


	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine
In total, we exp	bect to be wrong on 3/8 of	the test set predictions







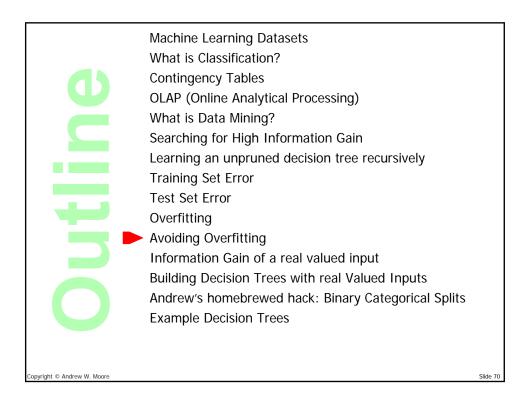


Root e=0 e=1		almost certainly none of the tree nodes are corrupted	almost certainly all are fine
<u>e-0</u> <u>e-1</u>	1/4 of the test set records are corrupted	n/a	1/4 of the test set will be wrongly predicted because the test record is corrupted
	3/4 are fine	n/a	3/4 of the test predictions will be fine

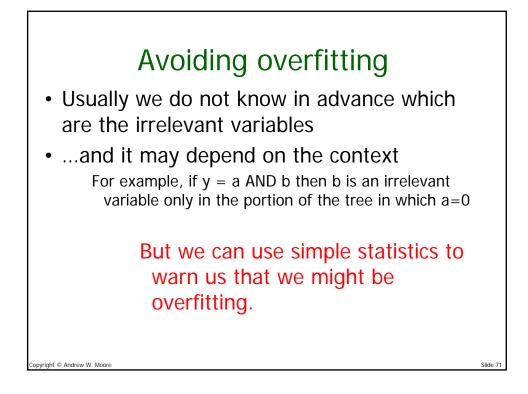
• Definition: If your machine learning algorithm fits noise (i.e. pays attent

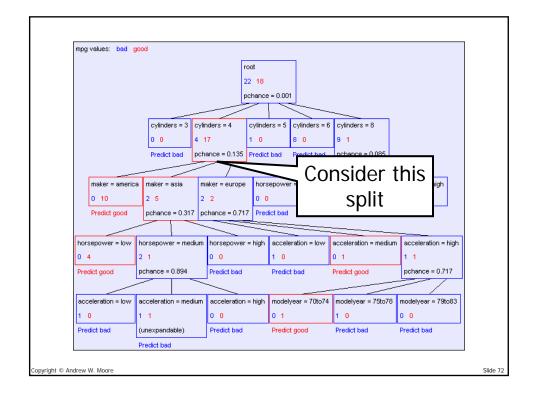
- algorithm fits noise (i.e. pays attention to parts of the data that are irrelevant) it is overfitting.
- Fact (theoretical and empirical): If your machine learning algorithm is overfitting then it may perform less well on test set data.

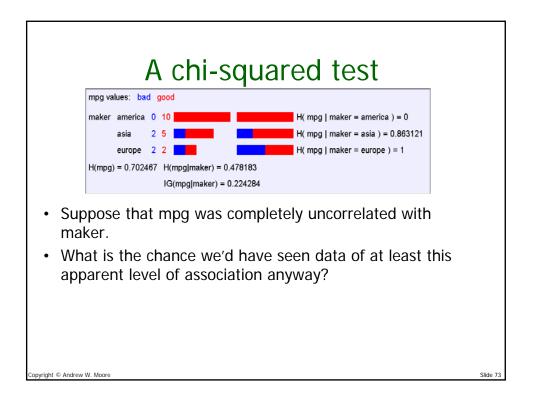
Copyright © Andrew W. Moore

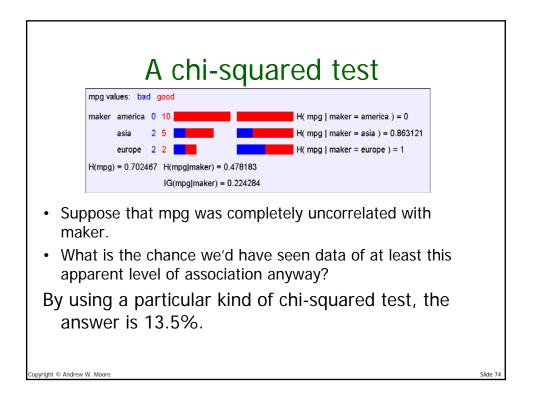


Slide 69









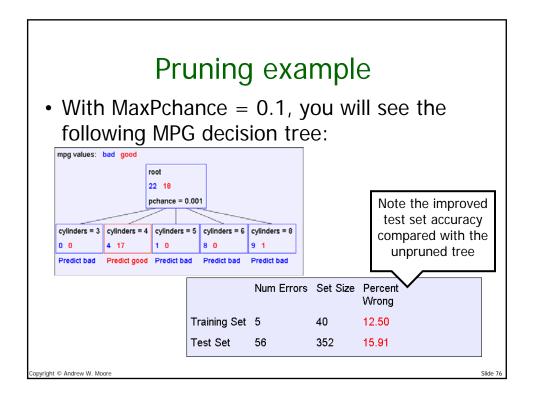
Using Chi-squared to avoid overfitting

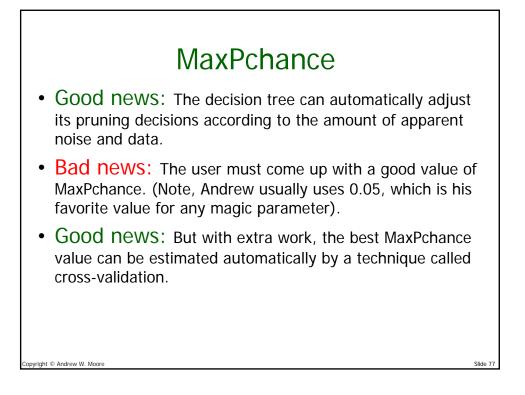
- Build the full decision tree as before.
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance.
 - Continue working you way up until there are no more prunable nodes.

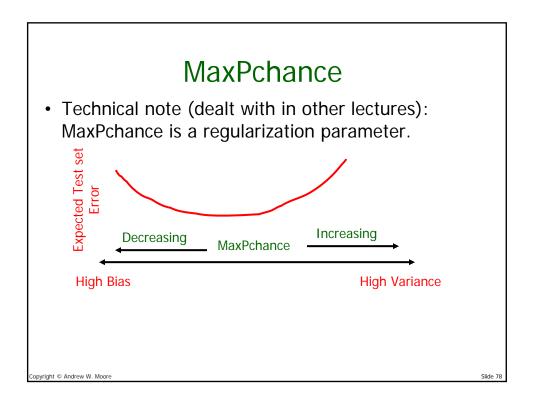
Slide 75

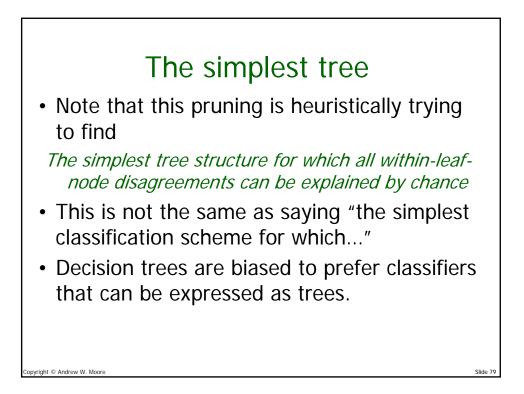
MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.

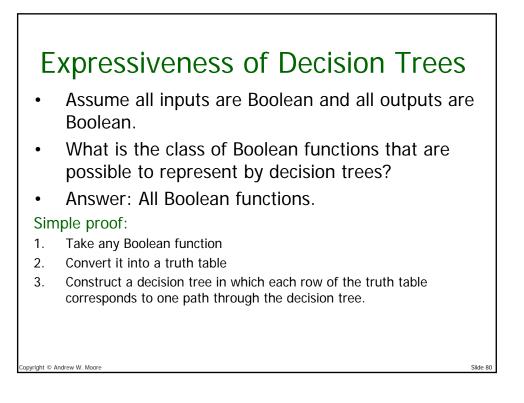
Copyright © Andrew W. Moore

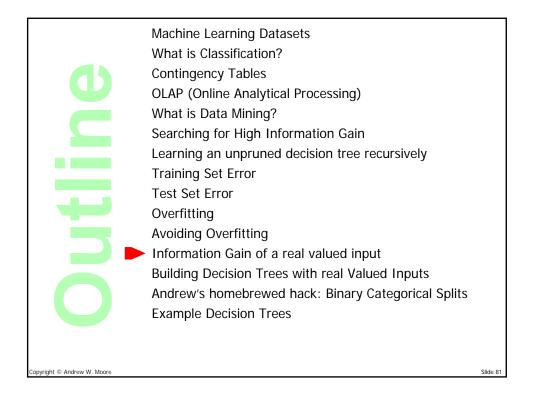


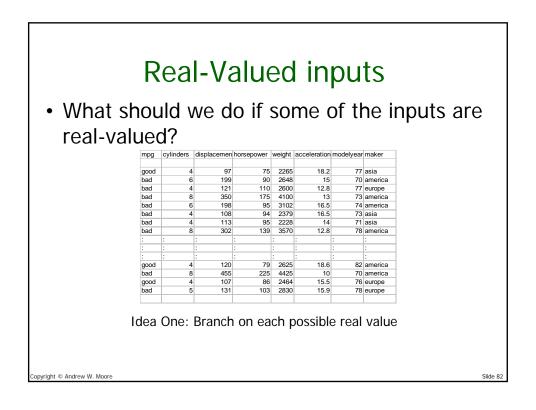


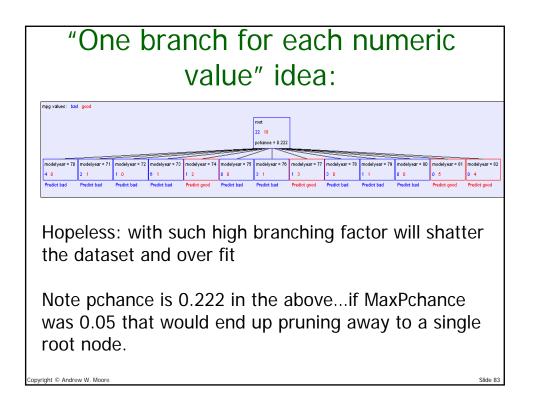


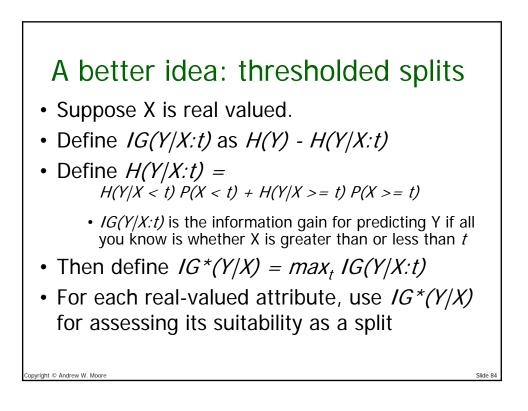


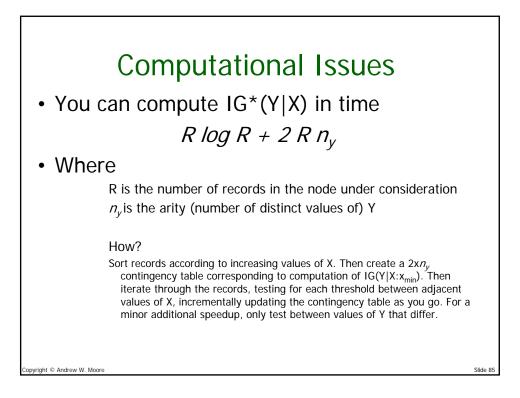


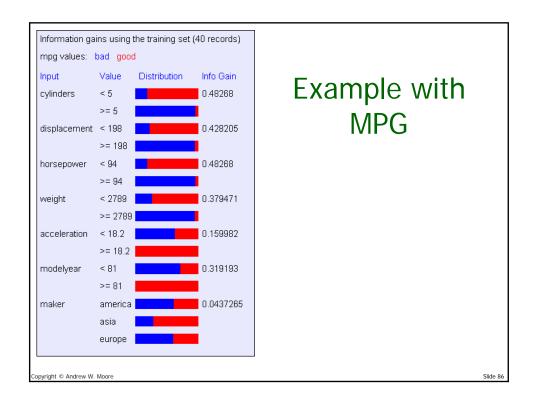


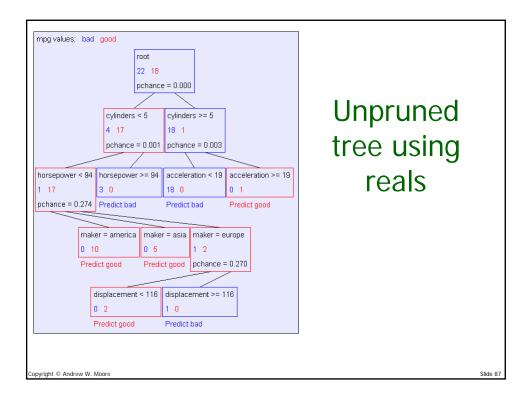


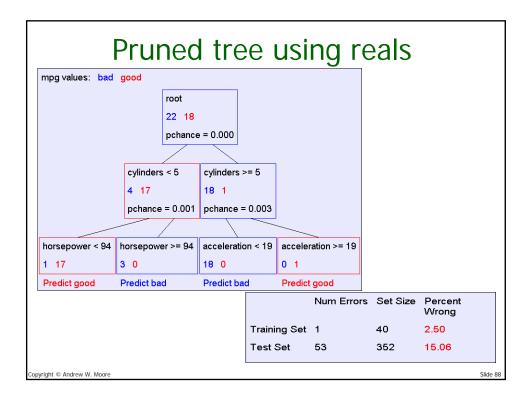


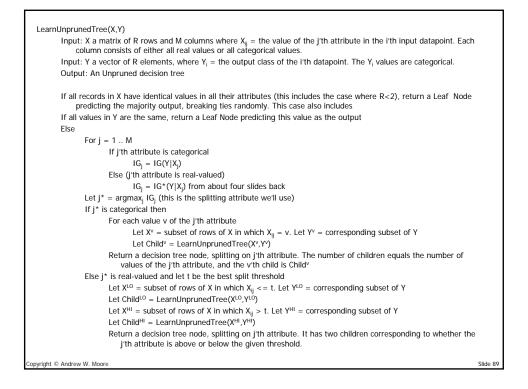


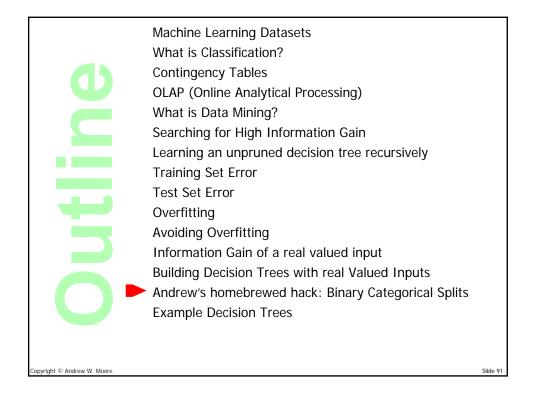


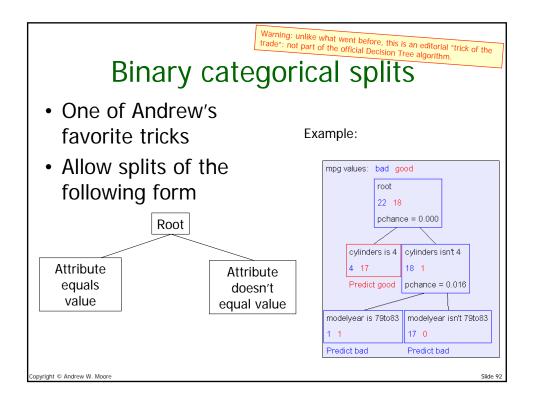


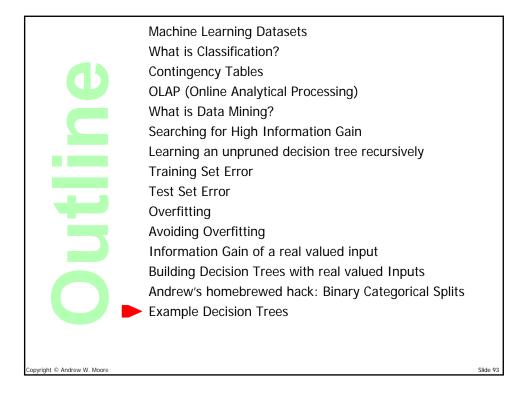


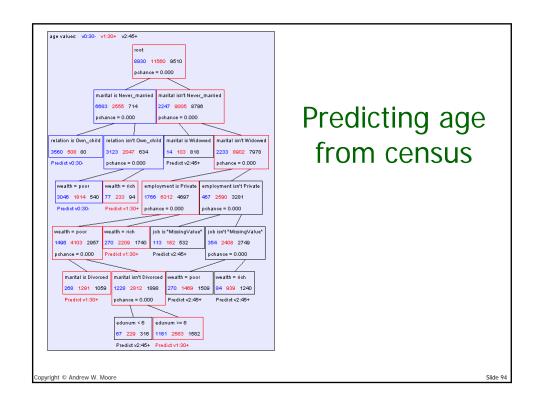


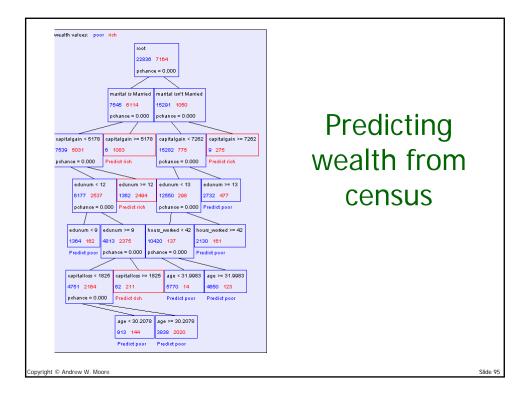


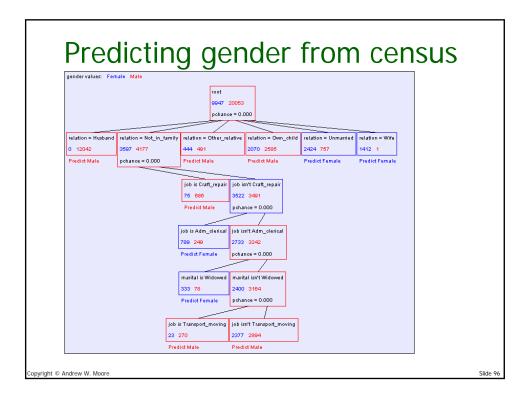






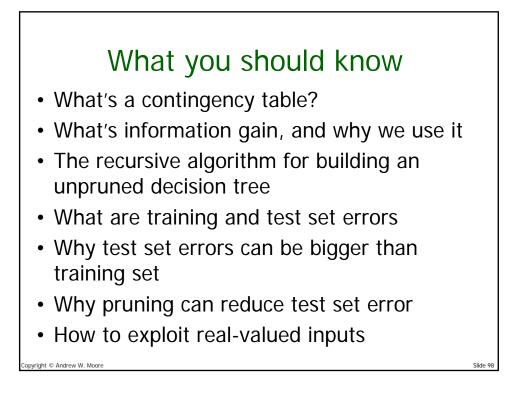




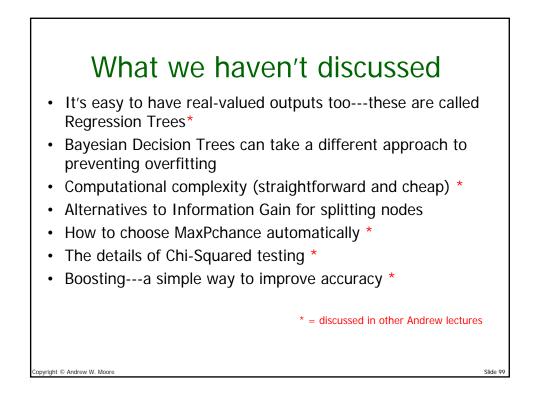


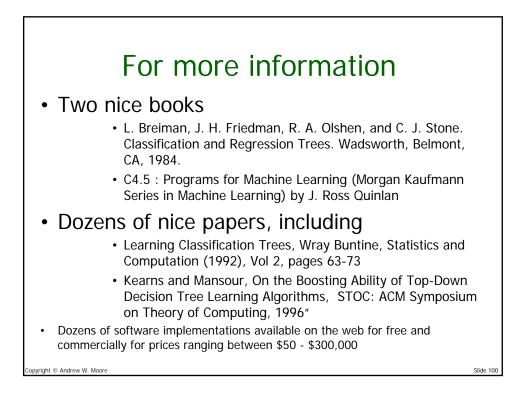
Conclusions Decision trees are the single most popular data mining tool Easy to understand Easy to implement Easy to use Computationally cheap It's possible to get in trouble with overfitting They do classification: predict a categorical output from categorical and/or real inputs

vright © Andrew W. Moor



Slide 97





Discussion

- Instead of using information gain, why not choose the splitting attribute to be the one with the highest prediction accuracy?
- Instead of greedily, heuristically, building the tree, why not do a combinatorial search for the optimal tree?
- If you build a decision tree to predict wealth, and marital status, age and gender are chosen as attributes near the top of the tree, is it reasonable to conclude that those three inputs are the major causes of wealth?
- ...would it be reasonable to assume that attributes not mentioned in the tree are not causes of wealth?
- ...would it be reasonable to assume that attributes not mentioned in the tree are not correlated with wealth?

Copyright © Andrew W. Moore

Slide 101