I nformation Gain

Andrew W. Moore Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu 412-268-7599

Bits

You are watching a set of independent random samples of X
You see that X has four possible values

$P(X=A)=1 / 4$	$P(X=B)=1 / 4$	$P(X=C)=1 / 4$	$P(X=D)=1 / 4$

So you might see: BAACBADCDADDDA...
You transmit data over a binary serial link. You can encode each reading with two bits (e.g. $A=00, B=01, C=10, D=$ 11)

Fewer Bits

Someone tells you that the probabilities are not equal

$$
\mathrm{P}(\mathrm{X}=\mathrm{A})=1 / 2 \quad \mathrm{P}(\mathrm{X}=\mathrm{B})=1 / 4 \quad \mathrm{P}(\mathrm{X}=\mathrm{C})=1 / 8 \mid \mathrm{P}(\mathrm{X}=\mathrm{D})=1 / 8
$$

It's possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

Fewer Bits

Someone tells you that the probabilities are not equal

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{P}(\mathrm{X}=\mathrm{A})=1 / 2 & \mathrm{P}(\mathrm{X}=\mathrm{B})=1 / 4 & \mathrm{P}(\mathrm{X}=\mathrm{C})=1 / 8 & \mathrm{P}(\mathrm{X}=\mathrm{D})=1 / 8 \\
\hline
\end{array}
$$

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

A	0
B	10
C	110
D	111

(This is just one of several ways)

Fewer Bits

Suppose there are three equally likely values...

$$
\begin{array}{|l|l|l|}
\hline P(X=A)=1 / 3 & P(X=B)=1 / 3 & P(X=C)=1 / 3 \\
\hline
\end{array}
$$

Here's a naïve coding, costing 2 bits per symbol

A	00
B	01
C	10

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

General Case

Suppose X can have one of m values... $V_{1}, V_{2}, \ldots V_{m}$

$P\left(X=V_{1}\right)=p_{1}$	$P\left(X=V_{2}\right)=p_{2}$	\ldots	$P\left(X=V_{m}\right)=p_{m}$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$
\begin{aligned}
H(X) & =-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}-\ldots-p_{m} \log _{2} p_{m} \\
& =-\sum_{j=1}^{m} p_{j} \log _{2} p_{j}
\end{aligned}
$$

$H(X)=$ The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

Copyright © 2001, 2003, Andrew W. Moore

General Case

Suppose X can have one of m values... $V_{1}, V_{2}, \ldots V_{m}$

General Case

Suppose X can have one of m values... $V_{1}, V_{2}, \ldots V_{m}$

$P\left(X=V_{1}\right)=p$	$P\left(X=V_{2}\right)=p_{2}$			
$H(X)=$ The enfropy of X - "High Entropy" means X is from a uniform (boring) distribution - "Low Entropy" means X is from varied (peaks and valleys) distribution				

Specific Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{v})$

Suppose I'm trying to predict output Y and I have input X
$\mathbf{X}=$ College Major
$\mathbf{Y}=$ Likes "Gladiator"

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities
E.G. From this data we estimate

- $P($ LikeG $=$ Yes $)=0.5$
- $P($ Major $=$ Math \& LikeG $=$ No $)=0.25$
- $P($ Major $=$ Math $)=0.5$
- $P($ LikeG $=$ Yes \mid Major $=$ History $)=0$

Note:

- $H(X)=1.5$
- $H(Y)=1$

Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

$X=$ College Major
Y = Likes "Gladiator"

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Conditional Entropy				
X = College Major $\mathbf{Y}=$ Likes "Gladiator"		Definition	f Condition	I Entropy:
		$\begin{gathered} H(Y X) \\ \text { entropy } \end{gathered}$	The average Y	conditional
		$=\Sigma_{j}$ Pr	$\left.V_{j}\right) H(Y \mid$	$\left.=v_{j}\right)$
Math	Yes	Example		
History	No	v_{j}	$\operatorname{Prob}\left(X=v_{j}\right)$	$H\left(Y \mid X=v_{j}\right)$
CS	Yes	Math	0.5	1
Math	No	History	0.25	0
CS	Yes	CS	0.25	0
History	No	$H(M X)=0.5 * 1+0.25 * 0+0.25 * 0=0.5$		
Math	Yes			
Coprighte 2001, 2003, Andiew W.				Information Gain: SIid

Information Gain		
X = College Major $\mathbf{Y}=$ Likes "Gladiator"		Definition of Information Gain:
		$I G(Y X)=1$ must transmit Y.
X	Y	knew
Math	Yes	$I G(Y X)=H(Y)-H(Y \mid X)$
History	No	
Cs	Yes	Example:
Math	No	- $\mathrm{H}(\mathrm{Y})=1$
Math	No	
Cs	Yes	- $\mathrm{H}(\mathrm{Y\mid X})=0.5$
History	No	- Thus $\mathrm{IG}(\mathrm{Y} \mid \mathrm{X})=1$ - 0.5 = 0.5
Math	Yes	
Coprighte 2001	2033, Andew w.	Information Cain: SIIde 16

Information Gain Example

```
wealth values: poor rich
```



```
    Male 22732 9918 H(wealth | gender = Male ) =0.885847
```

$H($ wealth $)=0.793844 \mathrm{H}($ wealth $/$ gender $)=0.757154$
$\mid \mathrm{G}($ wealth \mid gender $)=0.0366896$

Another example

RelatiV					
$\mathbf{X}=$ College Major					
$\mathbf{Y}=$ Likes "Gladiator"		$	$	\mathbf{X}	\mathbf{Y}
:---	:---				
Math	Yes				
History	No				
Cs	Yes				
Math	No				
Math	No				
Cs	Yes				
History	No				
Math	Yes				

Definition of Relative I nformation Gain:
$\operatorname{RIG}(Y \mid X)=$ I must transmit Y, what fraction of the bits on average would it save me if both ends of the line knew X ?
$R I G(Y X)=H(Y)-H(Y \mid X) / H(Y)$
Example:

- $H(Y X)=0.5$
- $H(Y)=1$
- Thus $/ G(Y X)=(1-0.5) / 1=0.5$

What is Information Gain used for?

Suppose you are trying to predict whether someone is going live past 80 years. From historical data you might find...
-IG(LongLife | HairColor) $=0.01$
-IG(LongLife | Smoker) $=0.2$
-IG(LongLife | Gender) $=0.25$
-IG(LongLife | LastDigitOfSSN) $=0.00001$
IG tells you how interesting a 2-d contingency table is going to be.

