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Note to other teachers and users of these slides. 
Andrew would be delighted if you found this source 
material useful in giving your own lectures. Feel free 
to use these slides verbatim, or to modify them to fit 
your own needs. PowerPoint originals are available. If 
you make use of a significant portion of these slides in 
your own lecture, please include this message, or the 
following link to the source repository of Andrew’s 
tutorials: http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully received. 
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Bits
You are watching a set of independent random samples of X

You see that X has four possible values

So you might see: BAACBADCDADDDA…
You transmit data over a binary serial link. You can encode 
each reading with two bits (e.g. A = 00, B = 01, C = 10, D = 
11)

0100001001001110110011111100…

P(X=C) = 1/4P(X=B) = 1/4 P(X=D) = 1/4P(X=A) = 1/4



2

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 3

Fewer Bits
Someone tells you that the probabilities are not equal

It’s possible…

…to invent a coding for your transmission that only uses 
1.75 bits on average per symbol. How?

P(X=C) = 1/8P(X=B) = 1/4 P(X=D) = 1/8P(X=A) = 1/2
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Fewer Bits
Someone tells you that the probabilities are not equal

It’s possible…
…to invent a coding for your transmission that only uses 
1.75 bits on average per symbol. How?

(This is just one of several ways)

P(X=C) = 1/8P(X=B) = 1/4 P(X=D) = 1/8P(X=A) = 1/2

111D

110C

10B

0A
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Fewer Bits
Suppose there are three equally likely values…

Here’s a naïve coding, costing 2 bits per symbol

Can you think of a coding that would need only 1.6 bits 
per symbol on average?

In theory, it can in fact be done with 1.58496 bits per 
symbol.

P(X=B) = 1/3P(X=A) = 1/3 P(X=C) = 1/3

10C

01B

00A

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 6

Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per 
symbol, needed to transmit a stream of symbols drawn from 
X’s distribution? It’s

H(X) = The entropy of X
• “High Entropy” means X is from a uniform (boring) distribution
• “Low Entropy” means X is from varied (peaks and valleys) distribution

General Case

mm ppppppXH 2222121 logloglog)( −−−−= K

….P(X=V2) = p2P(X=V1) = p1 P(X=Vm) = pm

∑
=

−=
m

j
jj pp

1
2log



4

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 7

Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per 
symbol, needed to transmit a stream of symbols drawn from 
X’s distribution? It’s

H(X) = The entropy of X
• “High Entropy” means X is from a uniform (boring) distribution
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A histogram of the 
frequency distribution of 
values of X would be flat

A histogram of the 
frequency distribution of 
values of X would have 
many lows and one or 
two highs
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X’s distribution? It’s
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A histogram of the 
frequency distribution of 
values of X would be flat

A histogram of the 
frequency distribution of 
values of X would have 
many lows and one or 
two highs

..and so the values 
sampled from it would 
be all over the place

..and so the values 
sampled from it would 
be more predictable
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Entropy in a nut-shell

Low Entropy High Entropy
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Entropy in a nut-shell

Low Entropy High Entropy
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within 
the soup bowl
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Specific Conditional Entropy H(Y|X=v)

Suppose I’m trying to predict output Y and I have input X

Let’s assume this reflects the true 
probabilities

E.G. From this data we estimate

• P(LikeG = Yes) = 0.5

• P(Major = Math & LikeG = No) = 0.25

• P(Major = Math) = 0.5

• P(LikeG = Yes | Major = History) = 0

Note:

• H(X) = 1.5

•H(Y) = 1

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Definition of Specific Conditional 
Entropy:

H(Y |X=v) = The entropy of Y
among only those records in which 
X has value v

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX

Specific Conditional Entropy H(Y|X=v)
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Definition of Specific Conditional 
Entropy:

H(Y |X=v) = The entropy of Y
among only those records in which 
X has value v

Example:

• H(Y|X=Math) = 1

• H(Y|X=History) = 0

• H(Y|X=CS) = 0

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX

Specific Conditional Entropy H(Y|X=v)
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Conditional Entropy H(Y|X)

Definition of Conditional 
Entropy:

H(Y |X) = The average specific 
conditional entropy of Y

= if you choose a record at random what 
will be the conditional entropy of Y, 
conditioned on that row’s value of X

= Expected number of bits to transmit Y if 
both sides will know the value of X

= Σj Prob(X=vj) H(Y | X = vj)

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Conditional Entropy
Definition of Conditional Entropy:

H(Y|X) = The average conditional 
entropy of Y

= ΣjProb(X=vj) H(Y | X = vj)

X = College Major

Y = Likes “Gladiator”

Example:

00.25CS
00.25History
10.5Math
H(Y | X = vj)Prob(X=vj)vj

H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Information Gain
Definition of Information Gain:

IG(Y|X) = I must transmit Y. 
How many bits on average 
would it save me if both ends of 
the line knew X?

IG(Y|X) = H(Y) - H(Y | X)

X = College Major

Y = Likes “Gladiator”

Example:

• H(Y) = 1

• H(Y|X) = 0.5

• Thus IG(Y|X) = 1 – 0.5 = 0.5
YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Information Gain Example
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Another example
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Relative Information Gain
Definition of Relative Information 
Gain:

RIG(Y|X) = I must transmit Y, what 
fraction of the bits on average would 
it save me if both ends of the line 
knew X?

RIG(Y|X) = H(Y) - H(Y | X) / H(Y)

X = College Major

Y = Likes “Gladiator”

Example:

• H(Y|X) = 0.5

• H(Y) = 1

• Thus IG(Y|X) = (1 – 0.5)/1 = 0.5YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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What is Information Gain used for?

Suppose you are trying to predict whether someone 
is going live past 80 years. From historical data you 
might find…

•IG(LongLife | HairColor) = 0.01

•IG(LongLife | Smoker) = 0.2

•IG(LongLife | Gender) = 0.25

•IG(LongLife | LastDigitOfSSN) = 0.00001

IG tells you how interesting a 2-d contingency table is 
going to be.


