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Abstract—In this paper, we analyze a large dataset of pas-
sive wireless measurements and obtain insights about wireless
performance. We monitor 167 homes continuously for 4 months
from the vantage point of the gateway, which allows us to
capture all the activity on the home wireless network. We report
on the makeup of the home wireless network, traffic activity,
and performance characteristics. We find that in most homes,
a small number of devices account for most of the observed
traffic volume and the bulk of this traffic activity occurs in the
evenings. Studying link performance, we find that overall, the
vast majority of transmissions are carried out at high data rates
and the wireless networks have good coverage. We find a small
number of episodes where performance is poor; a few homes
have a disproportionate number of poor performance reports.
Investigating further, we observe that most of these are not caused
by poor coverage (pointing to network interference). Our results
significantly add to the understanding of home wireless networks
and will help ISPs to understand their subscriber networks.

I. INTRODUCTION

Home wireless networking problems are very hard to
diagnose and troubleshoot for end-users. Unsurprisingly, this
is one of the three most common issues reported at ISP
helpdesks1. Thus, having a baseline understanding of home
wireless performance and characterizing the common problems
will greatly benefit both ISPs and their subscribers. However,
a multitude of factors pose significant challenges to such an
effort. Active WiFi devices from the subscribers’ networks, as
well as those on neighboring networks, compete for wireless
capacity and interfere with each other. Furthermore, non-WiFi
devices, such as microwave ovens, operate on the unlicensed
frequency bands and cause RF interference. While previous
studies have investigated home networks, the findings are
based on small-scale deployments [2], [3], or else they do not
mainly focus on the wireless network performance [4]–[6].

In this paper, our goal is to characterize wireless home
networks in general and to extract a baseline understanding of
the related performance characteristics. To this end, we collect
and analyze a large dataset of wireless measurements taken
from 167 subscribers of a large European ISP for a period of
4 months. Our resulting dataset with over 16 million measure-
ments contains metrics extracted from commodity gateways
under normal operation in subscriber homes, without requiring
specialized hardware. In addition, our dataset includes both
wireless link performance metrics and wireless traffic infor-
mation, which allows us to relate WiFi link performance to

Ioannis Pefkianakis carried out this work while at Technicolor.
1Based on informal conversations with two large ISPs.

WiFi device data usage. To our knowledge, this is the largest
such dataset relating to wireless home performance to date.

Analyzing this dataset, we first perform a broad characteri-
zation of the wireless home networks; we study the penetration
of particular WiFi technologies, high level device demograph-
ics, and the wireless neighborhood for each subscriber home,
as well as each home’s spatial and temporal wireless traffic
characteristics. Subsequently, we qualitatively characterize link
performance (good or bad) based on the reported PHY rate
metric and quantify one class of WiFi performance problems.
We correlate the performance metrics with various factors
(WiFi technology, network density, etc.) to obtain insights
on the impact of each on wireless link performance. Finally,
to understand the causes of poor performance episodes, we
examine whether poor wireless coverage is to blame (for these
episodes). We summarize our key findings below.

We uncover significant diversity across the homes in our
dataset; this in terms of 802.11 technology, number of devices,
and usage. Overall, we find the WiFi interfaces of both
gateways and devices to be under-utilized, accommodating
very low traffic volumes. We also observe that when there is
traffic, most of it is accounted for by a few stations (typically
2-3), and the bulk of this activity occurs in the evening.

We find that, across all the homes in our dataset and over
the entire 4 month period, poor wireless performance is rela-
tively uncommon. Roughly 7.6% out of over 6 million trans-
missions actually use the lowest PHY rates. However, a few
homes have a disproportionate number of poor performance
reports. By further analyzing coverage metrics during these
transmissions, we rule out poor coverage as the main cause for
the poor performance and we point to wireless interference.
Surprisingly, and contrary to what is often conjectured, we
find that the wireless link performance is largely uncorrelated
with the wireless density in the neighborhood. Specifically, we
observe almost no correlation between wireless link perfor-
mance in the home and either (i) the number of neighboring
wireless networks in range, or the (ii) cumulative effects of
their associated RSSIs. Interestingly, commodity APs incorpo-
rate such metrics into their channel selection algorithms. We
believe that our findings provide valuable insights to ISPs that
could lead to better handling of customer complaints about
wireless performance, and also suggest improvements in how
gateway access points are configured and operated.

This paper is organized as follows. Section II discusses
related work and Section III describes our data collection.
Section IV broadly characterizes homes’ WiFi networks. Sec-
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tions V and VI analyze the wireless link performance and
study the root cause of poor performance for the homes of our
dataset. Section VII concludes the paper.

II. RELATED WORK

The performance of 802.11 wireless networks in campus,
enterprise, urban, and rural environments has been extensively
studied [11]–[14]. However, there are limited studies on 802.11
wireless home network performance, which collect feedback
either from the end-host, or from customized gateways. End-
host based measurement tools run as applications on the client
side [6], [7], and typically suffer from a number of limitations.
They cover only a single device’s perspective and they provide
only one-shot measurements, when the specific client device is
connected to the network. Finally, they collect limited network
feedback available at the application level.

A gateway-based approach on the other hand, enables
continuous measurements at a fine time scale, and collects
802.11 MAC-layer feedback and higher layer traffic charac-
teristics from all the WiFi devices in the home. So researchers
have deployed customized APs in volunteers’ homes [2]–[5].
While this approach allows to customize and instrument certain
measurements at fine time scale, such efforts typically suffer
from poor scalability and lack of generality. They mainly rely
on recruited, technically-inclined volunteers [4], who need to
obtain and install the customized gateway. For example in [3],
authors study the wireless TCP throughput of 30 homes, where
two-thirds of their APs are concentrated in two dense apart-
ment buildings. Although recent work [4], [5] which leverages
BISmark infrastructure [1] monitors a larger number of homes
(64), it only seeks to identify if the wireless or the access
network is the performance bottleneck. In contrast to existing
work, we collect data directly from subscribers of a large ISP
under normal service operation. This enables a larger scale
deployment with very diverse WiFi environments, includes a
more representative population sample, and still allows for
fine feedback collection from all the devices connected to
the gateway. Different from existing work, we study wireless
performance in concert with data usage, which allows us to
identify performance bottlenecks.

Finally, recent studies [8]–[10] design systems to iden-
tify 802.11 pathologies. These systems either require active
measurements [8] which are typically disabled by the ISPs
for performance reasons, or a dedicated WiFi radio to collect
signal samples [9], or collaboration among APs [10], which are
not available in commodity gateways. Although these systems
can admittedly provide richer wireless feedback at finer time
scales, our study uses metrics available in any commodity
802.11 driver, which are still provided at a sufficient time scale
to broadly characterize wireless home network performance.

III. DATASET DESCRIPTION

In this paper, we analyze the wireless data collected from
the Internet home gateways of 167 residential broadband
subscribers, of a large European ISP. The most gateways of our
deployment (71.3%) use fiber; 91% of the fiber plans provide
100/10 Mbps downstream/upstream speed, and for the rest it
is 30/3 Mbps. The remaining gateways use ADSL technology
with 24/1 Mbps downstream/upstream speeds. The subscribers

are distributed over a large geographic area and span 10 cities.
These 167 subscribers volunteered to be part of a project
and were aware of the data collection. The results presented
in this paper span a 4 month period (June - September,
2013) and contain over 16 million measurement samples. For
ease of exposition, we use the terms “home” and “gateway”
interchangeably, as also “user” and “subscriber”. We next
elaborate on our monitoring infrastructure and metrics.

A. Data Collection

Each subscriber in our deployment has almost identical (the
differences are mainly in CPU speeds) home gateway platform
with the following specifications: (i) ADSL2+ modem or fiber
WAN access link, (ii) 4 ethernet ports, (iii) a WiFi access point
enabled by a Broadcom 802.11b/g/n 2x2 radio with MIMO
support. The WiFi radio supports 2 transmit and receive (2x2)
RF chains (antennas) and both spatial diversity and spatial
multiplexing MIMO modes. The 802.11 interface operates at
2.4GHz band and supports both 20MHz and 40MHz channels.
Importantly, none of our gateways operates at the 5GHz band.

The data collection on the gateway is done by a lightweight
OSGI module that periodically queries some data models
exposed by the gateway software API and reports these metrics
to a backend server. A particular set of design choices – polling
frequency, data format, etc. – were dictated by very strict
operational constraints; the monitoring should not have any
negative impact on the subscribers, cause any instability on the
gateways (generally resource constrained), or affect any of the
services on the gateway (e.g., VoIP) adversely. A considerable
amount of trial and error resulted in the final set of choices.
The monitoring module generates reports every 30 seconds and
sends them to the backend as JSON objects of 15-20KB size
(including more metrics than what we analyze in this study).

B. Metrics

Our metrics are based on generic feedback provided by
commodity 802.11 drivers. We use PHY rate as an indicator
of the wireless link speed [16], [17] and RSSI to identify the
root cause of low PHY rate [13]. Our gateways also report the
achieved (actual) throughput generated by the user’s running
applications. We next elaborate on our metrics.

PHY rate: The PHY rate R, is the speed at which a
station communicates with the gateway. The gateway reports
the PHY rate of the last transmitted and received data frame,
for each station associated with it, every 30 seconds. As we
collect millions of records, this time granularity allows us to
get statistically meaningful results. In commodity devices, the
typical reasons for a rate change are: (i) a shift in the Received
Signal Strength (RSS), (ii) frame losses caused by interference
from hidden terminals or non-WiFi devices [13], [16], [17],
(iii) rate sampling (rate adaptation (RA) algorithm evaluates
wireless channel quality [18]). Typically, a high PHY rate is
an indicator of good coverage and negligible interference. In
our study, we equate “good performance” with high PHY rates
being used by the gateway. As PHY rate is an upper bound
of the wireless throughput (e.g., it does not account for losses,
contention, 802.11 overheads), we also calculate an effective
throughput metric, as we discuss later.
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RSSI (dBm) Expected PHY rate (Mbps)
[min, -88] 6.5
[-87, -86] 13
[-85, -83] 19.5
[-82, -81] 26
[-80, -75] 39
[-74, -73] 52
[-72, -71] 58.5
[-70, max] 65

TABLE I. RSSI - RE MAPPING (802.11N 1X1, 20MHZ SETTING).

RSSI and Expected PHY rate (RE): RSSI captures the
signal strength between the station to the gateway. Per station
RSSI values are measured at the gateway based on received
data frames. The value exported is an average of the RSSIs
of the frames received during the reporting interval (30 secs).
The gateway does not report RSSIs for corrupted (e.g., due to
interference) data frames, so RSSI measurements are unlikely
to be affected by wireless interference. To identify the impact
of RSSI on link performance, we calculate an expected PHY
rate RE , which is the best throughput transmission PHY rate
for a given RSSI value. In general, the relationship between
RSSI and RE depends on 802.11 radio characteristics, and
varies between vendors. We carry out detailed, controlled
measurements in an RF shielded environment, using a wireless
channel emulator from Azimuth Systems to obtain the RSSI-
RE mappings for both 802.11b/g and all the MIMO 802.11n
configurations of our gateway platform. For example, we
present the RSSI-RE mappings for the 802.11n 1x1 setting
in Table I. Notice that lower RSSIs correspond to lower RE ,
indicating a performance degradation due to poor coverage.
A caveat in converting RSSI to a rate is that, for the MIMO
802.11n setting, the effective rate also depends on the multi-
path properties of the environment. In this case, we consider
RE as a coarse indicator.

RateGap: RSSI can remain stable, but the PHY rate can
still vary due to interference losses [16], [17]2, or when the
RA samples different rates in order to converge to a particular
rate [18]. To identify rate variations which are not triggered
by RSSI variations, we calculate the difference between the
expected PHY rate RE and the reported PHY rate R:

RateGap = Rate index{RE} −Rate index{R} (1)

We measure the rate gap in rate options (indexes) and not
in Mbps, because the difference between two adjacent PHY
rates in Mbps may highly vary among 802.11 technologies.
Table II presents a high-level interpretation of relationship
between PHY rate R and expected PHY rate RE . If both R and
RE are high (upper-left), we expect good performance. If both
are low (bottom-right), we expect poor performance attributed
to poor coverage. On the other hand, if the expected PHY rate
RE is high, but the used PHY rate R is low (bottom-left) the
result is a positive RateGap and poor performance attributed
to interference or RA dynamics. Conversely, if the expected
PHY rate RE is low, but the used PHY rate R is high, the result
is a negative RateGap that can be attributed to RA dynamics;
typically the RA algorithm samples PHY rates higher than
the available channel capacity to estimate channel quality,
which often leads to poor performance. Note, it is out of the
scope of this work to distinguish between interference and
RA dynamics as the cause of non-zero RateGap. That would

2We verify this phenomenon with controlled hidden-terminal experiments.

Expected PHY Rate (RE )
High Low

PHY Rate (R) High good performance poor performance
(RA dynamics)

Low poor performance poor performance
(interference/RA dynamics) (poor coverage)

TABLE II. INTERPRETING PHY RATES R AND RE .

require feedback such as channel contention, RA parameters,
collected at fine time scales, which are not available to us.

We note two caveats in our approach that relate to RSSI.
First, the reported RSSI is measured at the gateway (not the
station) and consequently, the RE and RateGap metrics are
computed only for uplink (from station to gateway). However,
the PHY rate R is recorded at both directions. Second, the
reported RSSI is an average for the reporting interval, while
the PHY rate is reported only for the last frame; thus, the
interpretation for the RateGap is likely to be less accurate
under dynamic wireless channels. However using the allan
deviation methodology described in [12], we identify stable
wireless channels (RSSI and PHY rate) in our home networks.

Effective throughput (TE): is the maximum amount of
bits that can be transmitted per time unit over wireless, given
the 802.11 protocol overhead and the instantaneous channel
quality (losses, contention) [16]. Our gateways do not expose
802.11 frame loss statistics (apart from excessive retries as
we discuss next), and contention time with other devices on
the same frequency. Thus we calculate an upper-bound to
TE , based on the PHY rate reported by our gateway and the
802.11 protocol overhead, which can be considered an 802.11
technology dependent constant.

Achieved throughput (TA): The gateway periodically (30
secs) reports the actual throughput TA (sent and received) for
each station connected to it. TA is the actual total number
of bits over time, and it captures the actual demand on the
wireless network. This metric depends on the application’s
data rate and is bounded by the wireless effective throughput
or the access link throughput (for traffic exiting/entering the
home). The throughput TA is computed as the transmitted (or
received) bits over a 30 second period, and it is reported by
the gateway in Kbps. As gateway’s driver reports only integer
values (most commodity wireless drivers do not have floating-
point support), we cannot capture TA smaller than 1 Kbps.
Consequently zero TA values imply TA < 1Kbps.

Additional metrics: The gateway reports each station’s
capability (e.g., 802.11b/g, 802.11n 1x1 or 2x2) and trans-
mit/receive traffic counters in bytes. It also reports the 802.11
excessive retries (i.e., the frame transmissions where no ACK
was received after a maximum number of retransmissions) for
each station. Excessive retries are reported only in downlink
(gateway to station), and we use them as an additional per-
formance indicator. Finally, the gateway’s automatic channel
selection (ACS) reports a list of detected neighboring SSID’s
and the associated RSSIs, at a longer timescale (every 2 hours)
than the above metrics.

Summary: In a nutshell, we leverage PHY rate (and effec-
tive throughput) metrics to identify performance bottlenecks,
and achieved throughput metric to capture traffic demand.
The limited feedback reported by our gateways prevent us
from estimating a more realistic application-level throughput.
However, PHY rate is still an important performance proxy,

2015 IEEE Conference on Computer Communications (INFOCOM)

2715



0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

Number of WiFi Devices

CD
F

 

 

Distinct devices
Resident devices

(a) Total and resident WiFi devices.

0 20 40 60 80 100 120 140 16010!2

100

102

104

Gateway

G
at

ew
ay

 D
ai

ly
 T

ra
ffi

c 
(M

B
)

(b) Daily wireless traffic across homes.

0 20 40 60 80 100 120 140 1600

20

40

60

80

100

Gateway

Tr
af

fic
 R

at
io

 (%
)

 

 

Night Morning Afternoon Evening

(c) Traffic at different times of day.

Fig. 1. Device population and traffic dynamics.

802.11 device distribution .11b .11g .11n 1x1 .11n 2x2
0.45% 42.55% 45.48% 11.52%

Homes with only 802.11x .11b/g .11n .11b/g/n
devices 28.1% 8.4% 63.5%

TABLE III. HOME WIFI TECHNOLOGY OVERVIEW.

which can capture poor performance instances [13], [16], [17].
A limiting factor to identify the root cause of performance
bottlenecks is the lack of contention and interference feed-
back from external sources (i.e., WiFi devices connected to
neighbouring APs and non-WiFi wireless devices). However,
we still leverage RSSI to detect wireless coverage problems.

IV. HOME WIRELESS ENVIRONMENT AND TRAFFIC
CHARACTERIZATION

In this section, we report on wireless devices in each
home, their 802.11 technologies and their WiFi neighbourhood
(Section IV-A). We also study the wireless traffic activity of
the homes of our deployment (Section IV-B).

A. Network Characterization

We identify a total of 1328 distinct devices (by MAC
address) associated to the gateways of our deployment. Some
devices are only observed for a few days over the entire
dataset; others are seen every day. To differentiate these
transient devices from those which are owned and operated
(regularly) by people in the homes in our dataset, we use a
threshold of 7 days. In other words, devices which are observed
on fewer than 7 days are labeled as transient, while devices
appearing on more than 7 days are termed resident. Transient
devices may be associated with visitors or they may be turned
on very infrequently (e.g., wireless printers). Figure 1(a) plots
the distribution of the total devices recorded in each home,
and also the distribution of resident devices. The total device
count for a home varies from 1 to 25. The median number of
devices found in a home is 7, including transient devices. If
we consider only the resident population (dotted curve), we
see that the median home has 4 resident devices, 12% of the
homes have more than 8 devices, with 13 being the largest
value. In the rest of our analysis, we include both resident and
transient devices unless mentioned otherwise.

Home WiFi technology: Wireless throughput is tied to
802.11 technology; newer technologies (e.g., 802.11n) support
higher transmission rates. As can be seen in Table III, in our
dataset we find a high penetration of newer high-throughput
802.11n technology across the homes. Specifically, 57% of
the 1328 wireless devices are 802.11n, and roughly 3 out of 4
homes (72%) have at least one 802.11n device. However, only

11.5% of the total devices support the high speed 802.11n
MIMO feature. We also see plenty of legacy technology;
42.6% of the devices use 802.11g and a tiny fraction (0.45%)
use the older 802.11b technology. To allow a high level com-
parison of performance, we further classify homes into high
and low speed (homes) based on the device technologies. In the
former, we exclusively see 802.11n, while in the latter, we only
observe legacy technologies (802.11b/g). Across our dataset,
we find 8.4% (28.1%) of the homes to be high (low) speed
respectively; the rest have a combination of devices that span
these technologies. In general, we expect the high speed homes
to have better network performance characteristics than the low
speed homes. However, wireless dynamics can significantly
compromise the network performance gains, and may inverse
this relationship (cf. Section V-B).

Home WiFi neighborhood: We next leverage the feedback
from our gateways’ ACS algorithm to analyze their WiFi
neighbourhoods. Overall, we uncover diverse and dense wire-
less environments around each of our gateways. The number
of neighboring SSIDs around each gateway varies between 1
(perhaps a non-urban dweller) and 78 (possibly city apartment
dweller), with the median value being 17. This density is
potentially significant since a large number of neighboring
networks is believed to adversely affect performance due to
interference. We study this in detail in Section VI.

We also find that the RSSIs from each of the SSIDs vary
significantly. Specifically, the average RSSI from a neighboring
AP to a home gateway of our deployment varies from -10.7
dBm to -91 dBm, implying different proximity of neighboring
APs to the home gateway. -91 dBm corresponds to a signal that
can barely be sensed, while -10.7 dBm is a very strong signal
and likely originates from a device in direct proximity of our
gateway, such as a WiFi extender inside the home. Finally, the
neighboring SSIDs of our gateways are likely to implement
ACS algorithms, as we observe them to appear at different
channels over time. They mostly use channels 1, 6, and 11,
which are the non-overlapping at 2.4GHz.

B. Traffic Characterization

We next examine the wireless traffic activity in space and
time, for the homes and devices in our dataset.

Spatial-temporal traffic characteristics: We first present
the daily traffic, sum of uplink and downlink, for each home
in Figure 1(b). Each point on the x-axis represents a single
gateway and the y-axis indicates the range (min-max) over all
the days in our dataset. Each vertical line is also annotated with
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Fig. 2. Wireless traffic correlation with devices.

a marker corresponding to the median daily traffic volume.
We observe that there are significant variations across different
homes as well as within a single home. The median daily traffic
volume can vary up to four orders of magnitude across homes
(the y-axis is in log-scale); from less than 1 MB to more than
10 GB. For a single home, the daily (wireless) traffic volume
can vary between a few MB up to to 67 GB.

Next, we study how time of day impacts the observed
traffic volume. To this end, we partition the 24 hours of a
day into four periods: morning [6am-12pm), afternoon [12pm-
6pm), evening [6pm-12am) and night [12am-6am) times, and
compute the daily fraction of traffic seen in each period (for
each day and for each gateway). Figure 1(c) shows the fraction
of traffic generated at each time period, across the homes in
our dataset. We find that for all but a few gateways, the most
traffic is generated during the evening. Specifically, for 73.3%
of the gateways, the evening period records the largest traffic
fraction. For the remaining gateways, 12.7%, 10.3% and 3.7%
generate most traffic during afternoon, morning and night,
respectively. These differences can be attributed to variations
in device usage patterns and applications used in each home.

Number of devices and traffic: We next seek to under-
stand which devices contribute the most to a home’s traffic
volume. We therefore plot in Figure 2(a), the minimum number
of devices that account for at least 90% of the observed traffic
(on the x-axis) and the corresponding fraction of gateways
on the y-axis. We see that only a small number of devices
generate 90% of the traffic; in roughly 70% of homes, only 3
devices account for this traffic. In less than 15% of the homes,
more than 4 devices contribute to 90% of the total wireless
traffic. We further distinguish between transient and resident
devices. Figure 2(b) plots the fraction of a gateway’s wireless
traffic that is attributed to resident devices, for all gateways.
We observe that, for the vast majority of the homes (80%),
at least 87% of the wireless traffic is generated by resident
devices. While we do not have information about the device
types or their usage, we speculate that this traffic concentration
(over a small number of devices) hints at individuals in the
households owning multiple devices, some of which are used
infrequently (and do not generate significant traffic).

Traffic symmetry: It is widely presumed that downlink
traffic (AP to stations) is considerably larger than uplink traffic
in 802.11 networks [11] because of the “pull” nature of client-
server applications (web surfing, email, etc.). We indeed see in
our dataset that, the overall downlink traffic dominates (over
uplink), with up to two orders of magnitude. However, for
7.2% of the stations and 4.8% of the homes we see this
condition to be reversed; gateways and stations can generate
up to one order of magnitude higher uplink than downlink
traffic. We speculate that services such as cloud syncing (e.g.,
Dropbox), or uploading media files to social networks could

contribute to the cases where we observed larger upload traffic.

Takeaways: Our results show a high penetration of high-speed
802.11n devices and very diverse wireless home networks,
both in terms of device population and WiFi neighborhood.
Although there is noteworthy diversity in the number of home
devices, most of the traffic is typically generated by few
devices, during the evening. Traffic activity also varies in time,
and gateways can remain often highly under-utilized.

V. LINK PERFORMANCE CHARACTERIZATION

In this section, we study the wireless link performance
across individual homes and 802.11 technologies. We further
compare effective and achieved throughput metrics.

A. Overall Performance Distribution

We start by analyzing the PHY rates reported in individual
reports, over all the gateways and devices. Recall that we
equate high PHY rates with good wireless link performance.
In Figure 3(a) we show the PHY rate values for 802.11n 1x1
stations (and for 802.11g stations in 3(b)); this is over all
the reports in the dataset. Note that 802.11n 1x1 and 802.11g
stations account for 88% of all the devices in our dataset. In
Fig. 3(a), we see that at least 64% (and 53%) of the gateways’
transmissions (and receptions) are carried out using the highest
PHY rate, i.e., 65 Mbps. This observation holds also in the
802.11g case; 70.7% and 58.7% of the activity is associated
with the 2 highest rates (54 and 48 Mbps). We also see the
same pattern for 802.11b and 802.11n 2x2 devices3.

Thus, we see the vast majority of frame transmissions and
receptions at high PHY rates. The average PHY rates are close
to the technology limit for each 802.11 technology, as shown
in the first three rows of Table IV. This leads to the conclusion
that in our dataset, good wireless link performance is the
norm and there are few limiting factors for link performance.
However, as can be seen in Figures 3(a)-3(b), there is a small
number of samples at lower PHY rates. Overall, we find 7.6%
of the total transmissions at PHY rates of 6.5 Mbps or lower,
from all the records in our dataset. In the next section, we
analyze these in detail and elaborate on their causes.

While PHY rate governs the number of bits that can be
transmitted over the link, this includes overhead from the
802.11 protocols. The effective throughput (TE), derived from
PHY rate by accounting for protocol overheads (§III-B), more
closely approximates what an application on a wireless device
is likely to experience. We compute this metric by assuming
1470-byte packets and specific to 802.11n MPDU aggregation
along with A-MPDUs of 16 (27) frames for 802.11n 1x1 (and
2x2) stations.4 Table IV (bottom) presents the TE statistics
for each 802.11 technology. We observe the average TE to
be as high as 83.5 Mbps, 48.8 Mbps or 26.7 Mbps (802.11n
2x2, 1x1 and 802.11g, respectively). These throughputs are
higher than the capacity of currently deployed access link
technologies (ADSL2+ and DOCSIS 2.0 [1]) and popular
application bandwidth requirements (e.g., Netflix). Thus, in

3The 802.11n 2x2 rate distribution is slightly lower than the other technolo-
gies, mainly since the samples are spread over its larger set of rate options.

4It is the average framing observed in UDP packet train experiments on
Atheros NICs. We leave the evaluation of various packet sizes as future work.
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Fig. 4. Performance variations among homes of different 802.11 technologies.

these cases it is likely that applications will be performance
limited by the access link rather than the wireless channel.

Our analysis of the excessive retries metric which is an
indicator of severe performance problems, further corroborates
that performance is overall good. We observe that the average
number of excessive retries in a 30-second time bin across all
the reports of our dataset, is small (2.9). The median retries
is zero. The average loss ratio calculated from the excessive
retries is only 1.9% (note this does not include losses from
frames which were not excessively retried).

PHY Rate and Exp.Rate RE Station technology
(Mbps) .11b .11g .11n 1x1 .11n 2x2

Max Supported PHY Rate 11 54 65 130
Mean Tx PHY Rate 11 44.75 53.35 91.75
Mean Rx PHY Rate 8.75 39.47 46.59 71.87

Mean Exp. Rx Rate RE 11.0 51.2 61.76 111.99

Effective throughput TE

(Mbps) .11b .11g .11n 1x1 .11n 2x2
Mean Tx TE 6 26.70 48.76 83.54
Mean Rx TE 4.75 23.98 42.59 65.86

TABLE IV. AVERAGE WIRELESS LINK PERFORMANCE.

Link asymmetry: Our results show that the average downlink
(Tx) PHY rate is higher that the uplink (Rx) for 78.5% of
the stations in our dataset. Overall, the average transmission
PHY rate calculated over all the stations and gateways is from
13.4% to 27.7% higher than the average reception PHY rate
(Table IV). This asymmetry is observed for 802.11n 1x1 and
802.11g stations, in Figures 3(a)-3(b). These differences can
manifest due to various factors – antenna diversity, transmit
power, interference and receiver noise floor variations [15]. As
we consistently observe such differences, we speculate this is
due to transmit power asymmetry. The gateways in our study
are configured at 19 dBm Tx power, larger than what we expect
on small mobile devices. We confirmed this through controlled
experiments on a few smartphones (Samsung Galaxy S3 and
S4) and Atheros 802.11n NICs, which showed average Tx
powers of 14 dBm and 16 dBm, respectively. Yet another

reason for link asymmetry, for 802.11n 2x2 stations, is asym-
metric Rx/Tx capabilities. These stations may have 2 receive
RF chains (antennas), but transmit using only one transmit RF
chain. This applies to 33.8% of the 802.11n 2x2 stations in our
dataset. As a consequence, the downlink PHY rates (gateway
to station) will be higher than the uplink, for these stations. The
7.2% stations in our dataset for which uplink traffic dominates
(cf. Section IV-B) may be more sensitive to these PHY rate
asymmetries depending on their applications’ traffic demands.

B. Variation Across Homes

We now investigate wireless link performance variations
among the homes of our deployment. Our results show that
the average PHY rate across homes can vary up to an order
of magnitude. To understand the impact of technology on
performance, in Figure 4, we plot the PHY rate performance
(Tx and Rx) across different technology clusters. Each point
in the scatter plot represents a single home, and the y-axis
represents the average home PHY rate. Given the fact that
802.11n technology offers higher performance than legacy
technology, we would expect that the points corresponding to
these would be higher than for the two legacy technologies.
Surprisingly, this is not the case. Specifically, the highest
performance 802.11b/g home achieves 3.3 and 5.6 times higher
transmit and receive PHY rate performance than the lowest
performance 802.11n home. Furthermore, even for a single
technology, we see a wide gamut of performance. The best
performing 802.11n home has an average PHY rate that is
9 times the worst performing one (the latter perform worse
than all homes with legacy technology). We attribute these
differences among technologies to artifacts such as interference
and coverage. We elaborate on these causes in Section VI.

C. Achieved Throughput

Having so far looked at the wireless link and effective
throughput TE , we now analyze reports of the actual through-
put TA. This metric represents the actual number of bits that
were sent/received on the link (in a short period of time).
By relating this to TE (which is a capacity measure), we can
comment as to whether the wireless link is a bottleneck.

Figures 5(a) (and 5(b)) plot the distribution of downlink
(and uplink) TA, over all recorded samples, by particular
802.11 technologies. From the figures, we find that TA = 0
in a very large number of samples. Recall that the gateway
wireless driver only reports integer values; thus, TA = 0
corresponds to something in the range [0, 1)Kbps. Over all
the various technologies, from Figures 5(a) and 5(b), roughly
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Fig. 5. Achieved throughput distribution and comparison with the effective throughput.

81.2% and 73.3% of the samples, for downlink and uplink,
record an actual throughput < 1Kbps. This implies that the
wireless stations (when connected) have low traffic activity,
and their WiFi interfaces are typically highly under-utilized.
However, we do see sporadic reports of high actual throughput:
the peak value of TA is 93.4 Mbps and 51.9 Mbps (downlink
and uplink) – recorded for 802.11n 2x2 stations. This indicates
that there are instances where high throughput WiFi is required
to accommodate the traffic rate. To consolidate the above
observations, we compute for each episode, the aggregate
throughput of the gateway, i.e., the sum of downlink and uplink
TA across all the associated stations. We also observe for the
vast majority of the episodes the aggregate gateway TA to be
zero. Interestingly, the average gateway aggregate TA over all
episodes is at most 0.5 Mbps, for the majority of the gateways
(∼90%) of our deployment.

Effective vs. achieved throughput: We point out that from
these results, we cannot conclude if the wireless link (or
the application) is the bottleneck. Conceivably, TA is low
because channel conditions are bad and cannot support high
throughput. To understand if this is the case, we analyze the
difference (TE−TA). This represents the fraction of throughput
that is not being used. Note that TE can be estimated only when
there is traffic, so the samples we analyze are restricted to those
with non-zero TA values. Figure 5(c) plots the distribution
of this throughput difference for both uplink and downlink
directions. From the figure we see a difference of at least
20 Mbps in 87.5% (downlink) and 77.4% (uplink) of the
samples, which is significantly larger than the traffic needs
of applications in common use today. It should be pointed out
that even here, we cannot conclusively state if, the application
or the wireless channel is the limiting factor. It is conceivable
that TE is high even when there are a large number of stations
contending for the channel, and this may reduce the share
to each station (reducing TA). However, considering the very
large gap between effective and the actual throughput, and the
overall low values for TA (not changing over time) we consider
it unlikely that the wireless link is the bottleneck. Finally, as
seen in Figure 5(c), we do find isolated instances where the
throughput gap is small: at most 2 Mbps in 0.7% of downlink
samples (1.7% in uplink). In these cases, the wireless link can
a be a performance bottleneck. As Figure 5(c) indicates, the
TE−TA difference is overall smaller in the uplink case, which
makes performance bottlenecks more likely to be in the uplink.
This can be explained by our previous discussion – PHY rates
are often smaller in the uplink direction.

Takeaways: Our results show that the wireless link perfor-

mance is overall good with the effective wireless throughput
to be significantly higher than the actual generated throughput.
However, there are still instances of poor performance. In the
next section, we elaborate on these instances.

VI. UNDERSTANDING POOR PERFORMANCE

In this section, we identify poor performance episodes and
seek their root cause(s). We use a subjective rating to classify
poor performance; we consider transmissions at 6.5 Mbps
PHY rates or lower as indicators of poor performance. This
is motivated by the fact that, it is the lowest 802.11n PHY
rate and that our controlled experiments (under various WiFi
conditions) have shown that these PHY rates are likely to yield
performance below popular applications’ bandwidth require-
ments (e.g., Youtube). Returning to Figures 3(a) and 3(b),
we see that 6.3%/14.2%, and 2.2%/ 5.2% of the frames are
transmitted/received at PHY rates less or equal to 6.5 Mbps,
for 802.11n 1x1 and 802.11g stations, respectively5. Similarly,
we identify poor performance instances for 802.11n 2x2 and
802.11b stations. Overall, 7.6% of the total instances in our
dataset are poor performance episodes.

The fraction of poor performance episodes per home over
the total performance instances varies across homes, as shown
in Figure 6(a). For the majority of the homes the performance
is good most of the time. Specifically, for 60.1% of the homes,
the fraction of poor performance episodes is at most 6%.
We observe 9% of the homes to have no poor performance
episodes. However, the fraction of poor performance episodes
can be up to 45% and 66%, for two homes of our deployment
(Figure 6(a)). We next study their root cause.

Coverage: We gauge coverage problems by calculating the
expected PHY rate RE from RSSI for the uplink transmissions
(station to gateway) as discussed in Section III-B. High RE

implies that the channel capacity can accommodate high
transmission rates. Figure 3(c) shows that 78% and 88% of
the total receptions are performed at the highest RE option,
for 802.11n 1x1 and 802.11g stations, respectively. On the
other hand, only 0.03% of the RE samples are less or equal
to 6.5 Mbps. Table IV further shows that the average RE is
only up to 11.2% lower than the the maximum supported PHY
rate. We further illustrate coverage performance in Figure 6(b),
by presenting the RSSI distribution of all the stations of our
deployment, including 802.11b and 802.11n 2x2 technologies.
We observe that approximately 84% of the RSSI samples are

5802.11n stations can still use legacy, smaller than 6.5 Mbps PHY rates
(e.g., for low RSSIs).
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Fig. 6. Poor performance across homes and root causes.
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Fig. 7. Poor performance in space and time and local contention.

at least -70 dBm, which corresponds to the highest RE option,
for all the station technologies. We see only 0.02% of the RSSI
values to be less than -87 dBm, which corresponds to rates RE

less or equal to 6.5 Mbps. We conclude that poor coverage is
not the main cause of poor wireless performance.

Other causes: We next seek to identify and quantify
performance degradation which is not triggered by low RSSI,
by leveraging the RateGap metric from equation 1. In Figure
6(c), we present the RateGap for all the records in our dataset.
Recall that we compute RateGap only for the uplink (cf.
Section III-B). We can observe instances where RateGap
is high; 18% of the frame transmissions have a positive
RateGap greater than 4 PHY rate options, while the maximum
RateGap is 10 (observed for 802.11n 2x2 stations). This
RateGap can explain the poor performance variation among
homes (cf. Figure 6(a)). In Figure 7(a), we show the average
RateGap performance for each gateway of our deployment,
which includes all the instances from all gateway’s stations.
We observe the average RateGap to vary from almost zero to
7 rate options. Interestingly, the two homes with the highest
average RateGap (as indicated in the plot), are the homes
with the largest fraction of poor performance episodes.

A positive RateGap can be attributed to interference,
which can be high in the gateways of our deployment, since
they operate at the congested 2.4GHz band. We expect in-
terference to be high mainly during evening times, where
people are at home, using their devices (cf. Section IV-B).
We verify our intuition by plotting the distribution of poor
performance episodes during different times of day for each
gateway in Figure 7(b). We consider only the gateways which
have relatively high number of poor episodes (at least 200).
We observe that for 77.2% of the gateways, the majority of
poor performance instances are during evening times.

Interference has been tied to the density of the WiFi en-
vironment [6], since neighboring 802.11 devices can interfere
with home devices. We therefore investigate this, by correlating
the RateGap (which can be caused by interference) with the
WiFi environment density. Specifically, we correlate RateGap
with home’s number of neighboring wireless networks N
(SSIDs), a metric which is used by our gateway’s channel
selection algorithm. Apart from the number of neighboring
SSIDs N , we devise another WiFi environment density metric
(named RSSID - RSSI Density), which considers both the
number of SSIDs and their RSSIs to the home gateway. It
is RSSID =

∑N
i=1

1
|RSSIi| and it increases with the number

of SSIDs and their signal strength to the gateway.

Interestingly, we find that there is no strong correlation
between WiFi performance and the density of the neighbor-
ing WiFi environment. Figures 8(a) and 8(b) correlate our
gateways’ average RateGap with the number of SSIDs and
the RSSID metric, respectively. In the scatterplot, each point
corresponds to a home. We observe that, higher WiFi density
(higher number of SSIDs, or RSSID) does not necessarily
result in higher RateGap. To better understand our finding,
we compute Kendall, which is a rank correlation that does
not make any assumption about the underlying distributions,
noise, or the nature of the relationships. Kendall correlations
of RateGap with the number of SSIDs and the RSSID metric
are very low (0.09 and 0.08 respectively). We make similar ob-
servations with Spearman and Pearson correlations. Likewise,
we did not observe any correlations for other metrics such as
the max/min RSSIs from the neighboring SSIDs, with WiFi
performance. Note that we need to interpret our findings with
cautiousness. First, our metrics do not consider the channel
used by the neighboring SSIDs. This is because our gateways
scan for SSIDs very infrequently (at most once or twice per
day), and consequently, we do not have fine-grained feedback
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Fig. 8. WiFi RateGap and environment correlation.

of neighboring SSIDs’ channels. Second, our gateways do not
report the traffic from neighbouring networks, which would
allow us to gain deeper insights for the correlation between
interference and neighboring APs.

Local contention (i.e., stations associated to the home
gateway contending for the wireless medium) is also one
possible source of interference, as it reduces the ability of the
stations to send traffic and can result in hidden terminals. To
estimate local contention, we first split the time in 30-second
bins. We then define as local contention, the fraction of the
time bins where we observe traffic from at least two stations.
These stations are likely to contend for the wireless medium.
Figure 7(c) shows the local contention aggregated over all the
gateways of our dataset. We observe that for 77.8% of the
gateways, the local contention is less than 10% and the median
is 6.6%. We further observe that, for the majority (78%) of
the poor performance episodes, there is no local contention.
Therefore, local contention is unlikely to cause interference in
our gateways. We also exclude interference from overlapping
40MHz channels [19] as a cause, since almost all the frame
transmissions in our dataset use 20MHz bandwidth PHY rates.

Finally, our results show a tiny fraction (0.5%) of the
samples to have negative RateGap (Figure 6(c)). This is
because, RA algorithms may sample high rates to estimate
channel quality (cf. Table II), which can cause frame losses.

Takeaways: Overall, we eliminate poor wireless coverage as
the root cause of poor performance. We speculate that there
can be interference from external WiFi and non-WiFi devices
operating on the same frequencies as our gateways.

VII. CONCLUSION

This paper presents a study of 802.11 wireless home
network performance, using data from a 4 month measurement
campaign of 167 homes, subscribing to a large ISP. Our
results show that, wireless home networks have adopted the
high-throughput 802.11n technology, and they are overall high
performing in terms of their PHY rates. This result corrobo-
rates previous studies that have been carried out at a smaller
scale [3]. We still identify instances of poor performance,
where we eliminate poor coverage to be their root cause.
We believe the overall good coverage can be explained by
the fact that the subscribers in our dataset are mostly urban
residents in the three largest cities of a European country
where apartment dwelling is the norm (rather than houses).
In the case of these poor performance episodes, we point to
interference as their likely cause. Since we use basic metrics
available in commodity gateways that can be collected at a
large scale, we cannot accurately quantify interference effects.
On the other hand, previous efforts have used metrics that can

uncover interference, but sacrifice wide deployability [2], [3].
Ideally, a combination of the two approaches is likely to be
fruitful in understanding wireless performance.

While we identify rare instances of “poor wireless”, anec-
dotally these are a common cause for helpdesk calls for ISPs.
From discussions with the ISP helpdesk operators and from
analyzing a small sample of helpdesk logs from our ISP, we see
that WiFi related calls are mostly unrelated to link performance
and instead relate to issues such as gateway misconfigurations,
authentication problems, etc. We plan to study these problems
in future work. Finally, our analysis of home wireless traffic
activity shows very low resource utilization across gateways
and WiFi devices. Overall, we consider our efforts an important
step to better understand wireless home networks.
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