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Abstract—The signal-to-noise ratio (SNR) is the gold standard
metric for capturing wireless link quality, but offers limited
predictability. Recent work shows that frequency diversity causes
limited predictability in SNR, and proposes effective SNR. Owing
to its significant improvement over SNR, effective SNR has
become a widely adopted metric for measuring wireless channel
quality and served as the basis for many recent rate adaptation
schemes. In this paper, we first conduct trace driven evaluation,
and find that the accuracy of effective SNR is still inadequate
due to frequency diversity and bursty errors. While common
wisdom says that interleaving should remove the bursty errors,
bursty errors still persist under the WiFi interleaver. Therefore,
we develop two complementary methods for computing frame
delivery rate to capture the bursty errors under the WiFi
interleaver. We then design a new interleaver to reduce the
burstiness of errors, and improve the frame delivery rate. We
further design a rate adaptation scheme based on our delivery
rate estimation. It can support both WiFi and our interleaver.
Using extensive evaluation, we show our delivery rate estimation
is accurate and significantly out-performs effective SNR; our
interleaver improves the delivery rate over the WiFi interleaver;
and our rate adaptation improves both throughput and energy.

I. INTRODUCTION

Motivation: The signal-to-noise ratio (SNR) is the gold

standard metric that captures the quality of a wireless link.

However, it is well known that it lacks predictable power

– the performance of a wireless link under the same SNR

can be dramatically different. This significantly complicates

a wide range of wireless network management tasks, such as

rate adaptation, scheduling, routing, and diagnosis.

Recently, [10] shows that the fundamental reason that SNR

fails to predict wireless performance is frequency diversity.

Due to frequency selective fading and narrow-band interfer-

ence, the signal-to-noise ratio across even a 20-MHz WiFi

channel can vary significantly. The frequency diversity is only

going to increase, as the channel width further increases in

order to satisfy explosive growth of traffic demands. Based on

this observation, [10] develops a new metric, called effective

SNR, which offers better predictability over SNR. Effective

SNR is computed by first getting SNR across each OFDM

subcarrier based on Channel state information (CSI), then

mapping SNR to BER for each subcarrier, and finally finding

the SNR that has the same BER as the average BER across

the subcarriers. Owing to its significant performance benefit

over SNR, effective SNR has become a widely adopted metric

for wireless channel quality and used as the basis for many

recent rate adaptation schemes (e.g., [10], [9], [15], [19]).

Our approach: While effective SNR improves over SNR, we

find that its accuracy in predicting wireless link performance

is still inadequate. This is because effective SNR only captures

average BER before FEC decoding, but for wireless decoders,

such as the widely used Viterbi decoder, not only does average

BER matter, but also the burstiness of corruptions is important.

For the same average BER, the frame delivery rate can vary

significantly depending on the burstiness of the corrupted bits.

A natural question is why we care about burstiness given

that interleavers are widely used in practical systems. How-

ever, we find the standard interleaver used in WiFi does not

completely remove the burstiness of corrupted bits. Using

the traces collected from WiFi networks via Intel WiFi Link

5300 (iwl5300) IEEE a/b/g/n wireless network adapters, we

show errors remain bursty even after interleaving. This is

because the existing interleaver spreads immediate neighbors

to 4 subcarriers apart, which may still experience bursty errors.

Motivated by this observation, we develop two methods

to estimate WiFi delivery rates under bursty errors. Our first

method estimates the delivery rate using the error patterns in

a frame as follows. We generate random error patterns based

on BER, slide a window over a frame, and use a lookup table

to determine the delivery rate of each sliding window based

on its error pattern. Then we compute frame delivery rate

by combining delivery rates of all relevant sliding windows.

Our second method applies machine learning to learn the

function that maps BER to the frame delivery rate. We use

neural network due to the non-linear relationship between the

two. Our two methods are complementary: the first approach

(i) provides insight on what leads to frame corruption, and

(ii) quickly generates lots of training data for the machine

learning approach without performing frame-level simulation;

the second approach is fast as it simply applies the learned

function to the input extracted from the received signals.

To further address the bursty errors, next we apply our

insights to design a better interleaver. Unlike existing inter-

leavers, our new interleaver takes advantage of CSI informa-

tion, and explicitly interleaves symbols to reduce bursty errors

and improve decoding rates.

In addition, due to inaccurate delivery rate estimation,

effective SNR may select an inappropriate rate. This motivates

us to develop a rate adaptation scheme based on our delivery

rate estimation. Our rate adaptation can work with different

interleavers, including both the WiFi and our interleavers.

Our contributions can be summarized as follow:

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE



• We use measurement to show that wireless errors remain

bursty even after applying the standard WiFi interleaver

(Section II). This may lead to inaccurate delivery rate es-

timation and sub-optimal performance in rate adaptation.

• We develop two complementary methods that compute

frame delivery rates in the presence of frequency diversity

and bursty errors. The first method gives insight into what

leads to frame corruption, and the second method is more

efficient (Section III).

• We design a new CSI-aware interleaver to reduce bursty

error and improve decoding rate (Section IV).

• We further develop a rate adaptation scheme based on

our delivery rate estimation. It is flexible and can support

different interleavers (Section V).

• Our evaluation shows that both our delivery rate estima-

tions are accurate and significantly out-perform effective

SNR. Moreover, our interleaver and rate adaptation built

on top of our estimation out-perform existing interleaver

and rate adaptation (Section VI).

II. MOTIVATION

Background: In OFDM, a channel is divided into multiple

orthogonal subcarriers, and the data is spread on to these

subcarriers for simultaneous transmission. Due to frequency

selective fading and narrow-band interference, the SNR of

these subcarriers vary across different frequencies.

The IEEE 802.11n standard specifies how to measure and

report channel state information (CSI). CSI is essentially a

collection of Kt × Kr matrices Hs, each of which specifies

amplitude and phase between pairs of Kt transmitting anten-

nas and Kr receiving antennas on subcarrier s. SNR relates

with amplitude A as follows: SNR = 10 log10(A
2/N), where

N denotes the average power of white noise. Following the

IEEE 802.11n, wireless network adapters (e.g., Intel WiFi Link

5300 (iwl5300)) report the CSI of a preamble in each frame.

WiFi interleaver: According to the IEEE 802.11 standard,

all data bits are interleaved by a block interleaver with a

block size corresponding to the number of bits in one OFDM

symbol [1]. For simplicity, we consider interleaving in a single

antenna case for illustration, and a similar performance issue

exists in MIMO cases. Let NCBPS denote the block size,

and NBPSC denote the number of coded bits per subcarrier.

The block interleaver is a two-step permutation procedure.

The first permutation step maps adjacent coded bits to non-

adjacent subcarriers. The second permutation maps adjacent

coded bits alternatively to less and more significant bits of the

constellation to avoid long runs of low reliability bits. Let k
denote the index of the coded bit before the first permutation,

i denote the index after the first permutation, and j denote

the index after the second permutation. The two permutation

steps are defined as follows, where k = 0, 1, ..., NCBPS − 1,

i = 0, 1, ..., NCBPS − 1, and s is determined by NBPSC

according to s = max(NBPSC/2, 1).

i = (NCBPS/13)(k mod 13) + floor(k/13)

j = s× floor(i/s) + (i+NCBPS − floor(13× i/NCBPS )) mod s

1 2 … 13

14 15 … 26

27 28 … 39

40 41 … 52

1 14 27 40 2 15 28 41 … 13 26 39 52

Fig. 1. The WiFi interleaver for BPSK.

Figure 1 shows the standard interleaver for BPSK. IEEE

802.11n has 52 data subcarriers, so there are 52 BPSK symbols

in each OFDM symbol. The interleaver stripes 52 bits by

placing them in a 4 × 13 grid row-wise and reading them

column-wise so that adjacent bits are spread 4 subcarriers

apart. It is quite likely SNR at these subcarriers still experience

similar performance, thereby resulting in bursty errors. This

effect persists under other modulation schemes: the adjacent

bits are still 4 subcarriers away and bursty errors still exist.

Trace collection: We analyze real WiFi traces to understand

their burstiness after interleaving. The traces were collected

from WiFi networks using Intel WiFi Link 5300 (iwl5300)

wireless network adapters. Three channel traces are from

static environments, and another three traces are from mobile

environments with human walking speed. The three mobile

traces are collected in an office environment using 1 moving

receiver and 3 static senders. The three static senders are 7m

away from each other. Each trace corresponds to one of the

three senders transmitting while the receiver is moved at a

walking speed. The NICs have three antennas, which are all

enabled in our measurement. The modified driver [11] reports

the channel matrices for 30 subcarrier groups, which is about

one group for every two subcarriers in a 20 MHz channel

according to the standard [1] (i.e., 4 groups have one subcarrier

each, and the other 26 groups have two subcarriers each). We

use 1000-byte frames, MCS-16, and a transmission power of

15 dBm. MCS-16 has 3 streams, so the NICs report CSI in

the form of 3 × 3 matrices for each frame. So altogether we

have traces of 27 static links and 27 mobile links.

Bursty errors: The IEEE 802.11n supports four types of FEC:

1/2 (i.e., half redundancy), 2/3 (i.e., one third redundancy),

3/4, and 5/6. So we focus on these FEC throughout this paper.

Figure 2 plots CDF of the gap between two consecutive errors

for 1/2 FEC. The results are similar for the other FEC. The

gaps in the WiFi interleaver have skewed distribution, with

a much larger fraction concentrated on the lower end than

the ideal interleaver, which equally spaces the error across a

frame. The gap in the ideal interleaver is not a constant due to

a varying number of errors in each frame. These results show

that the errors are still bursty under the WiFi interleaver.
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Fig. 2. CDF of gaps between two consecutive errors in bits when using the
WiFi interleaver and an ideal interleaver..



III. ESTIMATING DELIVERY RATE

Motivated by the bursty errors despite the use of the

standard WiFi interleaver, in this section we develop two

methods to estimate delivery rates and explicitly capture the

bursty errors. We focus on convolutional coding, the default

used in IEEE 802.11 a/b/g/n/ac. The convolutional code used

in WiFi takes data bits as input and generates coded bits that

do not include original data bits (i.e., non-systematic coding).

Either all bits in a frame are decoded or nothing is decoded.

A. Method 1: Lookup Table Based Estimation

Our first scheme randomly samples the error patterns based

on CSI, data rate, and interleaver. To achieve high efficiency,

we build a lookup table that maps an error pattern in a sliding

window to a delivery rate and then online computes the frame

delivery rate. Below we describe the detailed scheme.

1) Random sampling: The success rate of Viterbi decoding

is hard to model analytically (e.g., [22], [25]). Instead, we

can empirically compute the delivery rate for a given CSI

over many frames, and use the average delivery rate as the

estimation. Specifically, we can generate frames with random

payload, use the current data rate (i.e., modulation scheme and

FEC) and interleaver to map bits onto subcarriers, corrupt the

frames according to the CSI, and feed each corrupted frame to

the Viterbi decoder to derive the average frame delivery rate

after FEC decoding.

2) Overview: In order to achieve high accuracy of delivery

rate estimation, hundreds of frames are required. It is too

expensive to run Viterbi decoding on hundreds of frames

online. A natural approach is to run Viterbi decoding offline

and build a lookup table in advance. Note that this lookup

table takes error patterns as the input, so it is independent of

wireless channel or hardware, and we can use the same table

across all devices under all channel conditions.

Specifically, the table includes whether decoding is suc-

cessful for each error pattern (e.g., 0 or 1 sequence where

0 indicates no error in the bit and 1 indicates an error). For

example, one entry in the table for a given FEC may have

[110000011111000000, fail], which indicates that the frame

decoding fails if the bits in the frame (after de-interleaving at

the receiver) has the corruption pattern 110000011111000000.

Note that we only consider the bit corruption pattern, but not

the content of the frame in order to determine whether it

can be successfully decoded, because the frame content is not

available a priori and the impact of frame content on delivery

rate is much less significant than the error patterns.

A major challenge is what should be the index for the

lookup table in order to achieve high accuracy and efficiency.

Using an error pattern for an entire frame is prohibitively ex-

pensive since there are 2FrameSize error patterns. We develop

a sliding-window-based lookup table approach to enhance

efficiency. Specifically, the lookup table is built in advance,

and a receiver performs the following steps online:

1. uses the current data rate and interleaver to determine

which subcarrier each bit is assigned to;

2. estimates the SNR of each subcarrier using a preamble;

3. determines BER or joint error probability based on the

modulation and SNR of the assigned subcarrier;

4. generates random samples of error patterns based on BER;

5. looks up tables to determine the decoding success rate for

each error pattern in a sliding window;

6. estimates frame delivery rate based on delivery rates of

relevant sliding windows for each sampled frame;

7. estimates the delivery rate as the average frame delivery

rate over all randomly sampled frames.

Steps 1), 2), 4) and 7) are either standard or straight-forward,

so below we focus on steps 3), 5), and 6).

3) Mapping SNR to BER: Mapping SNR to BER is an

important step in many wireless schemes, including effective

SNR. We improve the accuracy of existing mapping by

capturing that (i) different bit positions in QAM experience

different BER under the same SNR and (ii) there is correlation

between BER of different bits in the same symbol. This

contribution is useful to many wireless schemes, including

other rate adaptation schemes.

Fig. 3. Constellation points for QAM-16 with bits b1b2b3b4

We use the standard formulas to compute BER in BPSK

and QPSK: Q(
√
2snr) for BPSK and Q(

√
snr) for QPSK.

We find that the standard formulas do not work for QAM

for two reasons. First, different bits in QAM may experience

different BER. As shown in Figure 3, the symbols that differ

in bits 1 or 3 have larger minimum distance than those that

differ in bits 2 or 4. So BERs of bits 1 and 3 are lower than

those of bits 2 and 4. We empirically find that the BERs of

bits 1 and 3 match well with 1

2
Q(

√

snr/5), and BERs of bits

2 and 4 match Q(
√

snr/5). The corresponding functions for

QAM-64 are 1

4
Q(

√

snr/21) for bits 1 and 4, 1

2
Q(

√

snr/21)

for bits 2 and 5, and Q(
√

snr/21) for bits 3 and 6.
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Fig. 4. Joint error probabilities of 2-bits.



Moreover, we find the bits in QAM have considerable

correlation. Figure 4 compares the joint error probability of

two bits from real traces versus estimation based on indepen-

dence assumption. The estimated joint error deviates from the

independence assumption for bits 1, 2 and bits 3, 4, whereas

the match is good for the other 2-bit combinations. The gap for

bits 1,2 and bits 3,4 indicate negative correlation between these

bits. A closer look at Figure 3 reveals that if bit 1 is correct, bit

2 is incorrect when the received symbol is over r/2 away from

the transmitted symbol, where r is the horizontal or vertical

separation between two adjacent symbols; if bit 1 is incorrect,

bit 2 is incorrect when the received symbol is over r away

from the transmitted symbol. The same reasoning applies for

bits 3 and 4. Moreover, using similar analysis, we find that the

bits 1 and 2 are independent of bits 3 and 4. Based on these

observations, we map SNR to joint error probability of bits 1,

2 and bits 3, 4. This is achieved as follow: for each SNR,

we generate random symbols, go through modulation and

demodulation to determine error patterns, and then compute

average probability of error patterns 00, 01, 10, and 11. This

yields a lookup table that maps SNR to the probability of

having error patterns 00, 01, 10, and 11. We conduct similar

analysis for QAM-64, and find bits 1, 2, and 3 are correlated,

so are bits 4, 5, and 6, whereas bits 1, 2, 3 are independent of

bits 4, 5, and 6. Therefore we generate a similar lookup table

that maps SNR to the probability of any 3-bit error pattern.

4) Building a lookup table for a sliding window: Due to

finite state space of the convolutional code, the impact of errors

does not propagate beyond a certain point. Therefore, we can

use a sliding window to capture impact of errors. The sliding

window size depends on the type of FEC. We empirically

derive the window size for different FEC codes by gradually

increasing the window size until a further increase offers little

improvement in the delivery rate estimation. We find that the

window size is 75 bits for 1/2 FEC, 50 bits for 2/3 and 3/4

FEC, and 40 bits for 5/6 FEC. Therefore, instead of building

a lookup table for entire frames, we build a lookup table for

a sliding window with different error patterns.

Pruning the table: Building a table for a sliding window

is still too expensive since there are 2winSize error patterns,

where winSize is the sliding window size. Interestingly, after

analyzing the delivery rate of different error patterns, we

observe that whenever the number of errors is lower than

lowThresh in the window, the Viterbi decoding is always

successful; whenever there are more than highThresh errors,

the decoding fails almost all the time; only when the number

of errors is in between, the decoding error varies according

to the error pattern. This is consistent with our expectation of

FEC decoding. We empirically find lowThresh are 5, 3, 2,

and 2 for 1/2, 2/3, 3/4 FEC, and 5/6 FEC, respectively, and the

corresponding highThresh are 11, 5, 4 and 4, respectively.

When the number of errors is below lowThresh, the decoding

failure rate of a sliding window is within 1.65%. When the

number of errors is above highThresh, the decoding failure

rate of a sliding window is above 67% for 1/2, 96% for 2/3,

and even higher for 3/4 and 5/6. We choose highThresh for

1/2 to have smaller corresponding error rates to reduce storage.

In practice, due to multiple sliding windows within a frame,

46% decoding error of a sliding window will likely result in

decoding error of a frame. Based on these thresholds, we build

lookup tables for the middle cases (i.e., 5-11 errors for 1/2

FEC, 3-5 errors for 2/3 FEC, and 2-4 errors for both 3/4 FEC

and 5/6 FEC).

Taking into account position of the sliding window: For

the middle cases where the number of errors is not too high

or too low, the decoding rate depends on not only the error

pattern but also the position of the window. For example, when

using 1/2 FEC, the decoding rate of an error pattern varies

according to whether the first error bit in the sliding window

resides at an odd or even offset in the original frame (not the

offset in the sliding window). This is illustrated in Figure 5,

which shows the delivery rates of three error patterns as we

move the error patterns to start at varying locations from 30

to 40. As shown in Figure 5(a), the decoding rate of an error

pattern with 5 erroneous bits represented by the black line in

the figure is 0 if it starts from an odd offset and 0.85 if it

starts from an even offset. When using 2/3 FEC, the decoding

rate of an error pattern varies depending on the offset modular

3, as shown in Figure 5(b). For instance, the decoding rate of

an error pattern represented by the red curve, which has 4

bits in error, is 0.75, 0, and 0.55, respectively, as the offset

modular 3 varies from 0 to 2. Similarly, the decoding rate

varies with the offset modular 4 for 3/4 FEC, and varies with

the offset modular 6 for 5/6 FEC. The cycles in the delivery

rate patterns correspond exactly to the number of bits in the

puncturing pattern for each convolutional code (e.g., 1/2 FEC

has a puncturing pattern of [1 1], 2/3 FEC has a pattern of

[1 1 1 0], 3/4 FEC has a pattern of [1 1 1 0 0 1], and 5/6

FEC has a pattern of [1 1 1 0 0 1 1 0 0 1]) [1]. Therefore,

we maintain 2 lookup tables for 1/2 FEC, 3 lookup tables for

2/3 FEC, 4 lookup tables for 3/4 FEC, and 6 lookup tables

for 5/6 FEC. For each sliding window, we find the first error

in the window, and identify its offset in the original frame to

select the appropriate table to look up.

Supporting a large sliding window: Using the above tech-

niques, we can reduce the lookup tables for 2/3, 3/4, and 5/6

FEC to reasonable sizes. The sliding window for 1/2 FEC

has 75 bits, and the number of errors in the middle cases

ranges from 5 to 11. The corresponding lookup table sizes are

still too large. To further reduce the table build-up time and

storage cost, instead of using a sliding window of 75, we split

the window into two parts: 40 bits and 35 bits. We enumerate

error patterns in the first 40 bits, but only consider the number

of errors in the next 35 bits (as opposed to the exact error

patterns) to reduce the cost. This yields a 2-dimension lookup

table, where the first dimension is the error pattern in the first

40 bits and the second dimension is the number of errors in

the next 35 bits. In our implementation, the first window has

error patterns involving 4-7 errors, whereas the second window

has up to 6 errors. To further reduce the overhead, we only
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(d) 5/6 FEC

Fig. 5. The decoding success depends on not only the error pattern in a
sliding window, but also where the error pattern starts in a frame. Different
curves correspond to different error patterns in a sliding window. They are
shifted to different offsets in a frame.

consider the second window when the first window has 4 or 5

errors. When the first window has 6 or 7 errors, the delivery

rate is already low and the second window has little impact.

So the total lookup tables for all FEC schemes is around 58

MB before compression and 8 MB after compression, which

is affordable given 1 GB RAM in iPhone 5 and 6.

5) Estimating frame delivery rate: How to compute the de-

livery rate for a frame, which spans multiple sliding windows?

One approach is to approximate it using a product of delivery

rates over all sliding windows because all the sliding windows

should succeed in order for a frame to succeed. However,

since the delivery rates over adjacent sliding windows are not

independent, this approximation is inaccurate.

To improve the accuracy, we avoid counting the same error

pattern multiple times as the window slides. More specifically,

we move the starting position of the sliding window to the first

error and look up the delivery rate based on the error sequence

within this window. Next, we move the sliding window to start

from the next error. If any new error appears in the window,

we look up the probability of error for the new pattern. If no

new errors appear, we ignore the current sliding window and

move the next sliding window to start from the next error and

repeat the process until we have gone over all the errors. The

product of delivery rates across all such windows gives us the

final frame delivery rate estimate.

B. Method 2: Machine Learning Based Estimation

Our second method uses machine learning to estimate

delivery rate based on the CSI. The advantage of this method is

that the online computation is fast once we learn the function

offline. Our main tasks involve selecting appropriate features

and a machine learning algorithm. A natural choice of features

are SNRs across all subcarriers. However, this requires us

to learn a new delivery rate function for each modulation

and FEC. Moreover, mapping from SNR to BER is quite

involved, as shown in Section III-A3, and not easy to learn.

Since BER has more direct relationship with the frame delivery

rate, we leverage our domain-knowledge to map SNR to BER,

as described in Section III-A3, and use BER for each bit as

features to map to the frame delivery rate. Due to the use

of OFDM and the nature of frequency diversity, BER per bit

repeats every OFDM symbol. So we use BER for each bit in an

OFDM symbol as the feature set. We choose neural network

as the machine learning algorithm. The advantage of using

neural networks is that they can approximate any function with

arbitrary accuracy [6], [14], which is appropriate as the frame

delivery rate functions are non-linear.

We use a feed-forward artificial neural network model called

multi-layer perceptron (MLP) [4] that maps BER per bit to

frame delivery rate. An MLP consists of multiple layers of

nodes, where each layer is fully connected to the next layer.

The first layer of nodes is called input layer, and the last layer

is called the output layer. The intermediate layers are called

hidden layers. Each node corresponds to a neuron, with a non-

linear transfer (activation) function. Following the common

practice, we use ‘mapminmax’ to normalize the inputs, use

‘sigmoid’ transfer function for hidden layers [12], and use

‘purelin’ as the output transfer function. The neural network

is trained using Levenberg-Marquardt algorithm [8].

We vary the number of hidden layers from 1 to 10, and the

number of neurons in each hidden layer from 5 to 25. The

accuracy of using 1 hidden layer is noticeably worse than

multiple hidden layers, and the accuracy of 5 neurons per

hidden layer is noticeably worse than 10 or more neurons.

As long as multiple layers and 10 or more neurons are used,

the performance is comparable. We use 5 hidden layers and

20 neurons in each hidden layer since it slightly out-performs

the other configurations involving multiple layers and 10 or

more neurons.

The remaining issue is how to generate the data for training.

We get traces from real WiFi networks and synthetic traces

generated using IEEE 802.11n TGn channel model [7]. IEEE

802.11n channel models have six profiles, including flat chan-

nel, indoor residential, residential/office, typical office, large

indoor and outdoor open spaces. We use all profiles to generate

channels to capture a wide range of wireless link conditions.

These traces generate SNRs across subcarriers, which we then

use for frame-level simulation to determine the frame delivery

rate. To further speed up training data generation, we also use

lookup table based approach in Section III-A to generate part

of the training data, and find it is much faster than frame-

level simulation with only a slight increase in the error. We

then partition the 15000 CSI values (half from the real traces

and half from the channel model) into two thirds for training

and one third for testing.

C. MIMO Extension

To support MIMO diversity, we use the CSI values to derive

the post-processed SNR (pp-SNR) values for each subcarrier

under each supported transmission configuration to capture the

effect of MIMO processing. In MIMO, since a transmitted

symbol is received on multiple antennas, the final SNR ex-

perienced by the symbol is the combination of the multiple

receptions and the combined SNR dictates whether it will be



decoded correctly. We apply standard formulas to compute pp-

SNR in MIMO based on the original CSI [16]. Then we derive

BER according to pp-SNR as in Section III-A3. The remaining

processing, including mapping pp-SNR to BER and mapping

BER to frame delivery rate, is the same as SISO.

In MIMO multiplexing, a sender stripes a frame across

multiple antennas and transmits the multiple streams simul-

taneously. Different streams experience different channel loss

depending on their transmitter and receiver pairs. Therefore, to

support MIMO multiplexing, we determine to which antenna

and subcarrier each symbol is assigned for a given interleaver

and calculate pp-SNR according to MIMO multiplexing. The

remaining processing is again the same as SISO.

IV. OUR NEW INTERLEAVER

Next we propose a CSI-aware interleaver. The receiver feeds

back the CSI according to the IEEE 802.11n standard. Instead

of blindly interleaving the bits regardless of the channel con-

dition, the sender uses our new interleaver to spread erroneous

bits as far apart as possible to reduce bursty errors and improve

decoding rate. The interleaving pattern does not need to be

transmitted, since the sender can indicate the latest sequence

number of the data frame that it receives the CSI feedback

and the receiver stores the CSI of the last few frames and uses

the corresponding CSI for interleaving. Since the interleaving

computation is very fast (e.g., 27µs in C++ implementation),

the interleaving can be re-computed upon every CSI update.

Our interleaver sorts the bits in a decreasing order of BER.

The bits are spread onto the OFDM subcarriers to maximize

the distance between the high error bits as follows:

• Following the standard interleaver, we create a table of

size r× c, where r is the number of bits per symbol based

on the modulation and c is the number of subcarriers.

• But different from the standard interleaver, we sort the

bits and re-arrange the sorted bits in column-wise from

top to bottom in the table. For example, the highest BER

is at (1,1), the second highest BER is at (2,1), and so on.

• Next we re-arrange the columns to maximize the distance

between the columns with high BER. We keep the first

column at its initial location, move the second column

to the center column so that the distance between the

two highest BER columns are separated by c/2. Note

that moving the second highest error column to the last

column is not good since it will be close to the highest

error bit in the next OFDM symbol. Then we use the

first, center, and last columns as anchors, and calculate

the middle columns between them and place the next two

worst columns at these column indices (e.g., the third worst

column is moved to round(c/4)-th column, and the fourth

worst column is moved to round(3c/4)-th column). This

process continues recursively until all locations have been

filled. In this way, the columns with larger BERs have

larger separation between them. One caveat in this step is

that since we observe the delivery ratio depends on the

exact offset as shown in Figure 5, we shift the columns

around to avoid occupying bad offsets. For example, in

1/2 FEC, an error starting at an even offset is worse. So

whenever the calculated offset is even, we shift it up or

down by 1 column as long as that column is not occupied.

If the nearby columns are both occupied, we just place it at

the originally computed column. Since we place columns

in a decreasing order of BER, we minimize the chance of

placing the worst few bits at bad offsets.

• Finally, we read the table row-wise and map the bits to the

subcarriers sequentially, where each subcarrier is assigned

the number of bits the modulation can support. This step is

similar to the standard interleaver to reduce bursty errors.

V. RATE ADAPTATION

In this section, we develop rate adaptation that takes ad-

vantage of our enhanced delivery estimation and interleaver.

The receiver first extracts Channel State Information (CSI)

from the preamble of the previous frame, computes delivery

ratio for each rate as described in Section III, and selects the

rate that maximizes the total throughput (i.e., maximizing the

product of maximum capacity and the delivery ratio) and feeds

it back to the sender to use for the next transmission. To reduce

computation cost, we may search the data rates close to the

current rate instead of all possible rates.

Our rate adaptation works with both the standard WiFi

interleaver and our enhanced interleaver. When our interleaver

is used, we use CSI to derive an appropriate interleaving as

described in Section IV, based on which we derive BER after

de-interleaving, estimate frame delivery rate, and select the

rate that maximizes throughput.

Data rates not only affect the throughput, but also impact

energy consumption by changing the transmission or reception

time. When energy is used as an objective, we can compute

energy based on our delivery model and an energy model.

Specifically, we first use the approaches in Section III to

compute the delivery rate and estimate expected transmission

time (ETT), which denotes how long it takes to successfully

deliver a frame on average. Then we plug ETT into the energy

model in [16] to obtain the transmission or receiving energy

under a given data rate. [16] reports that transmission energy

and receiving energy are both linear functions of ETT; the

coefficients depend on the type of wireless cards and can be

determined in advance using measurements. Then we select

the data rate that results in the minimum energy.

VI. PERFORMANCE EVALUATION

A. Evaluation Methodology

In this section, we use trace driven simulation for our eval-

uation. We use both real traces collected from Intel WiFi Link

5300 wireless card (Section II), and synthetic traces generated

using IEEE 802.11n TGn Channel models (Section III). We

first compare the accuracy of our delivery rate estimation with

effective SNR. Then we compare our interleaver with the WiFi

interleaver. Finally, we compare the throughput and energy of

our rate adaptation with effective SNR when applied to either

the WiFi interleaver or our interleaver.



B. Performance Results

Accuracy of delivery rate estimation: We first evaluate the

accuracy of our delivery ratio estimation by comparing with

the ground truth. The delivery ratio is estimated for a range of

CSI from the collected traces. As in the previous works (e.g.,

[2]), we uniformly scale CSI across all subcarriers to maintain

the same frequency diversity. We choose different factors

for each MCS (Modulation and FEC) in order to cover the

complete range of delivery ratio values from 0 to 100%. The

ground truth delivery ratio is calculated by transmitting and

decoding 100 frames for each scaled CSI. The ground truth is

calculated for both the WiFi interleaver and our interleaver.

Figure 6(a) plots the CDF of delivery ratio estimation error

using the CSI values for 20 MHz channels from real and

synthetic traces not used for training the neural network.

Figure 6(b) summarizes the results for 40 MHz channels.

Both figures compare the delivery ratio estimation errors

of (i) effective SNR using the WiFi and our interleavers,

(ii) lookup table based estimation using both interleavers,

and (iii) machine-learning (ML) based estimation using both

interleavers.
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Fig. 6. Comparison of delivery rate estimation across all FEC.

We make several observations. First, our two delivery ratio

estimation schemes are both accurate for the WiFi and our

interleavers. In 20 MHz channels, the average error of both

our schemes is around 3 − 5%. The lookup scheme exceeds

10% error for 5% and 6% under WiFi and our interleavers,

respectively. The corresponding numbers for the ML scheme

are 11% and 3%, respectively.

For 40 MHz channels, the lookup scheme has average errors

of 4.5% and 3% for WiFi and our interleavers, and the ML

scheme has average errors of 6% and 3%, respectively. The

lookup scheme exceeds 10% error for 9% and 4% under WiFi

and our interleaver, respectively. The corresponding numbers

for the ML scheme are 18% and 2.5%, respectively.

The ML scheme shows good accuracy and has only a slight

performance degradation compared to the lookup scheme. Due

to its fast speed and similar estimation error, the ML is the

preferred scheme for practical use.

In comparison, the estimation error of effective SNR is

much higher: its average errors are 11% and 27% for the WiFi

and our interleavers, respectively. For 20 MHz channels, its

estimation error exceeds 10% for 41% under the WiFi inter-

leaver and 77% under our interleaver. For 40 MHz channels,

its error exceeds 10% for 42% under the WiFi interleaver, and

78% under our interleaver. There is much higher variability in

effective SNR. The error varies significantly across different

channel widths, across different interleavers, and even across

different runs under the same settings. The effective SNR

has larger estimation error with our interleaver because it is

tailored to the WiFi interleaver and cannot take advantage

of an enhanced interleaver, whereas our estimation schemes

can incorporate any interleaver as an input to achieve high

accuracy.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Dratio Error

C
D

F

 

 

EffSnr w/ WiFi Int.
EffSnr w/ Our Int.
Lookup w/ WiFi Int.
Lookup w/ Our Int.
ML. w/ WiFi Int.
ML. w/ Our Int.

(a) 1/2 FEC

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Dratio Error

C
D

F

 

 

EffSnr w/ WiFi Int.
EffSnr w/ Our Int.
Lookup w/ WiFi Int.
Lookup w/ Our Int.
ML. w/ WiFi Int.
ML. w/ Our Int.

(b) 2/3 FEC

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Dratio Error

C
D

F

 

 

EffSnr w/ WiFi Int.
EffSnr w/ Our Int.
Lookup w/ WiFi Int.
Lookup w/ Our Int.
ML. w/ WiFi Int.
ML. w/ Our Int.

(c) 3/4 FEC
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Fig. 7. Comparison of delivery rate estimation under different FEC.

Figure 7 compares the accuracy for each FEC separately

in 20MHz. For each FEC, we consider only the modulations

supported by IEEE 802.11n for that FEC. For 1/2 FEC, the

lookup scheme has average errors of 4% and 3.5% for WiFi

and our interleavers, respectively. The average errors of the

ML scheme are 4.5% and 2% for the two interleavers, respec-

tively. For 2/3 FEC, the lookup scheme has an average error

of 4.5% and 4% for WiFi and our interleaver, respectively. The

corresponding numbers for ML are 7% and 3%, respectively.

For 3/4 FEC, the lookup scheme has average errors of 4% and

3.5% for WiFi and our interleavers, respectively. The average

error of the ML are 4.5% and 2.5% for the two interleavers,

respectively. For 5/6 FEC, the lookup scheme has an average

error of 4% for both interleavers. The average errors of the

ML are 4% and 3% for the two interleavers, respectively.

In contrast, effective SNR has significant variation across

FEC and interleavers. For example, in 1/2 FEC, effective SNR

yields an average error of 15% for WiFi interleaver and 58% of

the time has error exceed 10% . For our interleaver, the average

error increases to 21%, and 78% of time has error exceed 10%.

For 3/4 FEC, the average errors of effective SNR become 8%
and 39% for the WiFi and our interleaver, respectively; and

the percentage of cases over 10% error are 27% and 87% for

the WiFi and our interleavers, respectively. Its average error

for 5/6 FEC is 6% and 14% for the WiFi and our interleaver,

respectively, and 21% and 48% of cases have errors exceed

10% for the WiFi and our interleavers. Effective SNR sees

lowest error in 5/6 FEC because it can only tolerate very few

errors and error patterns are less important in this case.

In general, large variable errors in effective SNR introduce

significant uncertainty for wireless network optimization. In



comparison, our estimators are more stable across all sce-

narios. It can significantly ease network optimization and

management, and improve network predictability.
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Fig. 8. Comparison of interleavers under all rates.

Comparison of interleavers: Figure 8 compares the per-

formance of our interleaver with the WiFi interleaver. The

throughput is obtained for each interleaver by transmitting

and decoding 100 frames for each CSI. The throughput is

calculated for a wide range of CSI values as before. Overall,

our interleaver increases the throughput over the WiFi inter-

leaver by 18% in 20 MHz channels, and by 23% in 40 MHz

channels. We expect the improvement will increase further as

wider channels are used (e.g., in IEEE 802.11 ac).
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Fig. 9. Comparison of interleavers under different FEC.

Figure 9 shows the interleaver performance for each FEC

separately. Our interleaver out-performs the WiFi interleaver

by 8.5%, 13%, 37% and 3.5% for 1/2, 2/3, 3/4 and 5/6 FEC,

respectively. We see the highest improvement in 3/4 because

our interleaver does a good job in spreading errors apart. Since

1/2 FEC is able to tolerate more errors, it is more robust

to bursty errors. At the other end, 5/6 FEC incurs decoding

failures even when there are only two errors in a sliding

window, which gives less opportunities for our interleaving

to optimize. In comparison, the error patterns matter more for

3/4 FEC, so it benefits most from spreading the most erroneous

bits apart by our interleaver.

Comparison of rate adaptation schemes: Finally, we evalu-

ate the benefit of our rate adaptation that leverages our delivery

rate estimation and interleaver. For ease of illustration, we

select two links: a 20 MHz link and a 40 MHz link. The other

links exhibit similar performance, and their results are omitted
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Fig. 10. Throughput comparison of rate adaptation schemes.

in the interest of brevity. Figure 10 shows the rate curves of

each scheme for these links. We obtain the rate curves as

follow. We impose different scaling factors for each trace and

obtain throughput from different schemes. We then plot the

sorted throughput for each scheme in the figure. In all cases,

the rate for the next transmission is selected using the CSI of

the previously received frame. Our scheme shows significant

throughput improvement around the rate transition regions

(i.e., the boundary between two rates): the improvement ranges

between 5–75%. During the non transition regions (i.e., the

regions that are far from the boundaries), the improvement is

much smaller since the available rates are coarse-grained: two

adjacent rates differ by at least 3 dB and it is hard to get

close to 3 dB gain just by improving delivery rate estimation

and interleaving. The benefit of our scheme will increase with

more available rates. In addition, comparing the results from

20 MHz with those from 40 MHz, we observe larger benefit

of our rate adaptation in 40 MHz channels due to stronger

frequency diversity in a wider channel and larger benefit of

our interleaver by spreading high error bits farther apart.
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Fig. 11. Transmission energy comparison of rate adaptation schemes.
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Fig. 12. Receiving energy comparison of rate adaptation schemes.

Finally, we compare the energy consumption of rate adapta-

tion. The data rate affects energy by changing the time it takes

to transmit or receive a frame. The longer it takes, the more

energy a sender/receiver will consume. We assume the access

point (AP) will run the rate adaptation scheme, regardless if

the AP is transmitting or receiving. If the AP is transmitting,

the AP selects the rate that saves the client’s receiving energy.

If the AP is receiving, the AP selects the rate that saves the

client’s transmission energy, and feeds the selected rate back



to the client to use for the next transmission. We use the

energy model in [16] to derive the client’s energy consumption

based on expected transmission time (ETT) under different rate

adaptation schemes.

Figure 11 and 12 compare transmission and receiving en-

ergy of different schemes, respectively. As we would expect,

similar to the throughput results, the energy improvement

takes place around the rate transition regions, where our

rate adaptation reduces transmission energy by 10%–35% and

reduces receiving energy by 9%–32% over the effective SNR

with the WiFi interleaver. As more rates become available, the

gain of our schemes will further increase.

VII. RELATED WORK

Rate adaptation has received significant research attention

(e.g., [3], [5], [10], [18], [21], [13], [20], [23], [24]). Several

rate adaptation schemes use loss rates for rate selection. For

example, SampleRate [3] uses probes to select the rate that

minimizes the expected transmission time. ONOE [18] in

MadWiFi estimates long-term loss rate and uses thresholding

for rate selection. RRAA [24] uses a short-term loss rate

estimation to compute the throughput and select the rate. Loss

rates require a significant number of transmissions in order to

measure accurately, so it cannot keep up with the changing

wireless channel.

SNR-based scheme is attractive because one can select rate

based on SNR of a single frame. The traditional SNR based

scheme uses average SNR to select the data rate, and is

well known to yield inaccurate selection. More recently, [10]

proposes effective SNR based rate adaptation, and shows it

improves delivery rate estimation and resulting throughput.

There are a number of approaches that leverage physical

layer information. For example, SoftRate [23] develops a

rate adaptation that uses PHY-layer hint. [21] leverages the

dispersion between the transmitted and received symbols to

derive the rate at which the frame could have been transmitted.

It focuses on the impact of modulation on delivery rate and

does not consider the FEC, which is our focus.

The work closest to ours is [17], which computes packet

delivery rate using a metric, called error event probability

(EVP). Our independently-developed lookup based approach

is close to EVP based approach in spirit, though differs in

details. We also advance [17] by using machine learning to

significantly speed up the calculation and developing a CSI-

aware interleaver to explicitly minimize bursty errors.

VIII. CONCLUSION

Achieving predictability in wireless performance has been

an elusive goal even with complete channel information.

This paper reveals an important factor that causes significant

variability in wireless performance – significant bursty errors

despite the use of an interleaver. We develop two delivery

rate estimation techniques that explicitly take into account the

bursty errors and improve estimation accuracy. In 20 MHz

channels, their average errors are around 3 − 5% and exceed

10% in only 3%–11% of the cases. The ML is a practical and

accurate scheme due to its efficiency. In comparison, effective

SNR has an average error of 11− 27% and has error exceed

10% for 41%–77% of the cases. The improved accuracy of our

estimator allows us to more effectively optimize and manage

wireless networks. We further develop a new interleaver to

reduce the bursty error, and a rate adaptation scheme that

incorporates both enhanced delivery rate estimation and inter-

leaver. Our evaluation shows these approaches are effective

in improving the predictability, throughput, and energy of

wireless networks.
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