
Avoiding the Rush Hours:
WiFi Energy Management via Traffic Isolation

Justin Manweiler
Duke University

Durham, NC, USA
jgm@cs.duke.edu

Romit Roy Choudhury
Duke University

Durham, NC, USA
romit.rc@duke.edu

ABSTRACT
WiFi continues to be a prime source of energy consumption in
mobile devices. This paper observes that, despite a rich body
of research in WiFi energy management, there is room for
improvement. Our key finding is that WiFi energy optimiza-
tions have conventionally been designed with a single AP in
mind. However, network contention among different APs can
dramatically increase a client’s energy consumption. Each
client may have to keep awake for long durations before its
own AP gets a chance to send packets to it. As the AP density
increases in the vicinity, the waiting time inflates, resulting in
a proportional decrease in battery life.

We design SleepWell, a system that achieves energy efficiency
by evading network contention. The APs regulate the sleep-
ing window of their clients in a way that different APs are
active/inactive during non-overlapping time windows. The
solution is analogous to the common wisdom of going late to
office and coming back late, thereby avoiding the rush hours.
We implement SleepWell on a testbed of 8 Laptops and 9 An-
droid phones, and evaluate it over a wide variety of scenarios
and traffic patterns (YouTube, Pandora, FTP, Internet radio,
and mixed). Results show a median gain of up to 2x when
WiFi links are strong; when links are weak and the network
density is high, the gains can be even more. We believe Sleep-
Well is a desirable upgrade to WiFi systems, especially in light
of increasing WiFi density.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
802.11, AP, Beacon, Contention, PSM, Scheduling, WLAN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’11, June 28–July 1, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

1. INTRODUCTION
Energy management in mobile devices continues to be a
relevant problem. The problem is becoming pronounced,
especially with the always-connected usage model of modern
devices. Smartphones, for instance, are rapidly becoming the
convergent platform for a large variety of network applica-
tions, including emails, music, videos, games, web browsing,
and picture sharing [5, 13, 14]. In addition, background
applications are continuously running push-based alert ser-
vices [25], location based notifications [27], and periodic
sensor updates [17]. This growth in network traffic is be-
ginning to impose a heavy demand on the phone battery, to
the extent that some users are already expressing dissatisfac-
tion [10]. The inability to cope with the energy demands can
be serious, and may even hinder the steady growth in the
mobile computing industry.

WiFi network communication is a predominate source of en-
ergy consumption. This has been well known for many years,
and a rich body of research has addressed the problems in
various ways. For example, WiFi Power Save Mode (PSM) [1]
is one of the early protocols that attempts to turn off the de-
vice whenever beneficial. While WiFi energy efficiency has
progressively improved since PSM (with the most recent
NAPman protocol [24] offering substantial gains), we find
that there is still opportunity for improvement. We describe
this opportunity by first describing the core ideas in PSM and
NAPman, and then identifying their respective deficiencies.

Consider the scenario in which a WiFi AP intends to communi-
cate to a battery-operated mobile client. With WiFi PSM, the
client periodically wakes up to listen to advertisements from
the AP. The advertisements include client identifiers for which
the AP has queued packets. If a client C learns that the AP
has packets for C, it wakes up the entire radio; otherwise, it
continues sleeping in the low power state. Importantly, wak-
ing up the radio incurs a high energy cost, and hence, it is
unproductive if the client downloads only a few packets af-
ter waking up. Therefore, to amortize the wake-up cost, PSM
clients are made to wake-up less frequently, permitting mul-
tiple packets to queue up at the AP. Of course, such queuing
introduces latency in PSM packet delivery. Nevertheless, since
a large number of mobile applications (email, buffered video,
push updates) are reasonably tolerant to latency, PSM cor-
rectly takes advantage of it. In current Nexus One phones
running Android, the WiFi PSM mode wakes up in the orders
of 300ms to download bursts of packets. This is a judicious
design decision, with proven energy benefits.

Recently, authors in NAPman [24] showed the possibility of
improvements with PSM. The core observation is that multi-
ple clients (associated to the same AP) may wake up after an
AP advertisement, and expect to receive their respective burst
of packets. However, since the AP can transmit one packet
at a time (in a round robin manner to each client), every
client must remain awake for a longer duration to receive its
packets. This is a source of energy wastage, and NAPman
mitigates this through virtualized APs. Briefly, the key idea is
to make each client believe that it is associated to a different
AP, and thus, have their wake up windows staggered over
time. The ideas from NAPman offer energy gains, while also
improving the fairness among PSM and non-PSM clients.

We observe that NAPman improves PSM in the cases where
an isolated AP is connected to multiple clients. In reality,
multiple APs are within the wireless vicinity, and this strongly
impacts the energy consumption of individual clients. Specif-
ically, when a PSM client wakes up to download its own burst
of packets, it has to share the channel with all other clients of
all other APs in the vicinity. In homes or dense office areas, it
is not unusual to overhear 5 to 10 other APs. Since the APs are
likely to share the channel fairly between them, it is possible
that a client remains awake almost 5 times longer, than it
would if there was no contention with other APs. Thus, the
energy wastage during network activity can be 5 times, and
even more if other APs have multiple clients associated to
them. We believe that PSM and NAPman can be significantly
improved if the energy-wastage from network contention is
alleviated. Mitigating network contention from the energy
perspective is a relatively unexplored space, especially in the
face of emerging applications and usage patterns. SleepWell
is tasked to investigate and solve this problem.

The core idea in SleepWell is simple1. Briefly, since APs are
always powered on, they monitor ongoing wireless traffic
from nearby APs. Since PSM creates periodic bursts of traffic,
each AP tracks the periodicity of other APs, and dynamically
re-schedules its own period to minimally overlap with others.
Reduced overlap reduces competition, allowing each client
to download its own packets uninterrupted, and sleep when
the channel is occupied by other transmissions. This bears
resemblance to a distributed TDMA scheme, but executed
with energy-efficiency in mind.

The main design challenges in SleepWell appear from: (1)
distributedly scheduling traffic bursts to achieve quick con-
vergence, (2) ensuring clients do not get disassociated during
dynamic rescheduling, and (3) preserving channel utilization,
latency, and fairness, even under traffic variation and node
churn. SleepWell addresses these systematically, while requir-
ing no software changes at the client. By carefully modifying
the timestamps (as a part of the WiFi clock synchroniza-
tion process), the SleepWell AP regulates the client’s sleep
and wake-up schedules. The client remains unaware of the
changes in its own duty cycle; neither does it get disassoci-
ated. 802.11a/g/n standard-compatibility remains intact.

We have implemented SleepWell on a testbed of 8 laptops and
9 Nexus One phones running the Android OS. Performance

1We rejected a number of involved designs, thereby poten-
tially trading off some performance for standard-compliance
and scalability.

results show that energy reductions vary between 38% to
51%, across a variety of real online applications, including
YouTube, Pandora and Last.fm Internet radio, and TCP bulk
data transfer (e.g, FTP). Moreover, as the quality of links
degrade, i.e., each packet is transmitted at lower bit rates
(longer time), the relative energy gains improve. In light of
these results, we believe that SleepWell may be an effective
solution for the future, not only to sustain a demanding suite
of applications, but also to improve “immunity” to increas-
ingly dense WiFi environments.

Our main contributions may be summarized as follows:

• Characterize the problem of network contention and
its impact on energy consumption. Through measure-
ments we show that the energy-wastage is severe, espe-
cially with high device densities in the environment.

• Design a lightweight, standard-compatible system
running at the AP, that isolates traffic to reduce con-
tention. The system requires no changes to the client,
and can quickly adapt to changing traffic conditions
and node churn.

• Implement and evaluate the system on a testbed of
8 laptops (acting as APs) and 9 Android Nexus One
phone clients. Promising performance improvements
provide confidence that SleepWell can be an important
step towards energy management in WiFi-enabled mo-
bile devices.

The rest of this paper expands on each of these contributions.
We motivate the SleepWell design through measurements
in Section 2, followed by the system design in Section 3.
The system implementation and evaluation are presented in
Section 4, while limitations and future work are discussed in
Section 5. Section 6 surveys the related work, and the paper
concludes with a brief summary in Section 7.

2. BACKGROUND AND MEASUREMENTS
We motivate SleepWell through measurements. In this sec-
tion we (1) discuss our choice of platform and measurement
set-up, (2) introduce the terminology for PSM operation, (3)
profile the PSM behavior of a state-of-the-art smartphone,
and (4) present measurement results suggesting that network
contention has a dramatic impact on energy consumption,
and correspondingly, battery life

Choice of Device
For the experimentation platform, we planned on choosing
a state-of-the-art mobile device that would satisfy three
conditions: (1) provide accessible battery contacts to con-
nect the device to the power monitor; (2) have up-to-date
WiFi hardware, including 802.11n; (3) be supported with
chipsets/drivers that optimizes for device energy. Natu-
ral candidates are the Apple iPhone (version 4 supports
802.11n), highest-end HTC/Android phones, or Windows
Mobile smartphones. The iPhone is unsuitable for testing
due to its self-enclosed battery design [24]. The Android-
based Google Nexus One seemed attractive. In particular,
documentation for the Nexus One’s Broadcom BCM4329
802.11a/b/g/n chipset claims “technologies to reduce active

and idle power consumption”, including an on-chip power
management module. We also observed that the Android OS
performs adaptive PSM, intelligently switching between dif-
ferent power modes, based on (1) whether the screen is on;
(2) traffic load; (3) the beacon interval, etc. Finally, when
compared with a Windows 6.5 HTC phone, both network
performance and energy efficiency were better with Nexus
Ones. In light of these, we deemed the Android Nexus One
smartphone as our measurement platform of choice.

Measurement Set-up
To measure energy consumption in the Nexus One phones, we
used two power monitors from Monsoon Solutions [18]. The
probes from a monitor were connected to a hand-engineered
copper-wire extension of the Nexus One lithium-ion battery
as shown in Figure 1. The Nexus One battery has four termi-
nals, the outer two are respectively labeled as positive (+) and
negative (-). The corresponding positive/negative terminals
on the phone are connected to the meter by copper tape and
the red/black DC leads. The positive battery terminal is insu-
lated with non-conductive tape to ensure that current is only
drawn through the meter. The battery is reinstalled in the unit
to allow connection with the inner terminals (used to report
diagnostic information to the phone). We sanity-checked this
set-up by comparing our basic measurements with hardware
data-sheets and other surveys in literature [24].

Figure 1: Shows experimental set-up with Nexus One
phone connected to power meter via copper tape and DC
leads. The phone is entirely powered by the power me-
ter. The computer, connected via USB, records current
and voltage at 5000 hertz.

Terminology
To ground our discussion of WiFi power consumption, it is
necessary to consider how a modern, power-optimized device
uses 802.11 networks from an energy perspective. We first
review relevant terminology in Table 1. We will use this ter-
minology in the subsequent discussion.

PSM Energy Profiling
We survey the energy behavior of PSM, as it dwells at (or
transitions between) different power levels in response to net-

Table 1: WiFi Power Save Terminology

WiFi Power Save Mode (PSM):

A suite of polling-based power-optimizations specified by
the IEEE 802.11 standard and incorporated in all WiFi im-
plementations [1].

Constant Awake Mode (CAM):

When a PSM-capable WiFi device temporarily disables
PSM to minimize latency for interactive traffic.

Beacon Interval:

Fixed time duration between two successive AP beacons,
typically 100ms (APs continuously transmit these bea-
cons).

Traffic Indication Message (TIM):

Virtual “bitmap” embedded in every AP beacon. Indicates
which PSM clients should poll to receive queued unicast
download packets.

Listen Interval:

How often a client chooses to wake up to listen for one
AP beacon. Listen intervals are an exact multiple of the
beacon interval.

PS-Poll:

Client notification to its AP that it is awake and ready to
receive a queued packet. Issued immediately after a client
recognizes its own ID in a TIM.

More Data Flag:

Flag embedded in download unicast data packets that
specifies whether more data packets are queued at the AP
for a PSM client. Once this flag is set to false, the client
may immediately return to sleep.

work activities. The power values are taken with the screen
off, WiFi associated to a nearby AP, bluetooth/GSM/3G radios
disabled (airplane mode), and minimal background applica-
tion activity. While our analysis is primarily grounded on our
Nexus One measurements, we observed similar behavior on
an older Windows Mobile device (albeit with different exact
power drawn).

Figure 2 shows the anatomy of a Nexus One PSM client,
tasked to stream music from the Pandora service (Figure 2(a)
shows a screenshot for the power meter, while Figure 2(b)
zooms into a time segment of the measurement). At the be-
ginning, the radio is in PSM Deep-Sleep, at ≈ 10mW . In this
mode, clients are only able to wakeup and receive scheduled
beacons from an associated AP (wakeups shown by spikes
that reach up to ≈ 250mW). Once a client receives a TIM
advertisement notifying pending traffic (around t=1.2s), it
transitions to the highest power level and sends a PS-Poll to
retrieve a queued packet. This transition from deep-sleep to
High Power state incurs an additional wake-up energy cost
(≈ 600mW). The client then receives a burst of data packets
and responds with ACKs (around t=1.25s), all of which also
incur high energy.

0
100
200
300
400
500
600
700

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Po
w

er
 (m

W
)

Light Sleep

Deep
 Sleep

Beacons Idle/Overhear
 High Power

Time (s)

Figure 2: (a) Screenshot from Monsoon power meter; (b) Power draw over time for Pandora music streaming.

Now, while waiting for the next packet, the client cannot
power down because the radio hardware continues to “over-
hear” packets from other APs/clients. Thus, the client dwells
in this Idle/Overhear state, periodically transitioning to high
power for transmitting/receiving its own packets. The cost of
overhearing (≈ 400mW) is less than receiving because over-
heard packets are dropped at the radio, saving computation
energy higher up in the protocol stack.

Once the queued packets have been downloaded (and the
AP has disabled the MORE_DATA flag indication), the client
does not go back to deep-sleep immediately; it attempts to
amortize the wake-up/shutdown cost over multiple down-
load bursts—with a guess that more traffic will soon follow.
The client transitions to PSM light-sleep (≈ 120mW) in
anticipation of efficiently waking up for subsequent bursts.
In this state, it continues to periodically wake up and receive
AP beacons, but is “deaf” to contending traffic. Later, once
enough time has passed since the last download, the client
shuts down to deep-sleep. Shutting down to deep-sleep (not
shown) also incurs a high energy cost, similar to waking up.

Observe that these dwell-times and transitions between en-
ergy levels fundamentally define the energy-efficiency of the
system. Where appropriate, we will show how SleepWell
alters the PSM behavior so that it dwells longer in lower-
energy states, while remaining as agile with respect to up-
load/download packets.

Impact of Network Contention on Energy
Energy-consumption is a function of a large number of pa-
rameters (hardware, traffic, bit rates, mobility, topology,
density, etc.). Measuring over all permutations of this param-
eter space is difficult. We have narrowed down the space to
a smaller set of common-case scenarios, and report measure-
ments from them.

Methodology: We used a mix of Dell and Lenovo laptops
as APs. We deployed fully-connected AP/client topologies
to ensure that measured power from any client would be
reflective of all other clients in the network. Monsoon Power
monitors were attached to two arbitrarily-chosen Nexus One
phone clients. Presented results reflect measurements taken
from both phones. Link bitrates made to mimic measured link
qualities from the Engineering building at Duke University,
between 48 and 72 Mbps (recall that the Nexus One supports
802.11n bitrates). To generate realistic traffic, we used a
software tool called Tcpreplay [30]. This tool allowed us to

record packets for any arbitrary Internet download, and later
replay the packet arrival sequence and timing within our local
testbed. This allowed for repeatable experiments across dif-
ferent types of traffic, including Pandora and Last.fm music
streaming and YouTube videos (Table 2). We also generated
some synthetic TCP traffic using Iperf, representative of bulk
data transfer, such as an FTP or HTTP download.

Table 2: Experimental Traffic Workload
Trace Packets / s Bandwidth
Iperf Link Saturation

YouTube 48.8 pps 555.9 Kbps
Pandora 14.3 pps 160.2 Kbps
Last.fm 13.6 pps 153.0 Kbps

Results: Figure 3 shows the variation of total energy con-
sumption with increasing network contention (all flows
performing TCP downloads). With increasing number of AP-
client links, and correspondingly elevated channel saturation,
PSM clients are forced to stay awake in the idle/overhear
mode (≈ 400mW) for longer proportions of time. Thus the
energy required to complete the same network workload
increases.

0

5

10

15

20

25

30

35

40

1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP

To
ta

l E
n

e
rg

y
in

 J
o

u
le

s
(J

)

Iperf

YouTube

Figure 3: Energy consumed by a client under bulk data
transfer and YouTube replay with varying contention (i.e.,
increasing number of APs in the vicinity).

Figures 4 zooms into the results and breaks down the propor-
tion of time spent at each energy level. Also, we separate out
the traffic patterns – an 8 MB TCP bulk data transfer (mea-
sured with Iperf) and a YouTube session via Tcpreplay2. To
present an unbiased result, Figure 4(a) captures 90s of bulk
download measurement, even though all transfers completed
before 90s. This accounts for the system-wide deep-sleep en-
ergy consumed after a transfer completes. For YouTube (Fig-
ure 4(b)), we highlight a 60s portion of the trace, covering
periods of buffering and playback. There was no network ac-
tivity during playback, hence, clients were in deep-sleep by
the end of the trace. Even with a fair balance between wake-
up and sleep, we see that network contention forces a client to
spend a much lower fraction of time in the efficient PSM sleep
modes. SleepWell is designed to evade network contention,
returning clients to light-sleep mode as quickly as possible.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP

Iperf, Bulk TCP Data Transfer

High Power

Idle/Overhear

Light Sleep

Deep Sleep

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP

YouTube

High Power

Idle/Overhear

Light Sleep

Deep Sleep

Figure 4: Proportion of time spent in each power activity
level. (a) 8 MB TCP Iperf; (b) YouTube w/ Tcpreplay.

3. SLEEPWELL DESIGN
The SleepWell design firmed up after multiple rounds of test-
ing and modifications. To convey some of the rationale in

2Results from Pandora and Last.fm music streaming (not
shown) are consistent with YouTube, albeit with some varia-
tions in energy levels due to lower packet injection rate from
the server.

the final design, we first describe a basic version of SleepWell
under the following assumptions.

1. All APs have saturated traffic.

2. Each AP has one client.

3. All APs are running SleepWell.

Thereafter, we relax the assumptions, and modify SleepWell
to be applicable to real-world networks.

3.1 Basic SleepWell
SleepWell has 3 main modules, namely, (1) traffic monitoring,
(2) traffic migration, and (3) traffic preemption.

(1) Traffic monitoring.
At bootstrap, each AP behaves similar to standard 802.11
– when their respective PSM clients wake up, the APs con-
tend for the channel and send packets to them. However, a
SleepWell AP also listens for ongoing beacons, and identifies
which other APs are within its collision domain (we consider
hidden terminals later in Section 5). Observe that beacons
are transmitted at base rate, and hence, are audible over
the carrier sensing zone of an AP [31]. Each AP assimilates
this information into a traffic map that captures when each
of its contending APs start their beacon intervals. The maps
can clearly be different at different APs, depending on the
AP’s neighborhood. Figure 5 shows an example topology,
and the corresponding maps assimilated by AP1 and AP3
(AP2’s map is identical to AP1). Since PSM transmission
bursts will immediately follow a beacon, these bursts are
likely to overlap, forcing APs to waste energy due to traffic
contention. SleepWell aims to avoid this contention through
traffic migration.

(2) Traffic migration.
Given n other contending APs in the traffic map, each AP
computes its fair share of the channel. The fair share is
expected to be at least 1

(n+1)
. Each AP also computes its

actual share of the channel as the time from its beacon to the
immediate next (in the clockwise direction). If an AP’s actual
share is less than its fair share, and assuming that the AP has
saturated traffic, the AP is said to be unsatisfied. Now, each
unsatisfied AP looks into its traffic map and finds the largest
inter-beacon interval, not including its own beacon – denote
the start and end points of this interval as Tstart and Tend. If
this interval is twice that of the AP’s fair channel share, then
the AP moves its own beacon to the mid-point of this interval.
However, if the interval is shorter, the AP migrates its beacon
to a time T , such that Tend − T = 1

(n+1)
. Essentially, every

SleepWell AP greedily migrates its traffic, claiming at least its
fair share from the largest available interval. If this migration
encroaches on another AP’s traffic and fair share, the other
AP should also attempt to migrate. On the other hand, if
there is more time available, the AP shares the excess equally
with the AP which owns the now-preceding beacon. We
present an example to better capture the operation.

Consider Figure 5. All SleepWell APs use a 100ms beacon
interval (denoted by a circle). For AP1’s network view, the
fair share is 100

3
= 33.33ms, and the length of the largest

segment is 84ms (i.e., Tstart = 16 and Tend = 0). Assume
AP1’s beacon is currently at 70. Thus, AP1 moves its PSM

AP2
AP3

AP1

0
16

70

AP2

AP4

0

22

AP5

AP1

AP3

AP2

AP4

AP5

AP1's
map

AP3's
map

AP1
70
61

AP3
16

TimeTime

Figure 5: AP1 and AP3’s traffic maps during bootstrap (AP2’s map, not shown, is identical to AP1’s). The circle denotes
one BEACON_INTERVAL of 100ms. The ticks on the circle denote when an AP has overheard beacons from other APs, as
well as the time of its own beacon. The traffic maps clearly depends on the neighborhood.

beacon from 70 to 58, the mid-point of the largest segment
(Figure 6(a)). AP3 observes the new position of AP1 and pre-
pares to make its own move. AP3’s fair share is 100

5
= 20ms,

and largest segment is 39 (i.e., Tstart = 61 and Tend = 0).
Since the largest segment is less than twice of the fair share,
AP3 migrates from 16 to 80 (Figure 6(b)), thus claiming its
fair share, and forcing AP5 to move from time 61. Similarly,
AP2 observes AP1 at 58 and AP3 at 80, and moves to the
mid-point of 80 and 58, which is 19 (Figure 6(c)). Observe
that from AP1 and AP2’s perspectives, the traffic map begins
to exhibit more uniformity in beacon separation. AP3’s neigh-
bors also perform the same operation (not shown), making
AP3’s traffic map uniform as well.

Over time, we expect all APs to converge to a reasonably uni-
form traffic map, thereby reducing the energy wastage from
contention. In some cases, cyclical re-adjustment patterns
may slow or break convergence, especially in large, dense
network graphs where adjacent APs share highly-divergent
views of the local neighborhood. To recover, we detect such
cases, and trigger a randomization step – poorly converged
nodes temporarily assume a random beacon assignment,
breaking the non-converging cycle. Of course, this is a
heuristic and may not converge to the optimal solution (the
optimal beacon positioning corresponds to a TDMA schedule,
and is thus NP-Complete [22], reduced from graph coloring).
However, Monte Carlo simulations of 10,000 topologies and
traffic patterns show that convergence is quick, reliable,
and results in substantially better beacon placements than
random assignment. We report these results in Section 4.

AP2
AP3

AP1

0
16

58

Time

AP1 moves to 58

AP2

AP4

AP1

0

58

AP3 moves to 80

22

61
AP5

AP3
80

AP2

AP1

19

58

AP2 moves to 19

AP3
80

AP1's map AP3's map AP2's map

Figure 6: APs 1, 2, and 3 migrate their traffic per the
SleepWell heuristic. Over time, the beacons are spread
in time, alleviating contention between APs.

AP2
AP3

AP1

C3

80
13

46

C2

C1

Figure 7: SleepWell APs distributedly stagger their bea-
cons to reduce contention. Each AP preempts its traffic to
honor another AP’s schedule.

(3) Traffic preemption.
With 802.11, a client wakes up at the PSM beacon times
and downloads packets until its AP turns off the MORE_DATA

flag, indicating no more traffic. Continuous downloads at
different APs induce continuous contention, resulting in sig-
nificant energy wastage. Spreading the PSM beacons apart,
as performed by SleepWell, will evade contention for some
time, but the bursts will soon “spill” into the next bursts,
reintroducing contention. To avoid this, SleepWell employs a
simple preemptive mechanism. When APi observes that its
traffic is likely to “spill” into APj ’s, it turns off the MORE_DATA

flag in the subsequent data packet, forcing its client to go
to sleep until the next listen interval. This permits APj ’s
transmissions to progress without competition, reducing time
to completion. When APi’s client wakes up at the next PSM
beacon, APi transmits the pending packets. Now the other
APs preempt their respective transmissions, allowing APi to
use the channel without contention. This is indeed a loose
form of TDMA, where clients “avoid the rush hours” and
sleep instead. Figure 7 shows the steady state operation with
an example.

Observe that APi need not always preempt its traffic for
APj . It is possible that APj ’s client is not awake in the
same BEACON_INTERVAL as APi’s (recall that PSM clients
periodically wake up every LISTEN_INTERVAL, e.g., once

in 3 BEACON_INTERVALs for Nexus One phones). In such a
scenario, APi should detect the opportunity and use up APj ’s
slot. Of course, the detection mechanism needs to be robust
to ensure that APi does not mistakenly encroach into APj .

SleepWell is designed to handle this situation. When APi

approaches APj ’s time slot, it looks for (1) any PS-Poll from
any of APj ’s PSM clients; (2) APj ’s download packets with
the MORE_DATA flag enabled; or (3) an ACK from one of APj ’s
clients. (1) and (2) may not be always feasible as high bitrate
transmissions may prevent overhearing at APi. (3) is more
robust, as ACKs are transmitted at a lower bitrate, often at
half the transmission rate of the preceding unicast packet.
In case all of these techniques fail, SleepWell defaults to a
simple inference scheme. APi looks into APj ’s prior beacons
to see if APj has pending traffic for any of its clients (recall
that the beacon TIM embeds pending traffic information).
When the TIM is not set, APi does not preempt its own
traffic, and continues transmission through APj ’s slot. This
ensures channel utilization.

This concludes the description of Basic SleepWell under the
three assumptions of saturated traffic, single client, and no
legacy APs. We now relax these assumptions to fit real world
scenarios.

3.2 Coping with Traffic Dynamics
The traffic migration heuristic in Basic SleepWell has deficien-
cies. While, upon convergence, each AP certainly receives
its fair share of the channel, the heuristic may not cope well
with dynamic traffic offered by different APs. The issues arise
in 2 main scenarios: (1) Consider the case where an AP has
n neighbors, but one of its neighbors has m > n neighbors
(e.g., in Figure 5, AP1 has 3 neighbors, but AP3 has 5). Here,
AP1 could be satisfied by 1/3 channel share, assuming that
AP2 and AP3 will also consume 1/3 each. However, AP3
may only be able to consume 1/5, opening up some slack in
channel time. Basic SleepWell may not be able to consume
this slack. (2) In the same topology of Figure 5, if AP2 has
little traffic (requiring less than 1/3 channel time), Basic
SleepWell will again fail to exploit this slack. We modify
SleepWell to better “absorb” the slack, and thereby cope with
dynamic traffic patterns.

Algorithm 1 shows pseudocode for the modified SleepWell.
Although the pseudocode seems involved, the key idea is sim-
ple. In face of varying traffic demands, we require SleepWell
APs to advertise the minimum of the needed channel share
and the available channel share. In Figure 5 for instance,
AP3 will advertise 1/5 if it has adequate traffic to fill up its
own slot. Otherwise, if it has queued traffic only for, say 1/7
channel time, it advertises 1/7. Knowing this information,
the traffic map can be updated to additionally reflect the
burst following each PSM beacon. This facilitates efficient
traffic migration. SleepWell now computes the maximum
slack interval as the separation between the end of the ith

burst to the i + 1th beacon. Now, the actual migration rule
also changes. If AP1 recognizes that AP3 is taking up less
than its fair share, then AP1 computes the slack and attempts
to redistribute it among APs that need more. In this case, the
slack is 1

5
− 1

7
= 2

35
, which distributed between AP1 and AP2

becomes 1
35

. AP1 updates its fair share as 1
3

+ 1
35

= 0.36.

Using this fair share, and the largest interval computed from
burst-to-next-beacon, SleepWell migrates its traffic according
to the original rule. AP2 does the same, and the system is
expected to still converge. If AP3 later changes its traffic
advertisement, or an AP joins or leaves the network, AP1 and
AP2 can adapt accordingly.

Algorithm 1 Traffic-Aware Beacon Adjustment
1: Input: P : Set of all peer APs
2: if satCounter > CONVERGENCE_THRESHOLD then
3: satCounter ← 0
4: newBeaconT ime← Rand() · BEACON_INTERVAL
5: else
6: satCounter ← satCounter + 1
7: fairShare← BEACON_INTERVAL/(|P |+ 1)
8: share← fairShare
9: gapEnd← BeaconTime(.) + TrafficAdvert(.)

10: slack ← 0
11: for all AP p1 ∈ P do
12: gap← BEACON_INTERVAL

13: for all AP p2 ∈ P do
14: s← BeaconTime(p2) - BeaconTime(p1)
15: gap← min(s, gap)
16: midpointGap← gap/2
17: trafficGap← gap - TrafficAdvert(p1)
18: slack ← max(trafficGap, slack)
19: available← max(midpointGap, trafficGap)
20: available← min(available, gap− ε)
21: if available > share then
22: share← available
23: gapEnd← BeaconTime(p1) + gap
24: expectedShare← fairShare+ slack/|P |
25: share← max(expectedShare, share)
26: newBeaconT ime← gapEnd− share
27: Return newBeaconT ime

3.3 Seamless Beacon Re-adjustment
In describing Basic SleepWell, we assumed that APs can
re-adjust beacons at will. This is non-trivial in actual systems
because 802.11 PSM does not have provisions to inform
the client about new beacon timings. Incorporating this
capability would require client-side changes, and SleepWell
intends to avoid it. Existing schemes such as NAPman [24]
employ virtualized APs [9], a method that makes a single AP
advertise multiple beacons with different SSIDs. This effec-
tively defeats passive scanning; clients must actively scan for
APs by issuing a PROBE_REQUEST for a known SSID, and then
re-associate to the BSSID of the virtual AP. To re-position a
client again, the existing association must be dropped, forcing
the client to re-associate through active scanning again. This
is a heavyweight process, with significant time spent in the
idle/overhear and high power activity levels, exacerbating
the energy consumption in clients. Prior work has shown that
the cost of associations can dominate the energy consumption
in WiFi [6].

SleepWell APs can re-position clients without client-side
changes and re-associations. The key idea here is to manipu-
late the TSF timestamps in advertised beacons. As mandated
by the 802.11 standard, clients treat these timestamps as
authoritative, and correspondingly update their clocks to a

new beacon schedule. By advertising different beacon sched-
ules to different clients, SleepWell APs move clients between
beacons until a desirable distribution is reached. Consider
the example in Figures 5 and 6 where AP1 intends to move
its client from 70 to 58. Given that AP1 and its client are
clock-synchronized, AP1 advertises the time as 12ms ahead
of its current time. The client updates its clock accordingly.
At absolute time t = 58 the client believes that it has reached
t = 70, and wakes up to receive packets. Now, the AP
also transmits a beacon at 58, effectively re-positioning its
client seamlessly. We believe this technique is lightweight
and scalable, and may be useful to other protocols (includ-
ing NAPman [24]) that require traffic isolation among clients.

3.4 Multiple Clients per AP
For ease of explanation, we assumed one client per AP in
Basic SleepWell. In reality, SleepWell can operate seamlessly
with multiple clients associated to the same AP. Specifically,
when APi has its transmission slot, it will transmit to each
of its clients in the way the packets are queued up for them.
At the cost of a little more complexity, the AP can create ad-
ditional beacon schedules within its own time slot, ensuring
that its own clients do not contend with each other. This can
be accomplished by performing the same SleepWell beacon
adjusting operations. Of course, this is aligned with the core
beacon staggering ideas in NAPman [24], and hence, we do
not claim this to be SleepWell’s contribution. Nonetheless,
SleepWell’s technique of lightweight beacon re-adjusting can
make this inter-client scheduling more efficient than NAP-
man. We briefly outline the mechanism next.

Inter-client SleepWell: The goal here is to disperse clients
across different beacons. SleepWell APs predict when their
own clients are expected to wakeup for a beacon (depending
on the per-client LISTEN_INTERVAL). Since not all clients
will wakeup within the same beacon interval, there can be
opportunities to direct some clients to change their beacon
wakeup schedules independently from other peers. However,
when a pair of clients systematically share the same wakeup
schedule, SleepWell unicasts an extra beacon to a particular
client. This produces the desired schedule change.

3.5 Compatibility with adaptive-PSM clients
SleepWell is unaffected to serve adaptive-PSM clients. Like
those of traditional PSM clients, adaptive PSM downloads
occur in a regular burst pattern, immediately following AP
beacons. Also, it is mandatory for all clients to wake up at
least once per LISTEN_INTERVAL to receive their AP’s beacon
TIM advertisement. Thus, if data is available for the client,
it will initiate a stream of download packets from the AP (ei-
ther through a traditional PS-Poll request or by temporarily
disabling PSM). As with regular PSM clients, this periodic,
bursty behavior is obvious and easily predictable, thereby
enabling SleepWell to converge on traffic-aware beacon
schedules.

4. EVALUATION
In this section, we present the implementation of SleepWell
and evaluate its performance.

4.1 Implementation
We implemented SleepWell as a set of modifications to the
open source ath9k driver for Atheros 802.11n PCI/PCI-
express interfaces. Driver-level modifications were required
to (1) enable dynamic adjustment of beacon timing; (2)
control TSF clock values advertised in beacons; (3) enable
driver interrupts to quickly receive overheard beacons and
packets from adjacent BSSes; and (4) exert timely control on
the MORE_DATA flag for outbound traffic. Our implementation
provides complete support for dynamic beacon adjustment,
traffic migration and preemption, and multiple staggered
beacons per AP3.

4.2 Methodology
Experimental setup was consistent to that described for our
earlier measurement set-up in Section 2. We deployed Sleep-
Well on a testbed of 8 Dell and Lenovo laptops, serving as
WiFi APs. Laptops were configured with Atheros chipset D-
Link DWA-643 ExpressCard 802.11n WLAN interfaces. Linux
kernel 2.6.3 with the hostapd daemon provided 802.11-
compliant AP association support. Unmodified Nexus One
smartphones (Broadcom BCM4329 802.11n WiFi chipset [7])
served as clients. In most tests, we tasked up to 7 AP/client
pairs using Iperf TCP to create background traffic. While
testing different applications (e.g., YouTube), Wireshark

recorded packet traces, and Tcpreplay replayed them for
different experiments (traffic characterized in Table 2).
To closely model real-world behavior, we kept the phone
screen on during trace collection. When replaying this trace,
we turned off the screen to precisely measure the power draw.

4.3 Performance Results
Our evaluation attempts to answer the following:

1. Correctness of beacon adjusting heuristic (Fig. 8).
Convergence via Monte Carlo simulation (Fig. 9).

2. Overall energy gain for different traffic patterns
(Fig. 10).

3. Impact of network contention (Fig. 11, 12).
Gap from the optimal case of zero-contention (Fig. 13).

4. Impact of link quality (bitrates) (Fig. 15).

5. Impact on throughput, latency (Fig. 16, 17).
Impact on beacon spacing (Fig. 18).

6. Impact on fairness (Fig. 19).

(1) Beacon adjustment and convergence
Figure 8(a, b) shows a zoom-in view of how 2 clients (as-
sociated to distinct SleepWell APs) adjust their beacons and
preempt traffic to converge on to non-overlapping traffic
bursts. The graph is a 4 second segment of a TCP download.
Each client periodically wakes up and stays active in the high
power state, while the other remains in light-sleep during
that interval. Figure 8(c) contrasts this behavior with 802.11.
3Due to interrupt timing limitations of the Atheros hardware,
we cannot reliably support staggered beacons closer than
12ms of spacing (a driver interrupt must occur at least 2ms
after a beacon and 10ms before the next beacon). Therefore,
we can support a maximum of 8 beacons per beacon interval.

Under the same experiment settings, each 802.11 client stays
awake continuously, sharing the channel with the other in
fine time scales. Clearly, this is a source of energy wastage,
and SleepWell mitigates it.

0

200

400

600

800

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

P
o

w
e

r
(m

W
)

Time (s)

SleepWell, 2 AP (Client A)

0

200

400

600

800

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

P
o

w
e

r
(m

W
)

Time (s)

SleepWell, 2 AP (Client B)

0

200

400

600

800

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

P
o

w
e

r
(m

W
)

Time (s)

802.11, 2 AP

Figure 8: (a, b) 2 SleepWell clients converge to non-
overlapping activity cycles, one sleeping when the other
is active. (c) Under the same experimental settings, an
802.11 client stays awake for entire TCP download (en-
ergy graph of the other client is equivalent, not shown).

To evaluate convergence of these schedules, we performed
Monte Carlo simulations with 1000 APs in a 1km x 1km
area. Two APs were considered in range of each other
within 40m. We ran 10,000 trials with different topological
configurations. To reflect an incremental deployment, we
assumed a 50-50 mix of SleepWell and legacy APs. For
results involving bounded traffic demand, we assumed uni-
form random demand between 0 and 50ms per beacon (up
to one-half BEACON_INTERVAL). Figure 9 shows the CDF of
convergence time (including the cases where randomization
was necessary to break oscillations). Each convergence round
corresponds to the number of BEACON_INTERVALs required
to transition clients to a new wakeup schedule, equal to the
longest LISTEN_INTERVAL among all clients (approximately
300ms for the Nexus One). Evidently, SleepWell achieves fast
convergence, even with the traffic advertisement heuristic.

(2) Overall energy gain (varied traffic patterns)
Figure 10 presents overall energy consumption during (a)
bulk data transfer, (b) YouTube, and (c) Pandora tests. The
experiments are performed for 8 AP/client pairs within mu-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Em
p

ir
ic

al
 C

D
F

Rounds Until Convergence

SleepWell w/o Advertisements

SleepWell, Unbounded Traffic

SleepWell, Bounded Traffic

Figure 9: Adjustment rounds until a SleepWell AP reaches
a converged beacon placement. 10 rounds takes ≈ 3s.

tual contending range. As a zero-contention baseline, we
show the results from a single AP/client network running
802.11. SleepWell demonstrates substantial energy savings,
nearing the baseline for YouTube and Pandora. In contrast,
802.11 PSM wastes energy staying awake through much of
the contending traffic, as observed earlier in Figure 8(c).

0

5

10

15

20

25

30

35

40

Iperf YouTube Pandora

To
ta

l E
n

er
gy

 in
 J

o
u

le
s

(J
) No Contention

802.11, 8 AP

SleepWell, 8 AP

Figure 10: Overall energy performance of SleepWell.

(3) Impact of network contention
Figure 4(a) from Section 2 showed how network contention
increases the fraction of time a PSM client stays in the
idle/overhear state. Figure 11 demonstrates how SleepWell
mitigates the problem for the same (TCP bulk transfer) ex-
periments. As anticipated, SleepWell powers down clients
to PSM light-sleep, allowing them to save energy while con-
tending APs communicate. Thus, the duration of time spent
in the light-sleep state increases with increasing contention,
ultimately offering substantial energy savings. As an aside,
note that the client does not go back to the deep-sleep state
because it needs to wake up soon for remaining traffic.
Switching to and from deep-sleep will incur a high wake-
up/shutdown cost, and the hardware is designed to avoid it
whenever possible.

Figure 12 shows results for the same experiment, but with a
YouTube trace measured using Tcpreplay. SleepWell gains
are again substantial compared to 802.11 (in Figure 4(b)).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP

Iperf, Bulk TCP Data Transfer

High Power

Idle/Overhear

Light Sleep

Deep Sleep

Figure 11: 8 MB Iperf TCP download. With higher con-
tention, SleepWell spends a larger fraction of time in light-
sleep, whereas, 802.11 spends most of the time in the
idle/overhear state (see Fig. 4a).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP

YouTube

High Power

Idle/Overhear

Light Sleep

Deep Sleep

Figure 12: Proportion of SleepWell time spent in each ac-
tivity level with YouTube traffic. Compare to Figure 4.

Further, due to the bursty nature of the YouTube trace4,
clients spend more than 50% of the time in the PSM light-
sleep mode even without contention. Under SleepWell with
rising contention, the individual traffic bursts becomes sys-
tematically desynchronized. The overall proportion of time
spent in light-sleep (instead of deep-sleep) only increases
marginally. As shown, SleepWell clients using YouTube have
nearly complete energy-immunity to at least 7 saturated links
worth of traffic.

Performance gap from the case of zero-contention: In-
stead of categorizing power draw into different energy-
states, Figure 13 directly compares 802.11 and SleepWell’s
instantaneous power draw under 8-AP contention. The zero-
contention scenario is used as the lower bound. Graphs show

4YouTube clients buffer videos in smalls bursts to optimize for
users that will not play the entire video, or will skip forward.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Em
p

ir
ic

al
 C

D
F

Power in Milliwatts (mW)

Iperf, Bulk TCP Data Transfer

1 AP

802.11, 8 AP

SleepWell, 8 AP

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Em
p

ir
ic

al
 C

D
F

Power in Milliwatts (mW)

YouTube

1 AP
802.11, 8 AP
SleepWell, 8 AP

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Em
p

ir
ic

al
 C

D
F

Power in Milliwatts (mW)

Pandora

1 AP
802.11, 8 AP
SleepWell, 8 AP

Figure 13: (a) Iperf, (b) YouTube, (c) Pandora. CDF com-
parison of instantaneous power showing that SleepWell
better matches the zero-contention curve.

(a) TCP bulk transfer, (b) YouTube, and (c) Pandora. Note
that the SleepWell CDF remains closer to that of 1 AP (i.e.,
zero contention), except in the proportion of time spent in
light versus deep-sleep.

Every Client Running YouTube: Figure 14 presents results
from a scenario where all links download YouTube traffic. To
model realistic environments as closely as possible, we used
an extended-length YouTube trace (≈ 20 min), consisting of
a user watching a series of movie trailers. The trace includes
time spent selecting a series of video for playback, buffering,
and watching the trailer, all in realistic proportions. As in
all traces, we captured this trace from using the YouTube
application on the Nexus One – this captured smartphone-
specific buffering behaviors. We ran the trace in a loop
with Tcpreplay on all AP/client pairs, varying the start time
independently for each client. For this test, we used 9 phone
clients distributed among 6 APs. The measured clients were

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Em
p

ir
ic

al
 C

D
F

Power in Milliwatts (mW)

YouTube w/ YouTube Contention

1 AP/client
802.11 - 6 AP, 9 client
SleepWell - 6 AP, 9 client

Figure 14: CDF of instantaneous power under homoge-
neous YouTube traffic (client shown running YouTube with
contention from YouTube clients). 18 Mbps link bitrates.

associated to distinct APs, and were the only client for their
respective APs. Due to the relatively low server-side bitrate
(optimized to ensure that there is never too much buffered
video) 9 YouTube clients were not sufficient to saturate the
(high bitrate) wireless channel. Thus, we used 18 Mbps fixed
bitrates, very much reflective of residential/public environ-
ments. Evidently, SleepWell consistently outperforms 802.11
PSM, although the margin is smaller due to small bursts of
contention. We envisage the gain to increase if the number of
APs increase or the link qualities degrade.

(4) Impact of link quality (bitrates)
Figure 15 shows energy performance of an 8 MB bulk data
transfer with 4 contending links at varying link bitrates. At
low bitrates, all transmissions inflate in time, forcing 802.11
to spend considerably more time in the idle/overhear state.
SleepWell does not incur this cost, as it sleeps through the
long durations of neighboring traffic. Thus, relative gains
grow as links degrade to 18 Mbps and lower.

0

5

10

15

20

25

30

35

11 18 24 36 48 54 65

To
ta

l E
n

er
gy

 in
 J

o
u

le
s

(J
)

Bitrate (Mbps)

802.11, 4 AP
SleepWell, 4 AP

Figure 15: Bulk data transfer on 4 AP/client testbed.

(5) Impact on throughput, latency
Figure 16 shows per-link TCP throughput in a 4-link topology.
SleepWell’s performance is certainly comparable to 802.11.
When clients are backlogged with traffic, recall that they
would continue download until the start of another PSM
burst. As a result, the channel remains well utilized. When
the traffic is unsaturated in some clients, the SleepWell traffic
advertisements help in re-distributing the slack among back-

logged clients. This minimizes wasteful gaps, allowing high
channel utilization.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

Em
p

ir
ic

al
 C

D
F

Bandwidth (Mbps)

802.11
SleepWell

Figure 16: TCP throughput on 4 AP/client testbed. Distri-
bution reflects per-link goodput across all links.

Figure 17 presents per-packet latency under heavy con-
tention, as measured through ICMP pings from the AP. After
a PSM wakeup, SleepWell clients experience little contention
from other links, and are able to receive and reply to probes
faster than 802.11 clients. Further, the inflection point at
307ms (one listen interval) reflects that ≈ 95% of SleepWell
probes are received before the end of the timeslot following
the probe. Even though 802.11 remains awake longer, the
latency is still greater due to high network contention follow-
ing beacons.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Em
p

ir
ic

al
 C

D
F

Latency (ms)

802.11
SleepWell

Figure 17: Per-packet latency on 8 AP/client testbed. La-
tency measured as 10 ICMP pings per second on one link,
7 others contend with TCP.

To characterize performance for large-scale networks, we
looked in the results of the Monte Carlo simulations. The
goal was to observe the beacon placements, and compute the
channel share that each client was getting. The per-client
channel share directly relates to the throughput expected at
that client. Figure 18 shows that after convergence Sleep-
Well (a) provides a near-universal improvement to beacon
spacing; (b) provides spacing improvements irrespective of
network density; and (c) enables APs to satisfy a greater
proportion of their traffic load (for this graph, all APs are
given a random traffic demand, sampled as uniform random
[0, BEACON_INTERVAL / 2]). In contrast, random beacon
placements lead to inequitable and inefficient distribution of
the channel resources, leading to contention and wastage.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Em
p

ir
ic

al
 C

D
F

Beacon Spacing

Random Beacons

SleepWell w/o Advertisements

SleepWell, Unbounded Traffic

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

M
e

d
ia

n
 B

e
ac

o
n

 S
p

ac
in

g
(T

U
)

Number of Peers

Random Beacons

SleepWell w/o Advertisements

SleepWell, Unbounded Traffic

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Em
p

ir
ic

al
 C

D
F

Satisfaction, Min(share / traffic, 1)

Random Beacons

SleepWell w/o Advertisements

SleepWell, Random Traffic

Figure 18: Performance of beacon adjustment: (a) CDF of
beacon spacing; (b) spacing by network density. (c) CDF
of proportion of an AP’s traffic that can be satisfied in the
separation between its beacon and that of the next AP.

(6) Impact on fairness
Figure 19 presents 4-link testbed results, showing that Sleep-
Well is able to allocate throughput slightly more equitably
than 802.11. Figure 20 presents Monte Carlo simulation re-
sults confirming that the beacon adjustment heuristic results
in a more equitable spacing.

5. LIMITATIONS AND DISCUSSION
In this section, we discuss practical challenges for a SleepWell
deployment.

Impact of Hidden Terminals: Hidden terminals may impact
SleepWell to a greater degree than a randomized beacon
placement. In rare cases, SleepWell may synchronize the
transmissions of AP-to-AP hidden terminal pairs, as both APs
may migrate their beacon to the same perceived-vacant air-
time. This may cause collisions, forcing a client to stay awake
longer, and thereby, increasing the energy overhead. While

0

0.2

0.4

0.6

0.8

1

0.9 0.92 0.94 0.96 0.98 1

Em
p

ir
ic

al
 C

D
F

Jain's Fairness Index

802.11
SleepWell

Figure 19: TCP Jain’s fairness on 4 AP/client testbed. Note
X-intercept at 0.9.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Ja
in

's
 F

ai
rn

e
ss

 In
d

ex

Number of Peers

Random Beacons

SleepWell w/o Advertisements

SleepWell, Unbounded Traffic

Figure 20: Jain’s fairness for simulated beacon shares
with unbounded traffic.

hidden terminals are mostly mitigated by carefully tuning the
carrier sense threshold and bitrates [8], SleepWell can adopt
counter-measures to alleviate the problem. Specifically, since
the hidden APs will also impose bursty traffic, a SleepWell
AP may observe that its download packets are failing despite
a high SNR to its client. The download SNR can be inferred
from SNR of upload packets, coming back over a roughly
symmetric link. At this point, the SleepWell AP can assume
a “virtual beacon” on its traffic map and re-adjust its own
beacon as per the protocol heuristic. In other words, the
hidden terminal may be treated as another contending AP,
only its beacon/traffic advertisements are indirectly inferred.
If rare occasions present an excessive number of hidden
terminals, SleepWell may not be able to cope. SleepWell APs
may gracefully degenerate to 802.11, by randomizing their
beacon schedule and disabling traffic preemption.

Incremental Deployability: Thus far, our discussion has
assumed all APs in the wireless vicinity to be running Sleep-
Well. For practicality, SleepWell must be and is incrementally
deployable; it is also able to coexist with legacy access
points with fixed beacon schedules and no traffic preemption.
SleepWell APs treat legacy APs identically for the purpose of
beacon placement. Although the latter will not re-adjust to
obtain their fair share of the beacon interval, they can still
be expected to have bursty PSM traffic starting with a PSM
beacon. Thus, the time period immediately following their
beacon is best avoided. SleepWell includes these APs in the
traffic maps, and computes the expected share calculation
assuming an advertised share of infinity. The system still

converges from our Monte Carlo simulations, using 50%
legacy APs.

Interactive Traffic: SleepWell is not indended for interactive,
highly latency sensitive traffic (e.g., VoIP). PSM explictly
forgoes support for low-latency operation for energy savings;
SleepWell is subject to the same pitfalls.

TSF Adjustment: We believe our mechanism for adjusting
the TSF clock (to migrate clients to a new beacon schedule)
has no side effect. However, we cannot guarantee this to be
universal among all devices.

Feasibility of the Fair Share, Proof Sketch: To ensure
that beacon adjustments may converge, the sum of ex-
pected fair shares must not exceed the BEACON_INTERVAL

within a one-hop neighborhood of each SleepWell AP. For
n other peer APs in a clique topology, a basic SleepWell
AP (unaware of traffic) computes its fair share as 1

(n+1)
.

The complete traffic-aware SleepWell degenerates to basic,
in the case that no AP has excess channel share (slack).
The sum of fair shares for APs with unbounded demand,Pn

0
1

(n+1)
= (n + 1) · 1

(n+1)
= 1, yields a completely-utilized

BEACON_INTERVAL. Instead, assume there exists one AP with
nonzero slack s. A peer SleepWell AP with unbounded traffic
demand will increases its fair share to 1

(n+1)
+ s

n
. In aggre-

gate, 1
(n+1)

−s+
Pn

1 [1
(n+1)

+ s
n
] = 1

(n+1)
−s+ n

(n+1)
+s = 1.

Again, the BEACON_INTERVAL is fully utilized. In general, let
an AP i have a needed share ni where si = max(0, 1

(n+1)
−ni).

Let s∗ = max(s0, s1, . . . , sn). Total of expected fair share
across the clique is

Pn
i=0 min[ni,

1
(n+1)

+ s∗

n
] ≤ 1. Further,

note that non-clique topologies are more loosely constrained.
For each clique subgraph of the larger network topology, APs
with neighbors outside the clique will compute an expected
fair share strictly less than the clique-only fair share.

Ensuring Convergence: Consider the graphG of all APs in the
network, with edges reflective of each AP’s one-hop neighbor-
hood. There may be some cycle C ⊆ G of APs such that a bea-
con schedule adjustment by an AP a ∈ C will eventually trig-
ger another another for a. To break such a readjustment cy-
cle, a increments a counter upon each schedule change. Each
time a’s counter exceeds a CONVERGENCE_THRESHOLD, it ran-
domly reassigns its beacon schedule (in our simulations, we
choose this threshold twice the number of one-hop neighbors,
to avoid instability in dense subgraphs). After a long period
without any schedule changes, the counter may be reset to
0, ensuring that the next schedule change (e.g., triggered by
a legitimate change in network traffic or topology) does not
invoke an unnecessary perturbation. Results in Section 4 con-
firm that this randomization heuristic quickly breaks the re-
adjustment cycle, finding a stable beacon schedule (guaran-
teed to exist, as discussed above) and enabling universal con-
vergence in all simulations. Although required for complete
convergence, the randomization was only triggered by less
than 1% of nodes in all traffic scenarios (with dense, 1000-
node topologies used to increase the probability of cyclic in-
stability). While our simulations have shown this technique
to be effective, we provide no formal proof that a livelock
readjustment pattern will never occur. However, irrespective
of convergence, SleepWell APs will still continuously provide
complete 802.11 AP services for all associated clients.

6. RELATED WORK
Substantial prior work has considered mechanisms to reduce
the energy cost for mobile devices. In the interest of space,
we sample a subset of them.

WiFi PSM sleep optimization: A number of solutions have
considered augmenting PSM behaviors for improved effi-
ciency. [12, 15] propose client-side techniques for adaptive
PSM, enabling clients to switch between PSM and fully-
awake CAM modes as a function of traffic load. Catnap [11]
exploits the discrepancy between wired and wireless band-
width. [4] considers proxies to reduce the cost of application
polling. [29] employs traffic shaping on TCP to make flows
bursty, and thus more suitable for efficient PSM delivery.
µPM [16] leverages prediction to enable a wireless interface
to sleep opportunistically over short durations. Most closely
aligned to SleepWell, NAPman [24] considers inter-client
beacon staggering to improve the energy efficiency of mobile
clients through reduced contention. SleepWell is comple-
mentary, extending the core beacon staggering idea to the
network. In conjunction with NAPman, the total energy gains
can be higher.

WiFi Duty Cycling: A number of projects have consid-
ered duty cycling the WiFi radio into a deeper sleep state
to avoid power drawn when idle. Wake-on-Wireless uses a
secondary low-power radio interface for signaling traffic to
reduce energy consumption while idle [26]. Cell2Notify uses
cellular radios to forward notifications of incoming VoIP calls,
waking up the WiFi radio to receive the call just in time [2].
Context-for-Wireless predicts WiFi availability from nearby
cell towers [21]. Blue-Fi correlates the presence of nearby
Bluetooth devices with WiFi availability [3]. Breadcrumbs
predicts the availability of WiFi from personal mobility pro-
files [19]. Turducken [28], CoolSpots [20], and Tailender [6]
consider the use of heterogeneous radios for data transfer,
only enabling the highest-powered WiFi radio when it is most
appropriate for the traffic load. Each of these techniques
enables a complete shutdown of the WiFI interface over
long timescales. SleepWell is complementary in reducing
energy consumption during those periods in which the WiFi
interfaces are enabled and in active use.

Sensor network TDMA: Scheduled channel access has of-
ten been considered for energy savings in sensor networks.
S-MAC enables nodes to synchronize sleep schedules with
their peers, and accordingly sleep through the peers’ trans-
missions [32]. Z-MAC multiplexes CSMA and TDMA [23],
and partly achieves the best of TDMA and CSMA. SleepWell
bears resemblance to these high level ideas, however, the
system is designed in response to a set of completely different
challenges and constraints.

7. CONCLUSION
We summarize SleepWell with an analogy. Big cities in the US
and other countries face heavy rush hours due to masses of
people commuting to office. If work times were flexible, dif-
ferent companies could potentially stagger their office hours
to reduce this rush. Reduced rush would open up more free
time for all, and yet, the total working hours can remain un-
affected. This intuition underlies the design of SleepWell.

Given that Internet traffic can tolerate a reasonable amount
of latency/flexibility, SleepWell APs adjust their activity cycles
to minimally overlap with others. Each client frees up time
to sleep, ultimately resulting in promising energy gains with
practically negligible loss in performance. Our testbed imple-
mentation and thorough evaluation gives us confidence that
SleepWell is actually viable, and hence, worth considering as
a revision to current 802.11 PSM.

Acknowledgments
We sincerely thank our shepherd, Anmol Sheth as well as the
anonymous reviewers, for their invaluable feedback. We also
thank Kip Coonley (Duke ECE) for assistance in the phone en-
ergy measurement set-up. Finally, we are grateful to NSF for
partially funding this research through the following grants:
CNS-0916995 and IIS-910846.

8. REFERENCES
[1] Wireless LAN medium access control (MAC) and

physical layer (PHY) specifications. IEEE Std 802.11,
2007.

[2] Y. Agarwal et al. Wireless wakeups revisited: energy
management for voip over wi-fi smartphones. In
MobiSys, 2007.

[3] G. Ananthanarayanan and I. Stoica. Blue-Fi: enhancing
Wi-Fi performance using bluetooth signals. In MobiSys,
2009.

[4] T. Armstrong et al. Efficient and transparent dynamic
content updates for mobile clients. In MobiSys, 2006.

[5] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting mobile 3G using WiFi.
In MobiSys, 2010.

[6] N. Balasubramanian et al. Energy consumption in
mobile phones: a measurement study and implications
for network applications. In IMC, 2009.

[7] Broadcom. BCM4329 product brief.
www.broadcom.com.

[8] M. Brodsky and R. Morris. In defense of wireless carrier
sense. In SIGCOMM, 2009.

[9] R. Chandra et al. A location-based management system
for enterprise wireless LANs. In NSDI, 2007.

[10] ChangeWave Research. New smart phone owners tell
us what they really think. May 2010.

[11] F. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap:
exploiting high bandwidth wireless interfaces to save
energy for mobile devices. In MobiSys, 2010.

[12] M. Edmund, E. Nightingale, and J. Flinn. Self-Tuning
Wireless Network Power Management. In MobiCom,
2003.

[13] H. Falaki et al. A First Look at Traffic on Smartphones.
In IMC, 2010.

[14] H. Falaki et al. Diversity in smartphone usage. In
MobiSys, 2010.

[15] R. Krashinsky and H. Balakrishnan. Minimizing energy
for wireless web access with bounded slowdown. In
MobiCom, 2002.

[16] J. Liu and L. Zhong. Micro power management of
active 802.11 interfaces. In MobiSys, 2008.

[17] P. Mohan et al. Nericell: rich monitoring of road and
traffic conditions using mobile smartphones. In SenSys,
2008.

[18] Monsoon Solutions Inc.
http://www.msoon.com/LabEquipment/PowerMonitor/.

[19] A. Nicholson and B. Noble. Breadcrumbs: Forecasting
mobile connectivity. In MobiCom, 2008.

[20] T. Pering et al. Coolspots: Reducing the power
consumption of wireless mobile devices with multiple
radio interfaces. In MobiSys, 2006.

[21] A. Rahmati and L. Zhong. Context-for-wireless:
context-sensitive energy-efficient wireless data transfer.
In MobiSys, 2007.

[22] S. Ramanathan. A unified framework and algorithm for
channel assignment in wireless networks. Wireless
Networks, 5(2):81–94, 1999.

[23] I. Rhee et al. Z-MAC: a hybrid MAC for wireless sensor
networks. IEEE/ACM ToN, 2008.

[24] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu.
NAPman: Network-Assisted Power Management for
WiFi Devices. In MobiSys, 2010.

[25] A. Schulman et al. Bartendr: a practical approach to
energy-aware cellular data scheduling. In MobiCom,
2010.

[26] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless: An
event driven energy saving strategy for battery
operated devices. In MobiCom, 2002.

[27] T. Sohn et al. Place-its: A study of location-based
reminders on mobile phones. In UbiComp, 2005.

[28] J. Sorber, N. Banerjee, M. Corner, and S. Rollins.
Turducken: hierarchical power management for mobile
devices. In MobiSys, 2005.

[29] E. Tan et al. PSM-throttling: Minimizing energy
consumption for bulk data communications in WLANs.
In ICNP, 2007.

[30] A. Turner. Tcpreplay. tcpreplay.synfin.net.
[31] M. Vutukuru et al. Harnessing exposed terminals in

wireless networks. In NSDI, 2008.
[32] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient

MAC protocol for wireless sensor networks. In
INFOCOM, 2002.

