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INTRODUCTION

Time Series
— collection of observations made sequentially in time

— Occur in Medical, business, scientific domain

— Finding out similarities between two time series is
required in many time series data mining applications




CHALLENGES

How do we define similarity ?

Need a method that allows elastic shifting of time
axis to accommodate sequences that are similar
but can be out of phase

Large Amount of data

How do we search quickly ?




SOLUTIONS

e Euclidean distance
— Aligned one to one

— Cannot find similarity b/w
out of phase signals

Dynamic Time Warping

// /
— Can be non-linearly aligned // /




WHAT IS TIME WARPING




DYNAMIC TIME WARPING
+ y(i) = d(@,) + min{y(-14-1), v(-14) , v(iJ-1))

* Three Basic Constraints of Time Warping "
— Path should include beginning and ending

— Path should not have any jumps H
— Path cannot go back in time KI




Shift variance

- Time series have shift variance
— Are these two points close?
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Time warp variance

- Slight changes in timing are not relevant
— Are these two point close?
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Noise/filtering variance

- Small changes can look serious

— How about these two points?
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A real-world case

- Spoken digits




Example data
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Going from fine to coarse

- Small differences are not important
— Find features that obscure them
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A basic speech recognizer

- Collect template spoken words T(¢)

.« Get their DTW distances from input x(7)
— Smallest distance wins
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Clustering Time Series

« How do we cluster time series?
— We can’t just use k-means ...

« We can use DTW for this
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Matching warped series

- Represent the warping with a path
r(i),i=12..6 t(),j=12...5
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Time Series A

Js

Time Series B |1

1

Warping Function

P

Ds

To find the best alignment
between 4 and 8 one needs to

find the path through the grid

P=py.cc oDy e s Py
=G, Js)

which minimizes the total
distance between them.

Pis called a warping function.
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Finding the overall “distance”

« Each node will have a cost
- e.g., d(i, j) = |r(i) — t(5)|

N .

« Overall path costis: it
D =" d(i,j) |
k

- Optimal D path defines 7
the “distance” between 0

two given sequences
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Optimisations to the DTW Algorithm

Time Series A
. ; The number of possible warping
" - ~ ‘: paths through the grid is
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Bellman’s optimality principle

- For an optimal path
passing through (7 , 7):

opt
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Restrictions on the Warping Function

Monotonicity: i,y <i, and j,; <j,.

The alignment path does not go back
in “time” index.
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Guarantees that features are not
repeated in the alignment.
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Continuity: i, — 1., < 1 andj, —j.; < 1.

The alignment path does not jump in
“time” index.
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Guarantees that the alignment does
not omit important features.




Restrictions on the Warping Function

Boundary Conditions: iy = 1, i, = n and
jl - 19 jk: m.

The alignment path starts at the bottom
left and ends at the top right.
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Guarantees that the alignment does not
consider partially one of the sequences.

Warping Window: i, —j | < r,where r >0

is the window length.

A good alignment path is unlikely to
wander too far from the diagonal.
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Guarantees that the alignment does not
try to skip different features and gets
stuck at similar features.




DTW Algorithm: Example
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f — FEuclidean distance between vectors

Time Series B



