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Abstract 0.12

Localizing the sources of performance problems in large enterprise Normal
networks is extremely challenging. Dependencies are humerous, 0.1 Performance:
complex and inherentlynulti-level spanning hardware and soft- status:
ware components across the network and the computing infrastruc-  —~o.08}- W
ture. To exploit these dependencies for fast, accurate problem lo-
calization, we introduce an Inference Graph model, which is well-
adapted to user-perceptible problems rooted in conditions giving
rise to both partial service degradation and hard faults. Further, we
introduce the Sherlock system to discover Inference Graphs in the
operational enterprise, infer critical attributes, and then leverage the
result to automatically detect and localize problems. To illuminate 0.02f
strengths and limitations of the approach, we provide results from a
prototype deployment in a large enterprise network, as well as from 0 ‘
testbed emulations and simulations. In particular, we find that tak- 0.01 0.1 ) 1 10
. . . . response time (sec)

ing into account multi-level structure leads to a 30% improvement

in fault localization, as compared to two-level approaches.
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Figure 1: The response time of a major internal webserver
when fetching the home page. The times are clearly bi-modal,
Categories and Subject Descriptors with 13% of the requests taking 10x longer than normal and re-

sulting in user-perceptible lags. We define the first mode in re-
sponse time as indicating the service igp and the second mode
as indicating the service igroubled

C.2.3 [Computer-Communication Networks]: Network Opera-
tions

Keywords of dependencies across systems and networks in the enterprise,
needed for root cause analysis.

Conventional management systems treat each service, which we
define as arflPaddr, port) pair, as being either up or down. This
naive model hides the kinds p&rformance failureshown in Fig-

1. INTRODUCTION ure 1. In this paper, we model service availability as a 3-state value:

Using a network-based service can be a frustrating experience, Service isipwhen its response time is normal; idewnwhen re-
marked by appearances of familiar hourglass or beachball icons,quests resultin either an error status code or no response at all; and
with little reliable indication of where the problem lies, and even it is troubledwhen responses fall significantly outside of normal
less on how it might be mitigated. Even inside the network of a "€Sponse times. _Our definition of troubled status mcluc_ies the par-
single enterprise, where traffic does not need to cross the open In-ticularly cha_llenglng cases where only a subset of service requests
ternet, user-perceptible service degradations are rampant. Considef"® performing poorly. _ _
Figure 1, which shows the distribution of time required for clients ~ This paper describes the Sherlock system that aims to give IT
to fetch the home page from a major webserver in a large enterprise2dministrators the tools they need to localize performance prob-
network including tens of thousands of network elements and over lems and hard failures that affect an end-user. Sherlock (1) detects
400,000 hosts. The distribution comes from a data set of 18 thou- the existence of faults and performance problems by monitoring
sand samples from 23 instrumented clients over a period 24 days.the response time of services; (2) determines the set of components
The second mode of the distribution represents user-perceptiblethat could be responsible; and (3) localizes the problem to the most
lags of 3 to 10+ seconds, and 13% of the requests experience thidikely component. _ _ )
unacceptable performance. This problem persists because current e faced three main challenges in creating Sherlock. First, both

network and service monitoring tools are blind to the complex set Performance and hard faults can stem from problems anywhere
in the IT infrastructure, i.e., a service, a router, or a link. Adding
complexity to the problem, even simple requests like fetching a
webpage involve multiple services: DNS servers, authentication
Permission to make digital or hard copies of all or part of this work for Servers, webservers, and the backend SQL databases that hold the
personal or classroom use is granted without fee provided that copies arewebpage data. Problems at any of these can affect the success or
not made or distributed for profit or commercial advantage and that copies failure of the request, but the dependencies among components in
bear this notice and the full citation on the first page. To copy otherwise, to |T systems are typically not recorded anywhere, and they evolve
reput_)lls_h, to post on servers or to redistribute to lists, requires prior specific continually as systems grow or new applications are added. As a
permission and/or a fee. . .
SIGCOMM'07, August 2731, 2007, Kyoto, Japan. result, Sherlock must be able to automatically discover the set of

Copyright 2007 ACM 978-1-59593-713-1/07/00085.00. components involved in the processing of requests. Second, the
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failover and load-balancing techniques commonly used in enter- 3-state (so we can determine whether components are up, down,
prise networks make determining the responsible component evenor experiencing a performance fault and troubled). This paper also
harder, since the set of components involved may change from re-contributes extensions to prior work that optimize fault localization
guest to request. Sherlock’s analysis must take these mechanismand adapt it for our three-state and multi-level Inference Graph. We
into account. Third, given the large size of enterprise networks, the extensively evaluate the effectiveness of each of Sherlock’s compo-
challenges above must be met in manner that remains tractable evements individually, and describe our results of deploying Sherlock
with hundreds of thousands of elements. in both a testbed and a large and complex enterprise network.
Sherlock meets these challenges in the following ways: First,
software agents running on each host analyze the packets thatthy, RELATED WORK
host sends and receives to determine the set of services on which
the host depends. Sherlock automatically assembldafarence
Graphthat captures the dependencies between all components o
the IT infrastructure by combining together these individual views
of dependency. Our algorithm uses information provided by one
host to fillin any gaps in the information provided by another. Sher-
lock then augments the Inference Graph with information about

Today, enterprises use sophisticated commercial tools, such as
fEMC’s SMARTS [21], HP Openview [13], IBM Tivoli [19], or Mi-
crosoft Operations Manager [10]. In practice, these systems have
proven inadequate for finding the causes of performance problems
as they treat servers and routers as independent boxes — each pro-
ducing its own stream of SNMP counters, syslog messages, and
alerts. Fundamentally, these box-centric measures are poor predic-

encodes in a sinale model all the components that could affect a re_(Eors of the end-to-end response time that users ultimately care about
9 P — it's not clear what CPU load on a server means users are un-

quest. Second, our Inference Graph model includes primitives thathappy, so it is hard to set a threshold that alerts only when users

O e a1 alov! MEChA1S"are pacte. Forexmpe, over  10-day et cur organzation'
P > o - A well-run systems generated two thousand alerts for 160 servers that
ually or via heuristics (Section 4.2), but localization is then au-

tomatic. Third, we developed Ferret, an algorithm that efficientl mightbe sick. Another 18 K alerts were divided among 194 differ-
g C P ’ 9 . Y ent alert types coming from 877 different servers, each of which
localizes faults in enterprise-scale networks using the Inference

Graph and measurements of service response times made b thcouldpotentiallyaffect user performance (e.g., 6 alerts for a server
ageﬁts P Y IEPU utilization over 90%; 8 for low memory causing a service to
We deliberately targeted Sherlock at localizing significant prob- stop). Investigating all the potentially serious alerts is simply im-

lems that affect the users of the IT infrastructure, hence our focus practical, especially when many had no effect on a user. Sherlock
! -~ complements existing tools by detecting and localizing the prob-

on performance as well as hard faults and our use of response tlmqemS that affect users

as an indicator for performance faults. Current systems overwhelm Significant recent research has led to methods for detailed de-

i?]pglrfr‘tg:sawnlit?art?;?nlgr?ﬁ:ezliréso(é%ea(f::{:gt g;anggzr?ﬁgt ?:Ztiln_?)ugging of service problems in distributed systems. Many of these
9 n g ’ > a gay, y systems also extract the dependencies between components, but are
most universally ignored as so few prove significant). In contrast,

Sherlock does not report problems that do not directly affect users. dl_ffere_nt n c_haracter from Sherlock. Magpie [3], FUSE [5] and
; . =" Pinpoint [4], instrument middleware on every host to track requests
For example, Sherlock will not even detect that a server has a high

CPU utilization unless requests are delaved as a result as they flow through the system. They then diagnose faults by corre-
Sherlock aims for roblqem Iocalizationywhich falls shbrt in gen- lating components with failed requests. Project5 [1] and WAPS [16]
P! . ' 9 record packet traces at each host and use message correlation algo-
eral of full problem diagnosis. For example, Sherlock can deter-

mine that a SQL server is overloaded, but not that the overload _rlthms to resolve Whl(.:h incoming packet trlgge_red which O.L.'tgo'
S . . o ing packet. These projects all target the debugging and profiling of
stems from a missing index. Yet, operational experience indicates

that problem diagnosis and resolution often rapidly follows prob- individual applications, so determining exactly which message is
problem diag - pidly Toflows p caused by another message is critically important. In contrast, Sher-
lem localization. Indeed, it is not uncommon that IT administrators

L lock combines measurements of thenyapplications running on
are aware of suspicious, faulty or troubled states of a tremendous yapp g

; . . an IT infrastructure to localize problems. We also show that, for
number of components along with associated methods of mitiga- o . -
X ! . . .= fault localization, co-occurrence of packets is a reasonable indica-
tion or repair, but, lacking localization, are unaware of which, if

. S tor of dependency between accesses to two remote machines, and
any, of these troubled components explain a high impact outage. If . :
. ; . that valid graphs can be computed with only 1,000 samples and 20
a server returns incorrect information (e.g., a DNS server returns

. . clients (Section 6.1).
EE: géor;?“ljzr?gggezrsg(’)sh?;lgilzmaz::rlﬁsbgucﬁ:erg?nhgt ?]gth girr]S(?tIm There is a large body of prior work tackling fault localization
Iocalizg the fault to the D?\IS serverpFinaII we havegnot evaluatedy atthe network layer, especially for large ISPs. In particular, BAD-
) ; 4 . ABING [18] and Tulip [9] measure per-path characteristics, such
Sherlock on systems that deliberately and frequently change their . . .
as loss rate and latency, to identify problems that impact user-

dependencies and cannot predict its performance on such SyStemSperce tible performance. These methods (and many commercial
However, measurements indicate that the vast majority of enter- P P : Y

rise applications do not fall into this class [2] products as well) use active probing to pinpoint faulty IP links.
P PP o . Sherlock instead uses a passive correlation approach to localize
To the best of our knowledge, Sherlock is the first system that __.
. . - .~ failed network components.
localizes performance failures across network and services in a Machine learning methods have been widely discussed for fault
timely manner without requiring modifications to existing appli- management. Pearl [15] describes a graph model for Bayesian
cations and network components. The contributions of this paper )

include our formulation of the Inference Graph and our algorithms networks. Sherlock uses similar graph models to build Inference
o . - P 9 Graphs. Rish et. al. [17] combines active probing and dependency
for computing it for an entire IT infrastructure based on observa-

tions of the packets that hosts send and receive. Unlike reviousgraph modeling for fault diagnosis in a network of routers and end
P : . N P hosts, but they do not describe how the graph model might be au-
work, our Inference Graph is both multi-level (in order to represent

) . . . tomatically constructed. Unlike Sherlock, their method does not
the multiple level of dependencies found in IT infrastructure) and . . -
model failover servers or load balancers, which are common in en-



a service (IP address, port), a router, or an IP link, although the
model is extensible to root causes at a finer granularity. Second,
observationnodes represent accesses to network services whose
performance can be measured by Sherlock. There is a separate ob-
] Kerberos  § servation node for every client that accesses any such network ser-
U Kerberos) i e ‘ vice. The observation nodes model a user’'s experience when using
""" / [Path(c%an] £ Fileserver Fs1 services on the enterprise network. Finathgta-nodesct as glue

I ' between the root-cause nodes and the observation nodes. In this pa-

==y (C> Kerberos) B File Fetch per we present three types of meta-nodessy-maxselectorand

i e [ Fs1) failover. These nodes model the dependencies between root causes
——————— - and ob_servatlons; the latter two are needed to mod_el Ioadfb_alancers
and failover redundancy, respectively (described in detail in Sec-

————/ | \\FS1\foo\barexe /| tion 311)
"""" The state of each node in the Inference Graph is expressed by
\” 7" Observation” "~ "~ Failover  : + Root-cause Noisy-Max Model-Error a three-tuple(Pup’ Ptroubled7 Pdoum)- Pup denotes the probabil-
! ' Node l | Mata-Node i Node Meta-Node Node . . . . L
Lo — — ity that the node is working normallyP,,.... is the probability

that the node has experienced a fail-stop failure, such as when a

Figure 2: Snippet of a partial Inference Graph that expresses server is down or a link is broken. Finally;,ousicq iS the prob-
the dependencies involved in accessing a file share. Dotted boxes ability that a node is troubled, which corresponds to the boxed
represent physical components and software, dashed boxes de- area in Figure 1, where services, physical servers or links con-
note external observations and ovals stand-in for unmodeled or tinue to function but users perceive poor performance. The sum of
external factors. Pup + Piroubied + Paown = 1. We note that the state of root-cause
nodes is independent of any other nodes in the Inference Graph,
while the state of observation nodes can be uniquely determined
from the state of its ancestors.

An edge from nodel to nodeB in the Inference Graph encodes
e dependency that nodehas to be in theip state for nodes to
be up. Not all dependencies are equal in strength. For example, a
client cannot retrieve a file from a file server if the path to that file
erver is down. However, the client might still be able to retrieve
he file even when the DNS server is down, if the file server’'s name
to IP address mapping is found in the client’s local DNS cache. Fur-
thermore, the client may need to authenticate more (or less) often
than resolving the server’s name. To capture varying strengths in

terprise networks. Shrink [6] and SCORE [7] make seminal con-
tributions in modeling the network as a two-level graph and using
the model to find the most likely root causes of faults in wide-area
networks. In SCORE, dependencies are encoded as a set and faultt-h
localization becomes minimal set cover. Shrink introduces novel
algorithmic concepts in inference of most likely root causes, taking
probabilities describing strengths of dependencies into account. In
Sherlock, we leverage these concepts, while extending them to dea
with multi-level dependencies and with more complex operators
that capture load-balancing and failover mechanisms. We compare
the accuracy of our fault-localization algorithm with Shrink and

SCORE in Section 6. dependencies, edges in a Inference Graph are labeled wigh a
pendency probabilityA larger dependency probability indicates
3. THE Inference Graph MODEL stronger dependency.

We first describe our new model, called the Inference Graph, ~Finally, every Inference Graph has two special root-cause nodes
for representing the complex dependencies in an enterprise net-— \ways troubled (ATandalways down (AD)- to model exter-
work. The Inference Graph forms the core of our Sherlock system. N@! factors not part of our model that might cause a user-perceived
We then present our algorithm, called Ferret, that uses the model@ilure. The state of AT is set to (0, 1, 0) and that of AD is set to
to probabilistically infer the faulty or malfunctioning components (0. 0. 1). We add an edge from these nodes to all the observation
given real-world observations. We explain the details of how Sher- N0des, and describe how we assign probabilities to these edges in
lock constructs the Inference Graph, computes the required proba->€ction 4. L ,
bilities, and performs fault localization later in Section 4. To illustrate these concepts we revisit Figure 2, which shows a

portion of the Inference Graph that models a user fetching a file
3.1 The Inference Graph from a network file server. The user activity of “fetching a file” is
encoded as an observation node (dashed box) in the figure because
unified view of the dependencies in an enterprise network, spanningfsilgiggilfrgg?hrgiizl:rg g]:rfrc?rsnﬁ)(t)r?rseeetgzteic:r?;-ﬂ(]il)sai(iﬂgﬂ.ti::::ttgri]tlgg fa
services and network components. Figure 2 depicts a portion of theto the system, (ii) resolve the DNS name of the file server and (ii)

Inference Graph when a user accesses a network file share. Th%ccess the file server. These actions themselves depend on other ac-
structure of dependence is inherently multi-level. The access to the ’ P

file depends on contacting the Kerberos server for authentication,tlons‘t0 succeed. Therefore, we model them as meta-nodes, and add

which in turn depends on the Kerberos server itself, as well as the 33332;@22:23? (ri:é?ﬁc?; tgft?ce)rﬂbﬁt;;vaiﬁg ggdgn(:jfe;ecmh'?gbzg:ﬁ{
routers and switches on the path from the user’s machine to the puting P y P y

Kerberos server. A problem could occur anywhere in this chain of for these edges in Section 4.1. Since the client is configured with
dependencies. The challenge is to find the right level of abstraction It;] 2:2 detuggr:?a:i)lloe\l/gcri rieeig-nndoadrg E;ih:]ife:;;(ta:tstﬁisggi D'\étsg]’ovv\\’g
to model these dependencies in a framework that can be feasibly ) y: pp

a single client and a single observation. When other clients access
automated. the same servers or use the same routers/links as those shown here
Formally, nodes in this graph are of three types. Fitgit-cause '

. ! heir observation nodes will be connected to the same root cause
nodes correspond to physical components whose failure can Caus‘%odes as those shown to create the complete Inference Graph
an end-user to experience failures. The granularity of root-cause P ph.

nodes in Sherlock is a computer (a machine with an IP address),

The Inference Graph is a labeled, directed graph that provides a
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Figure 5: Truth Table for the failover meta-node encodes the

Figure 3: Truth Table for the noisy-max meta-node when a

child has two parents. The values in the lower triangle are omit- . e )
dependence that the child primarily contacts parentl, and fails

over to parent2 when parentl does not respond.

[Parent (P1) ] { Parent (P2) ]

d; dz/

Child (C)

Parent 2

Parent 2

ted for clarity.

{ Parent (P1) H Parent (P2) } Parent 1 Let x=1-d
d - [ Selector | Up [Troubled |_Down | and Equal Cost Multipath (ECMP) routing. ECMP is a commonly-
o X 00 wi-x0  x0i-x used technique in enterprise networks where routers send packets
o 010 Oxl-x to a destination along several paths. The path is selected based on a
Child (C) & m 00,1 hash of the source and destination addresses in the packet. We use a
selector meta-node when we can determine the set of ECMP paths
Figure 4: Truth Table for the selector meta-node. A child node available, but not which path a host's packets will use.
selects parentl with probability d and parent2 with probability The truth table for the selector meta-node is shown in Figure 4,
1-d. The values in the lower triangle are omitted for clarity. and it expresses the fact the child is making a selection. For exam-

ple, while the child may choose each of the parents with probability
50%, the selector meta-node forces the child to have a zero proba-
3.1.1 Propagation of State with Meta-Nodes bility of being up when both its parents agown (first number in
A crucial aspect of a probabilistic modeltiswthe state of par-  the Down,Down entry).
ent nodes governs the state of a child node. For example, supposérailover Meta-Nodes capture the failover mechanism commonly
a child has two parents, A and B; the state of parent Ais (.8, .2, 0), used in enterprise servers. Failover is a redundancy technique
which means its probability of beingp is 0.8,troubledis 0.2 and where clients access primary production servers and failover to
downis 0, and the state of parent B is (.5, .2, .3). What, then, is the backup servers when the primary server is inaccessible. In our net-
state of the child? While edge labels encode the strength of depen-work, DNS, WINS, Authentication and DHCP servers all employ
dency, the nature of the dependency is encoded in the meta-nodefailover. Failover cannot be modeled by either the noisy-max or
Formally, the meta-node describes the state of the child node givenselector meta-nodes, since the probability of accessing the backup

the state of its parent nodes. server depends on the failure of the primary server.

Noisy-Max Meta-Nodesare the simplest and most common meta- The truth table for the failover meta-node is shown in Figure 5.
node.Max implies that if any of the parents are in thewnstate, ~ AS long as the primary server igp or troubled the child is not
then the child islown If no parent idownand any parent isou- affected by the state of the secondary server. When the primary

bled, then the child igroubled If all parents araip, then the child ~ Server is in thedownstate, the child is stilup if the secondary

is up. Noisyimplies that unless a parent's dependency probability SErver 1sup.

is 1.0, there is some chance the child will lpgeven if the parent .

is down Formally, if the weight of a parent's edgeds then with 3.1.2 Timeto Propagate SF{.:lt('-:‘ ]

probability (1 — d) the child is not affected by that parent. A common concern with probabilistic meta-nodes is that com-
Figure 3 presents a truth table for noisy-max when a child has Puting the probability density for a child with parents can take

two parents. Each entry in the truth table is the state of the child O(3") time for a three-state model in the general caswever,

(i.e., its probability of beingip, troubledanddown) whenparent; the majority of the nodes in our Inference Graph with more than

andparent, have states as per the column and row label respec- On€ parent are noisy-max meta-nodes. For these nodes, we have

tively.! As an example, the second row and third column of the truth developed the following equations that reduce the computation to

table shows the probability of the child beitrgubled given that ~ O(n) time.

parent; is downandparents is troubled P(Child=Troubled Par-

entl=Down, Parent2=Troubled) @ — d:1) * d2. To explain, the

child will be downunlessparent,’s state is masked by noise (prob j

1 — da1). Further, if both parents are masked by noise, the child will

be up. Hence the child is inroubled state only wherparent, is 1 — P(child down) 11 (1 = + (1 — dy) p?‘”“")

drowned out by noise anghrents is not. J

Selector Meta-Nodesare used to model load balancing scenar- P(child troubled) =1 — (P(child up)+ P(child down)

ios. For example, a Ngtwork Load Balance.r (NLB) in front of two wherep; is the jth parent(pﬂ_lp7p§_'rouble’p?own) is its probability
servers hashes the client's requests and distributes requests evenlyisyripytion, andi, is its depéndency probability. The first equation
to the two servers. An NLB cannot be modeled using a noisy-max jmpjies that a child isup only when it does not depend on any
meta-node because the client would depend on each server with &arents that are nafp. The second equation implies that a child is

probability of 0.5, since half the requests go to each server. Using gownunless every one of its parents are eitherdwtnor the child
a noisy-max meta-node will assign the client a 25% chance of be- ggeg not depend on them when they doevn

ing up even when both the servers atewn which is obviously

incorrect. We use the selector meta-node to model NLB Servers “The naive way to compute the probability of the child's state re-
quires computing al8™ entries in the truth-table and summing the
1A (0, 1, 0) state foparent; means it is troubled. appropriate entries.

Pehidup) = T (1 —d;)» (b€ 4 pfem) + pi7)




The computational cost for selector and failover meta-nodes is probability that Ferret does not arrive at the correct solution (the

still exponential,0(3™), for a node withn parents. However, in

same solution attained using the brute-force, exponential approach)

our experience, these two types of meta-nodes have no more than @lecreases exponentially withand becomes vanishingly small for

parents, and hence do not add a significant computation burden.

k = 4 onwards [6]. Pseudo-code for the Ferret algorithm is shown

in Algorithm 1.

3.2 Fault Localization on the Inference Graph

We now present our algorithm, Ferret, that uses the Inference Algorithm 1 Ferref{Observations O, Inference Graph G, Inf X

Graph to localize the cause of a network or service problem. We
define arassignment-vectorto be an assignment of state to every

root-cause node in the Inference Graph where the root-cause node ;g {1
for R, € Candidates do

has probability 1 of being either up, troubled, or down. The vector
might specify, for example, théink; is troubledserver, is down

and all the other root-cause nodes are up. The problem of localizing
a fault is then equivalent to finding the assignment-vector that best
explains the observations measured by the clients.

Ferret takes as input the Inference Graph and the measurements
(e.g., response times) associated with the observation nodes. Ferret
outputs a ranked list of assignment vectors ordered by a confidence
value that represents how well they explain the observations. For
example, Ferret could output thatrver; is troubled and other
root-cause nodes are up with a confidence of 90%%- is down
and other root-cause nodes are up with 5% confidence, and so on.

For any assignment-vector, Ferret can compute a score for how

Candidates «— (up|trouble|down) assignments to root causes

with at mostk abnormal at any time
> List of top X Assignment-Vectors
> For each Assignment-Vector
Assign States to all Root-Causes in G as Bgr
Score(Ra) «+— 1 > Initialize Score
for Noden € G do > Breadth-first traversal of G
Compute P(n) given P(parents of n) > Propagate
end for
for Noden € Go do > Scoring Observation Nodes
s « P( Evidence at hprob. density of n) > How well
doesR, explain observation at n?
Score(R,) < Score(Rq) * s
end for
Include R, in Listx if Score(R,) is in top X assignment
vectors

> Total Score

well that vector explains the observations. Ferret first sets the root  gp for

causes to the states specified in the assignment-vector and then uses retyrn Listx

the state-propagation techniques described in the previous section

to propagate probabilities downwards until they reach the observa- Ferret uses another practical observation to speed up its compu-

tion nodes. Then, for each observation node, it computes a SCOre tion

based on how well the probabilities in the state of the observation '

node agree with the statistical evidence derived from the measure- OsservATION 3.2. Since a root-cause is assigned touin

ments associated with this observation node. Section 4 provides themost assignment vectors, the evaluation of an assignment vector

details of how we compute this score. only requires re-evaluation of states at the descendants of root-
How can we search through all possible assignment vectors to cause nodes that are nop.

determine the vector with the highest score? There3aneectors

givenr root-causes, and applying the procedure just described to Therefore, Ferret preprocesses the Inference Graph by assigning all

evaluate the score for each assignment vector would be infeasi-oot-causes to be up and propagating this state through to the ob-
ble. Exis’[ing solutions to this prob|em in machine |earning liter- Servation nodes. To evaluate an assignment vector, Ferret needs to

ature, such as loopy belief propagation [12], do not scale to the re-compute only the nodes that are descendants of root-cause nodes

Inference Graph sizes encountered in enterprise networks. Approx-marked troubled or down in the assignment vector. After comput-
imate localization algorithms used in prior work, such as Shrink [6] ing the score for an assignment vector, Ferret simply rolls back to
and SCORE [7], are significantly more efficient. However, they are the pre-processed state with all root-causes inifhtate. As there
based on two-level, two-state graph models, and hence do not workare never more thah root-cause nodes that change state out of
on the Inference Graph, which is multi-level, multi-state and in- the hundreds of root-cause nodes in our Inference Graphs, this re-
cludes meta-nodes to model various artifacts of an enterprise net-duces Ferret's time to localize by roughly two orders of magnitude
work. The results in Section 6 clarify how Ferret compares with Without sacrificing accuracy.
these algorithms. In the studies presented in this paper, we use the Ferret algorithm
Ferret uses an approximate localization algorithm that builds on €xactly as described above. However, the inference algorithm can
an observation that was also made by Shrink [6]. be easily extended to leverage whatever domain knowledge is avail-
able. For example, if prior probabilities on the failure rates of com-
ponents are known (e.g., links in enterprise networks may have a
much higher chance of being congested than down [14]), then Fer-
ret can sort the assignment vectors by their prior probability and
In large enterprises, there are problems all the time, but they areevaluate in order of decreasing likelihood to speed up inference.
usually not ubiquitoug.We exploit this observation by not evaluat-

ing all 3" assignment vectors. Instead, Ferret evaluates assignmentgl_ THE SHERLOCK SYSTEM

that have no more thah root-cause nodes that are either troubled )
Now that we have explained the Inference Graph model and Fer-

or down. Thus, Ferret first evaluat2s r vectors in which exactly = e ! !
ret fault localization algorithm, we describe the Sherlock system

one root-cause is troubled or down, néxt 2 « (1) vectors where >
exactly two root-causes are troubled or down, and so on. Giyen that actually constructs the Inference Graph for an enterprise net-
’ work and uses it to localize faults. Sherlock consists of a central-

Ferret evaluates at mo&2 r)k assignment vectors. Further, itis g e
easy to prove that the approximation error of Ferret, that is, the 12€d Inference Enginend distributedSherlock AgentsSherlock
requires no changes to routers, applications, or middleware used in

3There are important cases where this observation might not hold, the enterprise. It uses a three-step process to localize faults in the
such as rapid malware infection and propagation. enterprise network, illustrated in Figure 6.

OBSERVATION 3.1. It is very likely that at any point in time
only a few root-cause nodes are troubled or down.




S o Y tions e, vice B within the dependency interval.
ault Localization 1 Actions: e.g . . . . .
' TrRoute X~y There is a tension in choosing the value of the dependency in-
: Suspects: terval which is well known in machine learning [8]. Too large an
_____________ o interval will introduce false dependencies on services that are ac-
cessed with a high frequency, while too small an interval will miss
e.g. topology N some true dependencies.
Packet traces at Observations: e.g- . .
agents/ routers response times The Sherlock agents use a simple approach that works well in
practice. The dependency interval is fixed at 10 ms, which in our
experience discovers most of the dependencies. The agents then
apply a simple heuristic to eliminate false positives due to chance
co-occurrence. They first calculate the average intefydletween
First, Sherlock computes aervice-level dependency graph 2cC€sses to the same service and estimate_ the likelihood of “chance
(SLDG)that describes the services on which each client and ser- €0-0ccurrence” agloms)/I. They then retain only the dependen-
vice depends. Each Sherlock agent is responsible for monitoring Ci€S where the dependency probability is much greater than the
the packets sent and received by one or more hosts. The agent may/k€lihood of chance co-occurrence.
run on the host itself, or it may obtain packet traces via snifiing ~ QUr heuristic for computing dependency works best when a re-
a nearby link or router. From these traces, the agent computes theSPONSe from service precedes a request to servigeBut without
dependencies between the services with which its host(s) commu-d€€ep packet inspection, it is not possible to explicitly identify the
nicates and the response time distributions for each service (Sec/€duests and responses in streams of packets going back and forth
tion 4.1). This information is then relayed to the inference engine as Petween the host and and the host and. In practice, we have
described in Section 5, where the engine aggregates the dependerfound it is sufficient to group together a contiguous sequence of
cies between services computed by each agent to form the SLDG packetsto a service as a single access to the service. In Section 6.1,
The SLDG is relatively stable, changing when new hosts or applica- W& show_that this simple approximation produces reasonably accu-
tions are added to the network, and we expect it will be recomputed "at€ service-level dependency graphs.
daily or weekly. . I .
S){acond, thginference engine combines the SLDG with the net- 4-1.2  Aggregating Probabilities Across Clients
work topology to compute a unified Inference Graph over all ser-  All agents periodically submit the dependency probabilities they
vices in which the operator is interested and across all Sherlock measure to the inference engine. However, because some services
agents (Section 4.2). This step can be repeated as often as needeare accessed infrequently, a single host may not have enough sam-
to capture changes in the network. ples to compute an accurate probability. Fortunately, many clients
Third, the inference engine runs Ferret over the response timein an enterprise network have similar host, software and network
observations reported by the agents and the Inference Graph toconfigurations (e.g. clients in the same subnet) and are likely to
identify the root-cause node(s) responsible for any problem ob- have similar dependencies. Therefore, the inference engine aggre-
served. This step is executed whenever agents observe large regates the probabilities of similar clients to obtain more accurate
sponse times. estimates of the dependencies between services.
. . . . Aggregation also provides another mechanism to eliminate false
4.1 Discovering Service-Level Dependencies  dependencies — for example, a client making a large number of
Each Sherlock agent is responsible for computing the depen-requests to the proxy server will appear to be dependent on the
dency between the services its host accesses. We defidejtbe- proxy server for all the services it accesses. To eliminate these
dency probabilityof a host on servicel when accessing service false dependencies, the inference engine calculates the mean and
B as the probability the host needs to communicate with service standard deviation of each dependency probability. It then excludes

Service-Level
Dependency Graph

Network info.

Figure 6: Sherlock Solution Overview

A before it can successfully communicate with seniiteA value clients with a probability more than five standard deviations from
of 1 indicates a strong dependency, where the host machine alwayghe mean. Section 6.1 evaluates the effectiveness of this aggrega-
contacts servicel before contacting3. For example, a client will tion.

visit a web server soon after receiving a response from DNS server )

providing the web server's IP address, so the dependency probabil-4.2  Constructing the Inference Graph

ity of using DNS when visiting a web server will be greater than 0. Here we describe how the Inference Engine combines dependen-

Due to caching, however, the probability may be less than 1. cies between services reported by the Sherlock agents with network
Because we define services in terms of IP addresses and portstopology information to construct a unified Inference Graph.

Sherlock does not rely on parsing application-specific headers. It For each services, the inference engine first creates a noisy-

could be easily extended to use a finer-grain notion of a service if max meta-node to represent the service. It then creates an obser-

such parsers were available. vation node for each client reporting response time observations of
. - that service and makes the service meta-node a parent of the ob-
4.1.1 Computing the Dependency Probability servation node. The engine then examines the service dependency

Sherlock computes the dependency between services by leveraginformation of these clients to identify the set of serviges that
ing the observation that if accessing servigelepends on service  the clients are dependent on when accesSinthe engine then re-

A, then packets exchanged withand B are likely to co-occur. curses, expanding each servicdlg. Once all service meta-nodes
Using this observation, we approximate the dependency proba-have been created, for each of these nodes the inference engine

bility of a host on serviced when accessing servid@ as the con- creates a root-cause node to represent the host on which the service

ditional probability of accessing service within a short interval, runs and makes this root-cause a parent of the meta-node.

called thedependency intervaprior to accessing servicB. We The inference engine then adds network topology information

compute the conditional probability as the number of times in the to the Inference Graph by using traceroute results reported by the
packet trace that an access to servicprecedes an access to ser- agents. For each path between hosts in the Inference Graph, it adds
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a noisy-max meta node to represent the path and root-cause nodes |r
to represent every router and link on the path. It then adds each of :
[
[
[

these root-causes as parents of the path meta-node.

X . : [ IdenlifySen/ice_- ] [ DglectF_aults, ]
Optionally, the operators can tell the inference engine where load Level Dependencies J | _Monitor Evidences

[
|
|
|

robe Box (e.g.

[ tr:cert,pBing. wggel) ] :

balancing or redundancy techniques are used in their network, and :—K;;e—, ————————————————— D — '

the engine will update the Inference Graphs, drawing on the ap- i (0.0, WinPCAP NeMON)
propriate specialized meta-node. Adapting the local environment e —_——

to the configuration language of the inference engine can also be NT;:”::CQ O | E————

done with scripting. For example, in our network the load-balanced Chatter Summary Requests Obsenved Evience,

web servers for a site follow a naming convention and are called robe Resdls

sitename* (e.g., msw01, msw02). Our script looks for this pat- . . .

tern and replaces the default meta-nodes with selector meta—nodes;%l:/\rl?nI t:;geflg\?vrg?ci)r?fg?rt:act)if()tr?eBIS:cirlgrcrlg vﬁ‘giﬂgv‘\’,v'ttﬁeﬁ:fevf

Similarly, the agent examines its host's DNS configuration using actio 9 ith the inference e s e which are d ibed in the

ipconfig to identify where to place a failover meta-node to model tecxl ns wi inference engine, which are descri n

the primary/secondary relationship between its name resolvers. :

Finally, the inference engine assigns probabilities to the edges

in the Inference Graph. The service-level dependency probabili- ggjs exceeds the median of the above distribution by more than one
ties are directly copied onto corresponding edges in the Inference gtandard deviation, the prediction is considered significant.
Graph. The special nodedways troubledand always downare

connected to observation nodes with a probabilitg.0D1, which

implies that 1 in 1000 failures are caused by a component not in our 5. IMPLEMENTATION

model. Edges between a router and a path meta-node use a proba- We have implemented the Sherlock Agent, shown in Figure 7,

bility of 0.9999, which implies that there is a 1-in-10,000 chance as a user-level service (daemon) in Windows XP. The agent ob-

that our network topology or traceroutes are incorrect and the router Serves ongoing traffic from its host machine, watches for faults,

is not actually on the path. In our experience, Sherlock’s results are and continuously updates a local version of the service-level depen-

not sensitive to the precise setting of these parameters (Section 6.2)dency graph. The agent uses a WinPcap [20]-based sniffer to cap-
ture packets. We augmented the sniffer in several ways to efficiently

4.3 Fault Localization Using Ferret sniff high volumes of data—even at an offered load of 800 Mbps,
the sniffer misses less than 1% of packets. Agents learn the net-

As described in Sec"‘”.‘ 3.2, Ferret uses a scoring function to work topology by periodically running traceroutes to the hosts that
compute how well an assignment vector being evaluated matches,

- i . - ~. ~~appear in the local version of the service-level dependency graph.
external evidence. A scoring function takes as input the probability Sherlock would easily accommodate layer-2 topology as well, if it
distribution of the observation node and the external evidence for

hi d d lue b d A high | were available. The Agent uses an RPC-style mechanism to com-
.t IS node an returns a value between zero andone. A nighervalu&y, hicate with the inference engine. Both agent and inference en-
indicates a better match. The score for an assignment vector is th

S i €gine use role-based authentication to validate incoming messages.
product of scores for individual observations.

Th " function for th h b i d The choice of a centralized inference engine makes it easier
€ scoring function for the case when an observation node re- aggregate information, but raises scalability concerns about
turns an error or receives no response is simple — the score is equ

i . - PU and bandwidth limitations. Back-of-the-envelope calculations
to th_e probab'lllty of the observation node belng down. For €Xam- show that both requirements are feasible even for large enterprise
ple, if the assignment vector corrfectly predl_cts that the_ obser_vatlon networks. An Sherlock Agent sends 100B observation reports once
node has a high probability of being down, its score will be high. ¢\ er 3005, The inference engine polls each agent for its service-

The scoring functlor) for .the case when an observation node o q dependency graph once every 3600s, and for most hosts in
returns a response tlm(_e is computed as f.OHOWS' Thg Sher- the network this graph is less than 40 KB. Even for an extremely
lock agent'tra_cks_ the hlstory_ of response times an_d fits two large enterprise network with0® Sherlock Agents, this results in
Gaussian d!strlbutlons to the historical data, nant@iy.ssian., an aggregate bandwidth of about 10 Mbps.
and Gaussianirouvica. FOr example, the distribution in Fig- The computational complexity of fault localization scales lin-
ure 1 would be modeled bgausszan“p W'th a mean response ooy with graph size, so we believe it is feasible even in large
time of 200 ms andGaussianrousiea With @ mean response  honyorks. Specifically, computational complexity is proportional to
time of 2:s. If the o.bservatlon node returns a response tme  yne nymber of root causes in the inference graghe graph depth.
the score of an assignment vector thqt predicts the observatlonGraph depth depends on the complexity of network applications,
node state 0 DEpup, Prroutied, Paown) iS computed agu, but is less than 10 for all the applications we have studied.
Prob(t|Gaussianup) + Pirousled * Prob(t|Gaussianiroubled)-

In other words, if the response tinteis well explained by the
Gaussian,, and the assignment vector correctly predicts that the 6. EVALUATION
observation node has a high probability of being up, the assignment We evaluated our techniques by deploying the Sherlock system
vector will have a high score. in a portion of our organization’s enterprise network shown in Fig-
When Ferret produces a ranked list of assignment vectors for ure 8. We monitored 40 servers, 34 routers, 54 IP links and 2 LANs
a set of observations, it uses a statistical test to determine if thefor 3 weeks. Out of approximately 1,500 clients connected to the 2
prediction is sufficiently meaningful to deserve attention. For a set LANSs, we deployed Sherlock agents on 23 of them. In addition to
of observations, Ferret computes the score that these observationsbserving ongoing traffic, these agents periodically send requests
would arise even if all root causes were up — this is the score of to the web- and file-servers, mimicking user behavior by browsing
the null hypothesis. Over time, the inference engine obtains the webpages, launching searches, and fetching files. We also installed
distribution of Score(best predictioip — Score(null hypothesis. packet sniffers at R1 and 5 routers in the datacenter, enabling us to
If the score difference between the prediction and the null hypoth- conduct experiments as if Agents were present on all clients and
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Figure 10: Inferred service dependency graph for clients ac-
cessing a file server.
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Figure 11: Dependency probabilities for accessing the web por-
tal converge to stable values as the inference engine receives
more samples from clients.

cmea

v Client — Portal } :‘ClientaSaIes-Site‘; that control access and use the proxy servers to retrieve external
Figure 9: Inferred service dependency graphs for clients access- ~ Pages that are embedded in the websites’ pages. Second, both web-
ing the main web portal and the sales website. There is signifi- sites also share substantial portions of their back-end dependencies.
cant overlap in their dependencies. The same search server crawls both websites and generates indexes

that are used by the websites to answer client queries. The pres-
ence of such overlap in production environments bodes well for our

servers connected to these routers. These servers include our orl€CNIAUES, as it means Sherlock can construct succinct Inference

ganization’s internal web portal, sales website, a major file server, Graphs and Ferret can localize faults with fewer_o_b_s,ervanon_s. )

and servers that provide name-resolution and authentication ser- Figure 10 shows the dependency graph for visiting a major file
vices. Traffic from the clients to the data center was spread across>c'Ver: As before, clients depend on DNS, WIN.S’ Domain Con-
four disjoint paths using Equal Cost Multi-Path routing (ECMP). troller (DC), and proxy servers to access the file server. Inter-

In addition to the field deployment, we use both a testbed and e_stingly, cIienFs actually depend on four _dif'f_erent file servers —
simulations to evaluate our techniques in controlled environments tFk:IetStﬁrverA-Flle??rr]verD t_o e]}_clscess the main f[lllehserve{. Itturns ?Ut
(Section 6.2). The testbed and simulations enable us to study Fer- 1at the name of the main file server 1s Just the root name of a

distributed file system. The actual files are stored on several file

ret's sensitivity to errors in the Inference Graphs and compare h of which i ible f " f th
its effectiveness with prior fault localization techniques, including SErvers, each of which IS responsibie for a portion of thé hame

Shrink [6] and SCORE [7] space. The client requests are sent to the file servers based on the
' location of the clients and the requested files.
6.1 Discovering Service Dependencies To summarize, our observations are three-fold. First, there is sig-

We now evaluate Sherlock’s algorithm for discovering service- Nificant variety in service-level dependencies — some servers redi-
level dependencies and quantify the amount of data and time re- rect a majority of their requests while others ex_cluswely serve the
quired for stable results. We carefully examined the service-level r€auests locally. Second, even when two services appear to have
dependency graphs computed by Sherlock for fifteen production similar depgndencu_es, there are differences in the strength of th_e
web and file servers in our organization, and we corroborated the déPendencies. For instance, clients may heavily depend on domain
correctness and completeness of these dependencies with our sy£oNtrollers to access certain web servers which contain lots of sen-
tem administrators. Below, we show the dependency graphs for two sntlve_lnformatlon, but thls does not apply to accessing the web por-
typical web servers and one file server, and we highlight the lessons!@!- Finally, dependencies change over the time —we have seen con-
we learned. tent move across machines from one building to another. Hence, we

Figure 9 shows the service-level dependency graphs for vis- conclude that an automated algorithm for inferring dependencies is
iting our organization’s main web portal and sales website. Ar- Necessary and useful.
rows point from servers that provide essential services to serversimpact of number of samples: Section 4.1 describes how Sher-
or activities that depend on these services. Edges are annotatedock computes service-level dependency graphs by aggregating the
with weights which represent the strength of the dependencies.results from multiple clients. In this section we examine how many
Two things are worth noting. First, clients depend on name lookup samples are required to produce stable probability estimates. Fig-
servers (DNS, WINS), authentication servers (Domain Controller), ure 11 shows how dependency probabilities for clients accessing
and proxy servers to access either of these websites. Clients musthe web portal converge as the algorithm uses more samples. We
communicate with the authentication servers to validate certificates show the probabilities for a set of true dependencies and the one
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Figure 12: Dependency probabilities for accessing the web por- WebServer; (WS,) and WebServer, (WS.). For clarity, we

tal con}{erge as the inference engine aggregates samples ffom  gjiqe the probability on edges, the specialized (failover) meta-
more clients. node for DNS; and DNS,, and the activities of other clients.

@ ws3 servers, routers, and links in the testbed appear as failed or over-
® loaded. Specifically, aoverloaded linldrops 5% of packets at ran-
[0 | - - [ws1] - - dom and aroverloaded servenas high CPU and disk utilization.
AD DNS1||DNS2 WS1 sqQL ws2
F @ ‘ * @I Figure 14 shows the inference graph constructed by Sherlock,
B with some details omitted for clarity. The arrows at the bottom-
LANT = LAN2 level are the service-level dependencies inferred by our depen-
s P J P

dency discovery algorithm. For example, to fetch a web page from
WebServers, clientC_; has to communicate witBNS; for name

Figure 13: Physical topology of the testbed. Hosts are squares, ~ resolution andAD for certificates.WebServers, in turn, retrieves

routers are circles. Example failure points indicated with cir- the content from the SQL database. Sherlock builds the complete
cled letters. Hosts labeled C* are clients and WS* are web- inference graph from the service-level dependencies as described
servers. in Section 4.2.

Unlike traditional threshold-based fault detection algorithms,
Ferret localizes faults by correlating observations from multiple
vantage points. To give a concrete exampléyébServer; is over-
loaded, traditional approaches would rely on instrumentation at the
server to raise an alert once the CPU or disk utilization passes a
certain threshold. In contrast, Ferret relies on the clients’ obser-
vations of WebServer;’s performance. Since clients do not expe-
rience problems accessigebServerz, Ferret can excludeAN,

AN, and routerR; from the potentially faulty candidates, which
eavesWebServer; as the only candidate to blame. Ferret formal-
izes this reasoning process into a probabilistic correlation algorithm
Impact of number of clients: Figure 12 shows how dependency (described in Section 3.2) and produces a list of suspects ranked by
probabilities for clients accessing the web portal converge as Sher-their likelihood of being the root cause. In the above case, the top
lock aggregates samples from more clients. We show probabilities two root cause suspects aiébServer; with a likelihood of 99.9%
for the same set of dependencies as before. Not surprisingly, whenand Routet; with a likelihood of 9.01.0~°%. Ferret successfully
we aggregate the results from very few clients, the false depen- igentifies the right root cause while the likelihood of the second best
dency has a higher probability than some of the true dependen-candidate is negligibly small.
cies. Aggregating over even 20 clients reduces the false dependency Ferret can also deal with multiple simultaneous failures. To il-
probability to a trivial value, showing the importance of aggrega- |ustrate this, we created a scenario where B&thServer; and one

false dependency with the largest probabilities among false depen-
dencies. Note that the probabilities of the four true dependencies
(DC, DNS, WINS, and proxy) quickly exceed those of the false
dependency, even with only 200 samples. At about 4,000 samples,
the probabilities of all the true dependencies converge to their fi-
nal values. The Inference Engine normally receives this number of
samples in a few hours during a regular day. Once converged, we
find the service-level dependencies are stable over several days t
a couple of weeks.

tion in eliminating false positives. of the clientsC; _; were overloaded at the same time. In this case,
.. . . the top two candidates identified by Ferret 8ebServer; N C1—3
6.2 Localizing Faults in Enterprise Network with a likelihood of 97.8% andWebServer, with a likelihood of

We now turn our attention to Ferret, the fault localization algo- 1.6%. WebServer; appears by itself as the second best candidate
rithm. We evaluate Ferret’s ability to localize faults in an enterprise since failure of that one component explains most of the poor per-
network and its sensitivity to errors in the inference graph. We also formance seen by clients, and the problerhs ; reports with other
compare it with prior work. services might be noise.

We begin with a simple but illustrative example where we in- Ferret's fault localization capability is also affected by the
ject faults in our testbed (Figure 13). The testbed has three webnumber of vantage points. For example, in the testbed where
servers, one in each of the two LANs and one in the data center. WebServer2 only serves content in the SQL database, Ferret can-
It also has an SQL backend server and supporting DNS and au-not distinguish between congestionWebServer, and congestion
thentication servers (AD)WebServer; only serves local content  in the database. Observations from other clients whose activities
and WebServer, serves content stored in the SQL database. Note depend on the database but #atbServerz, would resolve the am-
that the testbed shares routers and links with the production enter-biguity.
prise network, so there is substantial real background traffic. We Ferret's ability to correctly localize failures depends on having
use packet droppers and rate shapers along with CPU and disk loadbservations from roughly the same time period that exercise all
generators to create scenarios where any desired subset of clientgaths in the Inference Graph. To estimate the number of observa-
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by highlighting the components that cause user-perceived faults.
By Ferret's computations, 87% of the problems were caused by

350 only 16 components (out of the 358 components that can fail inde-
300! pendently). We were able to corroborate the 3 most notable prob-
. lems marked in the figure with external evidence. Beever; in-
& 2501 cident was caused by a front-end web server with intermittent but
2 Server? recurring performance issues. In therver, incident, another web
o 200} . server was having problems accessing its SQL backend. The third
% I Serverl ) ' incident was due to recurring congestion on a link betwRemand
S 150 : LinkonR1 the rest of the enterprise network. In Figure 16, when Ferret is un-
3 100 able to determine a single root cause due to lack of information,
& e SR TR 0o\ e it will provide a list of most likely suspects. For example in the
50 . Server; incident, there are 4 dots which represent the web server,
R A feud i d the last links to and from the web server, and the router to which
% 1 3 4 the web server is directly connected.

2
Time (days)

Figure 16: Root causes of performance problems identified by
Ferret over a 5-day period. Each Y-axis value represents a sep-
arate component in the inference graph and a dot indicates the

Sherlock can also discover problems that might be overlooked
by using traditional threshold-based techniques. For instance, in the
Servers incident, both the web server and SQL backend were func-
tioning normally and traditional threshold-based techniques would
not raise any alerts. Only requests requiring interaction between the

component is troubled or down at that time. web server and the SQL backend experience poor performance, but

this is caught is by Sherlock.

tions available, we measured the average number of unique clients In a fourth incident, some clients were experiencing intermittent
that access a server during time windows of various sizes. We doPoor performance when accessing a web server in the data center
this for the 128 most popular servers in our organization using time While other clients did not report any problem. Ferret identified a
window lengths varying from 1 second 1®® seconds (roughly suspect link on the path to the data center that was shared by only
3 hours). The data for Figure 15 were collected over a 24-hour pe- those clients that experienced poor performance. Figure 17 shows
riod during a normal business day. It shows that there are manythe MRTG [11] data describing the bandwidth utilization of the
unique clients that access the same server in the same time windowcongested link. Ferret's conclusion on when the link was troubled
For instance, in a time window of 10 seconds, at least 70 unique Matches the spikes in link utilization between 12:15 and 17:30.
clients access every one of the top 20 servers. Given that there ard1owever, an SNMP-based solution would have trouble detecting
only 4 unique paths to the data center and 4-6 DNS/WINS servers, this performance incident. First, the spikes in the link utilization
we believe that accesses to the top 20 servers alone provide enougR'e always less than 40% of the link capacity. This is common with
observations to localize faults occurring at most locations in the SNMP counters, since those values are 5-minute averages of the
network. Accesses to less popular services leverage this informa-actual utilization and may not reflect instantaneous high link uti-
tion, and need only provide enough observations to localize faults lization. Second, the 60% utilization at 11:00 and 18:00 did not
in unshared components. lead to any user-perceived problems, so there is no threshold set-
ting that catches the problem while avoiding false alarms. Finally,
due to scalability issues, administrators are unable to collect rele-
vant SNMP information from all the links that might run into con-
gestion.

6.2.1 Evaluation of Field Deployment

We now report results from deploying Sherlock in our organiza-
tion’s production network. We construct the Inference Graph using
the algorithm described in Section 4.2. The resulting graph contains . . .
2,565 nodes and 358 components that can fail independently. 6.2.2 Comparing Sherlock with Prior Approaches

Figure 16 shows the results of running the Sherlock system over Sherlock differs from prior fault localization approaches in its
a 5-day period. Each Y-axis value represents one component, e.g. aise of multi-level inference graph instead of two-level bipartite
server, a client, a link, or a router, in the inference graph and the X- graph, and its use of probabilistic dependencies. Comparing Sher-
axis is time. A dot indicates a component is in the troubled or down lock with prior approaches allows us to evaluate the impact of these
state at a given time. During the 5 days, Ferret found 1,029 in- design decisions.
stances of performance problems. In each instance, Ferret returned To perform the comparison, we need a large set of observations
a list of components ranked by their likelihood of being the root for which the actual root causes of the problems are known. Be-
cause. This figure illustrates how Sherlock helps network managerscause it is infeasible to create such a set of observations using a
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- 10¢ ) *ds- 25 min Sometimes, errors are unavoidable when constructing inference
1F * graphs. For example, service-level dependency graphs might con-
o1 * tain false positives or false negatives. Traceroutes might also report
100 1000 10000 100000 1e+06 the wrong intermediate routers. To understand how sensitive Ferret
Number of Nodes in the Inference Graph is to errors in inference graphs, we compare the results of Ferret on
Figure 19: The time taken by Ferret to localize a fault grows correct inference graphs with those on perturbed inference graphs.
linearly with the number of nodes in the Inference Graph. We deliberately introduce four types of perturbation into in-

ference graphs: First, for each observation node in the inference

testbed, we conduct experiments with simulations. We first cre- 9raph, we randomly add a new parent. Second, for each observation
ated a topology and its corresponding inference graph that exactlynode, we randomly swap one of its parents with a different node.
matches that of the production network. Then we randomly set the 1Nird, for each edge in the inference graph, we randomly change
state of each root cause to be troubled or down and perform a prob-itS Weight. Fourth, for each network-level path, we randomly add
abilistic walk through the inference graph to determine the state of @0 €xtra hop or permute its intermediate hops. The first three types
all the observation nodes. Repeating this process 1,000 times pro-Of perturbation correspond to errors in serwc_e-level dependency
duced 1,000 sets of observations for which we know the actual root 9r@Phs and the last type corresponds to errors in traceroutes.
causes. We then compare different techniques on their ability to V& Use the same inference graph as the one in the field deploy-
identify the correct root cause given the 1,000 observation sets. ~ Mmentand perturb it in the ways that are described above. Figure 20

Figure 18 shows that by using multi-level inference graphs, Fer- Snows how Ferret behaves in the presence of each type of pertur-
ret is able to correctly identify up to 32% more faults than Shrink, bation. Each pointin the figure represents the average of 1,000 ex-
which uses two-level bipartite graphs. Figure 9 and Figure 14 show Periments. Note that Ferret is reasonably rc_Jbust to all four types of
that multi-level dependencies do exist in real systems, and repre-€7ors. Even when half the paths/nodes/weights are perturbed, Fer-
senting this type of dependency using bipartite graphs does lose im-ret corre(_:tly localizes faults in 74.3% of_ the cases. Perturblpg the
portant information. SCORE [7] uses a deterministic dependency €d9€ weights seems to have the least impact while permuting the
model in which a dependency either exists or not. For example, Paths seems to be most harmful.
the caching of names makes DNS a weak dependency. If such
weak dependencies are included, the SCORE model causes many6.2.5 Modeling Redundancy Techniques
false-positives, yet excluding these dependencies results in false- Specialized meta-nodes have important roles modeling load-

negatives. balancing and redundancy, such as ECMP, NLB, and failover. With-
. . out these nodes, the fault localization algorithm may come up with
6.2.3 Time to Localize Faults unreasonable explanations for observations reported by clients. To

We now study how long it takes Ferret to localize faults in large evaluate the impact specialized meta-nodes, we again used the
enterprise networks. In the following simulations, we use a topol- same inference graph as the one in the field deployment. We cre-
ogy which is the same as the one in our field deployment. We then ated 24 failure scenarios where the root cause of each of the fail-
add more clients and servers to the topology and use the measureures is a component connected to a specialized meta-node (e.g. a
ment results in Figure 15 to determine the number of unique clients primary DNS server or an ECMP path). We then used Ferret to
that would access a server in a given time window. The experi- localize these failures both on inference graphs using specialized
ments were run on an AMD Athlon 1.8GHz machine with 1.5GB meta-nodes and on inference graphs using noisy-max meta-nodes
of RAM. Figure 19 shows that the time it takes to localize injected instead of specialized meta-nodes.
faults grows almost linearly with the number of nodes in the Infer- In 14 cases where the root cause was a secondary server or a
ence Graph. The running time of Ferret is always less than 4 msbackup path, there is no difference between the two approaches. In
times the number of nodes in the Inference Graph. With an Infer- the remaining 10 cases where a primary server or path failed, Fer-
ence Graph of 500,000 nodes that contains 2,300 clients and 70ret correctly identified the root cause in all 10 of the cases when
servers, it takes Ferret about 24 minutes to localize an injected using specialized meta-nodes. In contrast, when not using special-
fault. Note that Ferret is easily parallelizable (see pseudo-code inized meta-nodes Ferret identified the wrong root cause in 4 cases.



6.3 Summary of Results using packet traces, traceroute measurements, and network config-
The key points of our evaluations are: uration files. (3) We describe an algorithm that uses an Inference

e First, we corroborated the inferred service-level dependency Graph to localize the root cause of the network or service problem.
graphs of fifteen servers with our administrators and found them e evaluate our algorithms and mechanisms via testbeds, simu-
to be mostly correct except for a few false-positives. Our algo- lations and field deployment in a large enterprise network. Our key
rithm is able to discover service dependencies in a few hours findings are: (1) service dependencies are complicated and con-
during a normal business day. tinuously evolving over time thus justifying a need for automatic

approaches to discovering them. (2) Our service dependency infer-
ence algorithm is able to successfully discover dependencies for
a wide variety of unmodified services in a timely manner, (3) our
fault localization algorithm shows great promise in that it narrows
down the root cause of the performance problem to a small num-
ber of suspects helping IT administrators in their constant quest to
track down frequent user complaints, and finally, (4) comparisons
to other state-of-art techniques show that our fault localization al-
gorithm is robust to noise and it localizes performance problems
more quickly and accurately.

e Second, service dependencies vary widely from one server to
another and the inference graph of an enterprise network may
contain hundreds to thousands of nodes, justifying the need for
an automatic approach.

e Third, in a field deployment we show that the Sherlock system
is effective at identifying performance problems and narrowing
down the root-cause to a small number of suspects. Over a five
day period, Sherlock identified over 1,029 performance prob-
lems in the network, and narrowed down more than 87% of the
blames to just 16 root causes out of the 350 potential ones. We
also validated the three most significant outages with external
evidence. Further, Sherlock can help localize faults that may be 9. REFERENCES
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