
Page 1 of 6 
 

Mining Dependency in Distributed Systems through 

Unstructured Logs Analysis 
Jian-Guang LOU

1
, Qiang FU

1
, Yi WANG

2
, Jiang LI

1
 

1
Microsoft Research Asia; 

2
Beijing University of Posts and Telecommunications 

 
Abstract 

Dependencies among system components are 
crucial to locating root errors in a distributed system. 
In this paper, we propose an approach to mine inter-
component dependencies from unstructured logs. The 
technique requires neither additional system instru-
mentation nor any application specific knowledge. In 
the approach, we first parse each log message into its 
log key and parameters. Then, we find dependent log 
key pairs belong to different components by leveraging 
co-occurrence analysis and parameter correspondence. 
After that, we use Bayesian decision theory to estimate 
the dependency direction of each dependent log key 
pair. We further apply time delay consistency to re-
move false positive detections. Case studies on Ha-
doop show that the technique successfully identifies 
the dependencies among the distributed system com-
ponents. 
Keywords: Log analysis, dependency graph, co-
occurrence analysis, root error localization 

1 Introduction  

In a distributed system, dependencies are numer-
ous, complex, and inherent, spanning system compo-
nents across the network and the infrastructure. Errors 
often propagate across distributed components due to 
inter-component dependencies. Understanding the 
dependencies among components is critical to locating 
the root errors from a set of related errors.  The un-
derstanding not only lets administrators quickly locate 
the root errors, but also provides them cues to learn 
the problems. Several research efforts [1, 2, 3] have 
been made to discover dependencies for system man-
agement. However, most of research efforts focus on 
mining the service level dependency based on com-
munication traces.  

In this paper, we propose an approach to discover 
dependencies among a set of distributed components 
based on console logs printed by a system during its 
execution. Console logs are often produced and col-
lected for troubleshooting, work load analysis, and 
system behavior tracking. They often contain a wide 
variety of information about system behavior including 
system events, state changes and inter-component 
interactions. However, log messages are often in the 

form of unstructured text strings, and the clock of the 
machines that produce logs may not be synchronized 
precisely. Therefore, it is very challenging to mine de-
pendencies through unstructured logs. 

Our approach requires neither additional system 
instrumentation nor any application specific know-
ledge, and mines dependencies in a black-box manner. 
In the approach, we first parse each log message into 
the log key and parameters (refer to Section 3), and 
then, mine the dependencies among different compo-
nents by leveraging co-occurrence analysis, parameter 
correspondence and time information. Finally, we 
show how the dependencies can help us to locate 
problems in a distributed system, and to reveal the 
error propagation diagram. 

In our technique, inter-component dependencies 
are learned based on the cues gained from the pre-
vious jobs’ logs (namely training logs). We assume that 
each log item has a corresponding time stamp. We 
further assume that the system clocks of different 
hosts are roughly synchronized. This is reasonable be-
cause Network Time Protocol (NTP) has been a built-in 
service in most operating systems including Windows 
and Linux. 

The paper is organized as follows. In Section 2, we 
briefly survey several related research efforts. In Sec-
tion 3, we briefly present how to parse log messages 
into log keys and parameters. Then, the algorithm that 
mines dependencies from logs is described in Section 4. 
In Section 5, some primitive results are presented. We 
give a brief introduction on how to use the obtained 
dependencies to locate the root errors in Section 6. 
Finally, in Section 7, we conclude the paper. 

2 Related Work 

Understanding the dependencies among different 
components of a large-scale distributed system is ex-
tremely important for problem diagnosis. A lot of pre-
vious research efforts have been put on mining depen-
dencies in a black-box manner. 

Most of the research efforts focus on service level 
dependencies among different network services from 
communication traces [1, 2, 4, 5, 6]. In [6], the authors 
introduce the Sherlock system to discover an Inference 
Graph to model the dependencies among different 



Page 2 of 6 
 

network services, and then use the learned results to 
automatically localize problems. Sherlock simply uses 
co-occurrence probabilities to estimate dependencies. 
In [1] and [4], the authors proposed a distributed ap-
proach (Constellation) and a centralized method (AND) 
to construct a Leslie Graph, which estimates service 
level dependencies by inferring traffic correlation. 
Kandula et al [5] propose a system called eXpose, 
which uses the JMeasure (a known metric in the data-
mining community) as a score to find the dependent 
service pairs. All above algorithms are all sensitive to 
the time window threshold.  In [2], Chen et al intro-
duce a dependency discovery technique based on traf-
fic delay distributions, and find that their algorithm is 
much better than the previous ones. In [7], Kannan et 
al utilize a Poisson process to model the normal con-
nections’ arrival. Two connections with very small in-
ter-arrival time interval are recognized as two depen-
dent connections.  

Besides the approaches that mine service level 
dependencies from traffic traces, Gupta et al propose a 
method to identify dependencies among components 
based on synchronized application events collected by 
a monitoring server [3, 8]. The method is realized by 
finding out the pattern that an activity period of com-
ponent A contains some activity period of component 
B.  

All above algorithms consider either the commu-
nication traces [1, 2, 4, 5, 6, 7], or the synchronized 
event traces [3, 8]. Differing from these previous algo-
rithms, our algorithm tries to mine the inter-
component dependencies based on unstructured logs 
of a distributed system. These unstructured logs are 
collected from different machines, and the time 
stamps of the logs may not be precisely synchronized. 
Fortunately, log messages often contain parameter 
information to help problem diagnosis (e.g. request 
tracing), therefore we can utilize the parameter infor-
mation for our dependency mining. 

3 Log Message Parsing 

A log message usually records an event, state 
change or inter-component interaction of a run-time 
system component. It often contains two types of in-
formation: one is a free-form text string that is used to 
describe the semantic meaning of a recorded program 
event; the other is parameters that are used to express 
some important characteristics of the current 
task/request. 

Because the two types of information have quite 
different meanings and functions, we define two dif-
ferent concepts, i.e. log key and parameter, to 

represent the two types of information in log messages 
respectively. A log key is defined as the common con-
tent of all log messages that are printed by the same 
log-print statement in the source code. Parameters are 
defined as the printed values of variables in the log-
print statement. For example, for each log message 
printed by the following log print statement (in C lan-
guage), its log key is “the Job id is starting!”, and the 
parameter is the value of the variable “JobID”. 
fprintf(Logfile, “the Job id %d is starting!\n”, JobID); 

However, because the source code is often not 
available, we do not know what are log keys and pa-
rameters in log messages. In this paper, we use the 
algorithm presented in paper [16] to separate log keys 
and parameter values from log messages. As we know, 
some parameters are in forms of numbers, URIs, IP 
addresses; or they follow the special symbols such as 
“=”. These contents can be easily identified. We first 
extract the contents from log messages which are ob-
vious parameter values according to some empirical 
knowledge. The remained parts of log messages are 
categorized to a set of raw log keys. Because the em-
pirical rules can’t extract all parameters completely so 
that raw log keys may still contain parameters, we fur-
ther apply a clustering algorithm on these raw log keys 
to obtain a set of clusters. The common string in each 
cluster is considered as a log key, and other parts are 
recognized as parameters. The algorithm does not 
need any application specific knowledge. It can achieve 
an accuracy of more than 95%.  

For a log message m, we denote the extracted log 
key as K(m), the number of parameters as PN(m), the 
i
th 

parameter’s value as PV(m,i). After log key and pa-
rameter extraction, each log message m with the time 
stamp T(m) can be represented by a multi-tuple [T(m), 
K(m), PV(m,1),PV(m,2),…,PV(m,PN(m))], we call such 
multi-tuples as the tuple-form representations of the 
log messages.  

4 Component dependency mining 

After log key and parameter extraction, we then 
mine dependencies from the tuple-form representa-
tions of the log messages. In our paper, the dependen-
cies mean the causal relationships between the log 
messages of different components. For example, in 
Hadoop, a TaskTracker prints a log message of “Task 
attempt_xx is done” when a map task is finished, and 
then, JobTracker prints a log message of “Task at-
tempt_xx has completed task_xx successfully.” It is 
obvious that the occurrence of the first log message 
causes the occurrence the second log message. The log 
messages’ causal relations are the results of execution 



Page 3 of 6 
 

logic expressed in the source code. 
The execution instances of the same component 

running at different machines often produce the same 
set of logs, and have the same set of dependencies. For 
example, in Hadoop, TaskTrackers running at different 
slave machines are instances of the same TaskTracker 
component, and often produce the same set of logs.  
In this paper, we aggregate the logs produced by the 
same component’s running instances that are distri-
buted in multiple machines for dependency mining. In 
other words, the learned dependencies are the depen-
dencies between log keys of different components. 
Our dependency mining algorithm is based on the fol-
lowing two observations: 

 Co-occurrence observation: If event B depends on 
event A, then B is likely to occur within a short in-
terval (namely dependency interval, denoted as 𝜏𝑑 ) 
after A’s occurrence. 

 Correspondence observation: For most systems, 
two dependent logs often contain at least one 
identical parameter, such as request ID, which can 
help operator to track the execution flow. The cor-
respondence of parameters can help us to find 
dependencies and largely reduce false positives. 
For a dependent log pair “A causes B” that are 

produced by different machines, the temporal order of 
“A prior B” may not be correctly observed due to the 
time difference of machines. In order to overcome the 
possible temporal disorder of log message pairs, we 
derive inter-component dependencies through two 
steps. First, we evaluate whether two log keys have 
correlated occurrences and parameter correspon-
dences in the logs (namely related pair). If two log keys 
are identified as a related pair, then, we estimate their 
dependency direction based on Bayesian decision 
theory.  

4.1 Identification of Related Log Key Pair 

We evaluate the co-occurrence of two log keys 𝑠 
and 𝑞  and the correspondence of their parameters 
PV(s,d1) and PV(q,d2) based on the conditional proba-
bilities  𝑃 𝑄 𝑞  and 𝑃 𝑄 𝑠 . Here, Q  represents the 
quadruple (s, d1, q, d2), 𝑃 𝑄 𝑞  is the probability that 
log key 𝑠 occurs within a dependency interval around 
the occurrence of 𝑞, and the d1

th
 parameter of s is 

equal to the d2
th

 parameter of q , and it can be esti-
mated through the following equation: 

𝑃 𝑄 𝑠 =
𝐶𝑠(𝑄)

𝑂(𝑠)
 

where O(s) is the number of all log messages whose log 
key is s, and Cs(Q) is the total number of log messages 
(denoted as A)  in all log files that satisfy the following 

two rules: 

 𝐾(𝐴) = 𝑠; 

 There exists at least a log message B satisfying that 
K(B)=q, |T(A)-T(B)|<  𝜏𝑑 , and PV(A,d1)=PV(B,d2). 
Here, 𝜏𝑑  is the dependency interval. For each A, all 
such log messages B form a set, denoted as 
𝛺(𝐴,𝑄). 
Similarly, 𝑃 𝑄 𝑞  can also be estimated through 

the same procedure. Based on the conditional co-
occurrence probabilities, we identify each related log 
key pair by assuming that at least one conditional 
probability of quadruple is higher than a threshold 
𝑇ℎ𝑐𝑝  : 

𝑚𝑎𝑥
𝑑1 ,𝑑2

 𝑃 𝑠,𝑑1 , 𝑞,𝑑2|𝑠 ,𝑃 𝑠,𝑑1 , 𝑞,𝑑2 𝑞  ≥ 𝑇ℎ𝑐𝑝  

However, it is time consuming to calculate the 
conditional probabilities of all quadruples because 
there are too many quadruples. For example, if there 
are N log keys, and each log message has M parame-
ters, we will have about 𝑁 𝑁 − 1 𝑀2 quadruples. In 
order to improve the computational efficiency of the 
algorithm, we take the following steps. 

First, we only estimate the above conditional 
probabilities for inter-component log key pairs, be-
cause the inter-component dependencies are more 
interested in the system management and fault locali-
zation. 

Second, we carry out a pre-process to filter out 
some log key pairs that are obviously independent. We 
estimate the conditional concurrency probability of 
𝑃 𝑞 𝑠   which is the probability that log key 𝑠 occurs in 
a dependency interval around the occurrence of log 
key 𝑞: 

𝑃 𝑞 𝑠 =
𝐶(𝑠, 𝑞)

𝑂(𝑠)
 

where 𝐶(𝑠, 𝑞) denotes the number of log messages 𝑙 in 
all log files that satisfy the following two rules (where 
𝜏𝑑  is the dependency interval): 

 𝐾 𝑙 = 𝑠; 

 There exists at least one log message 𝑙′  satisfying 
 𝑇 𝑙 − 𝑇 𝑙′  < 𝜏𝑑  and 𝐾 𝑙′ = 𝑞.  

Similarly, the conditional probability 𝑃 𝑞 𝑠  is esti-
mated through the same procedure. Then, if both 
𝑃(𝑠|𝑞) < 𝑇ℎ𝑐𝑝  and 𝑃(𝑞|𝑠) < 𝑇ℎ𝑐𝑝  are true, we do not 

need to calculate the conditional probabilities of all 
quadruples of this log key pair, because 𝐶𝑠 𝑄  is al-
ways not larger than 𝐶(𝑠, 𝑞). 

4.2 Determine the dependency direction 

For a dependent log key pair, in general, if s de-
pends on q, then the log message of s should occur 
later than the log message of q. However, because log 
messages are usually printed at different machines, 



Page 4 of 6 
 

the time stamps of log messages are recorded as the 
local time of the machines, which are often not pre-
cisely aligned. Therefore, the time stamp of the two 
dependent log messages may be disordered that 
makes it difficult to determine the real dependency 
directions of the related log key pairs. In the paper, we 
determine the dependency directions based on the 
Bayesian Decision theory. 

Given a related log key pair (𝑠, 𝑞), we can find 𝑛 
log message samples of the pair from the training log 
files (𝑠𝑖 , 𝑞𝑖), 𝑖 = 1 ⋯𝑛, and their corresponding time 

stamp pairs  𝑡𝑠𝑖 , 𝑡𝑞𝑖 , 𝑖 = 1⋯𝑛. Because the log time 

stamps 𝑡𝑠𝑖  and 𝑡𝑞𝑖  are recorded as local time, we have 

the following equation: 
𝑡𝑠𝑖 = 𝑡 𝑠𝑖 + 𝛿𝑠𝑖  𝑎𝑛𝑑 𝑡𝑞𝑖 = 𝑡 𝑞𝑖 + 𝛿𝑞𝑖  

where 𝑡 𝑠𝑖and 𝑡 𝑞𝑖  are the absolute occurrence time of 𝑠𝑖  

and 𝑞𝑖  respectively, 𝛿𝑠𝑖and 𝛿𝑞𝑖  are the time alignment 

errors respectively. Therefore, delays of the dependent 
log keys (𝑠, 𝑞) satisfy: 

  𝑡𝑠𝑖 − 𝑡𝑞𝑖 
𝑛
𝑖=1

𝑛
=

  𝑡 𝑠𝑖 − 𝑡 𝑞𝑖 
𝑛
𝑖=1

𝑛
+
 𝛿𝑠𝑖

𝑛
𝑖=1 − 𝛿𝑞𝑖

𝑛
𝑖=1

𝑛
 

 
Let 𝛿𝑠𝑖 and 𝛿𝑞𝑖  , 𝑖 = 1⋯𝑛   be independent and 

identically distributed (i.i.d.) random errors with a 
mean of 𝐸 𝛿 = 𝜇 and a variance of 𝑣𝑎𝑟 𝛿 = 𝜎2. For 
example, in Map-Reduce [14], Map and Reduce com-
ponents are randomly distributed to all computing 
nodes. According to the Central Limit Theorem, the 
following statistic  

Y =
 𝛿𝑠𝑖

n
i=1 −  𝛿𝑞𝑖

n
i=1

n
 

asymptotically conforms to a normal distribution with 

a mean of zero and a variance of 
2σ2

n
. Denoting 

  𝑡𝑠𝑖
−𝑡𝑞𝑖

 𝑛
𝑖=1

𝑛
= 𝜇𝑠𝑞  and 

  𝑡 𝑠𝑖
−𝑡 𝑞𝑖

 𝑛
𝑖=1

𝑛
= 𝑇 𝑠𝑞 , we can find 

that 𝑇 𝑠𝑞  asymptotically complies with a normal distri-

bution with a mean of 𝜇𝑠𝑞  and a variance of 
2σ2

n
, if we 

have enough training log sequences. Based on the 
Bayesian Decision theory, we can determine the de-
pendency direction as follows: 

𝜇𝑠𝑞 > 𝛽 →  𝑇 𝑠𝑞 > 0 → 𝑠 𝒅𝒆𝒑𝒆𝒏𝒅𝒔 𝒐𝒏 𝑞 

or  

𝜇𝑠𝑞 < −𝛽 →  𝑇 𝑠𝑞 < 0 → 𝑞 𝒅𝒆𝒑𝒆𝒏𝒅𝒔 𝒐𝒏 𝑠 

The threshold 𝛽 is used to control the confidence of 
the decision. In this paper, we simply set 𝛽 = 0.005 
seconds. 

4.3 Variance based False Positive Reduction 

In order to further refine the detected dependen-
cies, we remove false positive dependencies by utiliz-
ing the delay information. Our idea is based on the 

observation that the delay’s variance of a false positive 
is often much larger than that of a true positive. The 
reason is that the two log keys of a false positive co-
occur by chance, and their delay values are often quite 
random. On the contrary, the delay distribution be-
tween dependent events often exhibits a typical spike 
[2]. In our implementation, we remove the detected 
dependencies if the variance of delay is larger than a 
threshold. 

4.4 Dependency Pruning 

During the above stage, we identify the dependent 
pairs through exploiting the concurrency of the log 
keys. Some redundant dependent pairs are found. For 
example, in Fig.1, because the log messages 𝑠0  and  𝑠1  
sometime are printed in a very short time period, we 
can find two dependencies, 𝐷1  and 𝐷2, simultaneously. 
Similarly, 𝐷3  and 𝐷4  may also be found by our algo-
rithm. In fact, 𝐷2  and 𝐷3  are redundant dependencies 
in these two cases because they can be inferred from  
𝐷1  and 𝐷4  respectively. In order to obtain a compact 
and clear dependency graph, we carry out a pruning 
operation. It is set as the last step of our dependency 
learning process to cut the redundant dependency 
edges. 

 

s1

s0 q1

D2

Dependency:

D1

s3

s2

q2D4

D
3

Log key 

Transition:  
Figure 1: Dependency pruning. 

5 Experimental Results and Discussion 

In this section, we show the results of our algo-
rithm through mining the dependencies from the Ha-
doop logs. Hadoop [13] is a well-known open-source 
implementation of Google’s Map-Reduce [14] frame-
work and distributed file system [15]. Hadoop is public 
available, so the results in this paper are verifiable and 
reproducible.  

Our Hadoop test bed (v0.19 ) consists of 16 ma-
chines. One machine is used as a master to run Name-
Node and JobTracker. The rest machines are slaves to 
host DataNode and TaskTracker. We apply our algo-
rithm to analyze the logs collected by 10 jobs. Each job 
counts the word number in a large text file with a size 
of 10G bytes. We first use loose parameters, the time 
window size τ as 3 seconds and the probability thre-
shold 𝑇ℎ𝑐𝑝  as 0.5, to obtain a set of detected depen-

dencies (about 150 dependencies are found). Then, we 
manually verify whether they are true or not. We use 



Page 5 of 6 
 

these labeled dependent log key pairs as our ground 
truth. 

Fig.2 shows the rate of false positive and false 
negative dependencies as the value of τ increases from 
0.1 seconds to 3 seconds. From this figure, we can find 
that when the time window size is larger than 1 second, 
the false negative rate does not decrease further. At 
the same time, the curve of false positive also becomes 
flat. Probability thresholds of 0.8 and 0.9 have similar 
false positive and false negative rate for most time 
windows values. Therefore, τ around 1 second is a 
good parameter. Note: the refinement of section 4.3 is 
not used in the experiment of Fig.2. 

 
Figure 2. False positive and false negative rate as the 

time window size increases. 

 
Figure 3. False positive (FP) and false negative (FN) rate 

as the probability threshold increases. 
Fig. 3 shows the false positive and false negative 

rates as the probability threshold 𝑇ℎ𝑐𝑝  increases from 

0.5 to 0.95. The curves with solid label icons are the 
results by applying the refinement mentioned in Sec-
tion 4.3 (with a variance threshold of 0.11), and the 
curves with hollow icons are the results without using 
the refinement. From the figure, we can see that both 
false positive rate and false negative rate are stable 

when 0.8 ≤ 𝑇ℎ𝑐𝑝 ≤ 0.9 . By using the refinement algo-

rithm, we largely reduce the false positive rate, while 
the false negative rate only has a slight increase. 

 The learned dependencies from the Hadoop logs 
correctly describe the control flow between system 
components. For example, a new task added in Job-
Tracker causes a new task lunched by a TaskTracker. 
The more interesting thing is that some detected de-
pendencies can form a dependency chain which can 
also help us to understand the dependency across sev-
eral components. For example, a Reduce task starts its 
commit action, then the NameNode performs a data 
block allocation operation, and the DataNode carries 
out a HDFS_WRITE operation.  

6 Application on Root Error Localization 

In many distributed systems, an error occurring at 
one component often causes execution anomalies of 
other components due to inter-component dependen-
cies. Therefore, a group of related errors from differ-
ent system components are often detected at the 
same time. Figuring out the error propagation path 
and locating the root error site (not root cause) be-
come an important step of problem diagnosis. In this 
section, we show an example to find the relationship 
among a set of related errors using the learned inter-
component dependencies. 

s1s0 s2
s4s3

q1q0 q2
q4q3

Component 1

Component 2

Error 1

Error 2

Transition: Dependency:

 
Figure 4. An example of relate errors. 

6.1 The Basic Idea 

The basic idea of error localization is illustrated in 
Fig.4. In a normal execution of Component 1, Compo-
nent 1 prints log keys from s0 to s4. Similarly, Compo-
nent 2 prints log keys from q0 to q4. In an error case, 
we detect Error 1 and Error 2 in Component 1 and 
Component 2, since a transition from 𝑠2  to 𝑠3  and a 
transition from 𝑞1  to 𝑞2 cannot happen. We call 𝑠3  and 
𝑞2 inaccessible log of Error1 and Error2 respectively. 
Because log item 𝑞2 of Component2 is dependent on 
log item 𝑠3  of Component1, Component2 cannot print 
out 𝑞2  if Component1 does not print 𝑠3 . Therefore, 
given Error1 and Error2, we can conclude that Error1 
and Error2 are related and that Error1 causes Error2 in 
maximum likelihood. This shows the simple and basic 
idea behind our root error localization approach. Due 
to space limitation, we do not address the details. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
τ

False Positive Thcp=0.8

False Negative Thcp=0.8

False Positive Thcp=0.9

False Negative Thcp=0.9

0

0.2

0.4

0.6

0.8

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Probability Threshold

FP with refinement

FN with refinement

FP without refinement

FN without refinement



Page 6 of 6 
 

6.2 Case Study 

JVM memory overflow is a known bug of Hadoop 
v0.19 whose number is HADOOP-4906 [17]. In order to 
easily reproduce the error, we select one slave ma-
chine and set the available memory of the JVM running 
on the machine to a small value e.g. 10M. During the 
execution, a task fails due to memory exhaustion and 
finally causes the Job-Tracker to reassign the task to 
another machine. Our error detection algorithm in [16] 
can detect two errors: one is that the task abnormally 
terminates with a log message of “???

1
 done; removing 

files” in TaskTracker. The other is that JobTracker 
prints task failure information. Based on our learned 
dependencies, we can quickly find that the second 
error is caused by the first one. Although we can ma-
nually obtain this casual information with some basic 
knowledge of Hadoop work flow, our algorithm can 
quickly locates the root error without using the appli-
cation specific knowledge. 

7 Conclusion 

Knowledge of dependences provides an essential 
basis for distributed system management tasks includ-
ing fault localization and anomaly detection. In this 
paper, we propose a technique to automatically dis-
cover inter-component dependencies in a distributed 
system based on unstructured log analysis. We first 
separate log keys and parameters from free form log 
messages, and then discover dependencies by leverag-
ing the co-occurrence of log keys and the correspon-
dence analysis of parameters. Our technique requires 
neither additional system instrumentation nor any 
application specific knowledge. We even do not re-
quire that the time stamps of logs from different ma-
chines are precisely synchronized. Experimental results 
on Hadoop demonstrate the power of our proposed 
technique. To the best of our knowledge, this is the 
first attempt to learn inter-component dependencies 
from console logs in a black-box manner. 

Future research directions include integrating co-
occurrence, parameter correspondence and delay con-
sistence into a uniform probabilistic framework, visua-
lizing the results to give intuitive explanation for hu-
man operators, and applying to root error localization. 

8 Reference 

[1] P. Bahl, P. Barham, R. Black, R. Chandra, M. 
Goldszmidt, R. Isaacs, S. Kandula, L. Li, J. MacCormick, 
D. A. Maltz, R. Mortier, M. Wawrzoniak, and M. Zhang, 
“Discovering Dependencies for Network Management”, 

                                                                 
1
 The identifier of the map task attempt. 

in Proc. of 5
th

 Workshop on Hot Topics in Networks, 
2006. 
[2] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Auto-
mating Network Application Dependency Discovery: 
Experiences, Limitations, and New Solutions”, USENIX 
OSDI’08, 2008. 
[3] M. Gupta, A. Neogi, M.K. Agarwal, and G. Kar, “Dis-
covering Dynamic Dependencies in Enterprise Envi-
ronments for Problem Determination”, in Proc. of 14th 
Int. Workshop on Distributed systems: Operations and 
Management (DSOM), pp.221-233, Oct. 2003. 
[4] P. Barham, R. Black, M. Goldszmidt, R. Isaacs, J. 
MacCormick, R. Mortier, and A. Simma, “Constellation: 
automated discovery of service and host dependencies 
in networked systems”, TechReport, MSR-TR-2008-67, 
April, 2008. 
[5] S. Kandula, R. Chandra, and D. Katabi, “What’s 
Going On? Learning Communication Rules in Edge 
Networks”, SIGCOMM’08, 2008. 
[6] V. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. 
Maltz, M. Zhang, “Towards Highly Reliable Enterprise 
Network Services Via Inference of Multi-level Depen-
dencies”, SIGCOMM’07, 2007. 
[7] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal, 
“Semi-Automated Discovery of Application Session 
Structure”, In Proc. of the 6

th
 ACM conf. on Internet 

measurement, pp. 119-132, 2006. 
[8] M. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, 
A. Sailer, “Problem Determination Using Dependency 
Graphs and Run-time Behavior Models”, in Proc. of 
15

th
 Int. Workshop on Distributed Systems: Operations 

and Management (DSOM’04) , pp. 171-182, Nov. 2004. 
[9] A. Simma, M. Goldszmidt, J. MacCormick, P. Bar-
ham, R. Black, R. Isaacs, and R. Mortier, “CT-NOR: 
representing and reasoning about events in continuous 
time”, In UAI’08, July 2008. 
[13] Hadoop. http://hadoop.apache.org/core. 
[14] J. Dean and S. Ghemawat, “MapReduce: Simplified 
Data Processing on Large Clusters”, In USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, Dec. 2004. 
[15] S. Ghemawat and S. Leung, “The Google File Sys-
tem”, In ACM Symposium on Operating Systems Prin-
ciples”, Oct. 2003. 
[16] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution 
Anomaly Detection in Distributed Systems through 
Unstructured Log Analysis”, submitted to ICDM’09. 
[17] Hadoop bug reporting portal. http://issues.apache. 
org/jira/browse/HADOOP 


	Mining Dependency in Distributed Systems through
	Unstructured Logs Analysis
	Abstract

	Introduction
	Related Work
	Log Message Parsing
	Component dependency mining
	Identification of Related Log Key Pair
	Determine the dependency direction
	Variance based False Positive Reduction
	Dependency Pruning

	Experimental Results and Discussion
	Application on Root Error Localization
	The Basic Idea
	Case Study

	Conclusion
	Reference

