
Evaluating Mobile Apps with A/B and Quasi A/B Tests
Ya Xu

LinkedIn Corporation
2029 Stierlin Court

Mountain View, CA, 94043
yaxu@linkedin.com

Nanyu Chen
LinkedIn Corporation
2029 Stierlin Court

Mountain View, CA, 94043
nchen@linkedin.com

ABSTRACT
We have seen an explosive growth of mobile usage, particularly
on mobile apps. It is more important than ever to be able to
properly evaluate mobile app release. A/B testing is a standard
framework to evaluate new ideas. We have seen much of its
applications in the online world across the industry [9,10,12].
Running A/B tests on mobile apps turns out to be quite different,
and much of it is attributed to the fact that we cannot ship code
easily to mobile apps other than going through a lengthy build,
review and release process. Mobile infrastructure and user
behavior differences also contribute to how A/B tests are
conducted differently on mobile apps, which will be discussed in
details in this paper. In addition to measuring features individually
in the new app version through randomized A/B tests, we have a
unique opportunity to evaluate the mobile app as a whole using
the quasi-experimental framework [21]. Not all features can be
A/B tested due to infrastructure changes and wholistic product
redesign. We propose and establish quasi-experimental techniques
for measuring impact from mobile app release, with results shared
from a recent major app launch at LinkedIn.

Keywords
A/B testing, mobile, quasi-experiments, causal inference

1. INTRODUCTION
It is clear that mobile is taking over the Internet. In the U.S., two
out of three digital media minutes is now happening on mobile.
Without question, mobile app usage has been the single most
important driver by far, contributing to nearly 90% of the massive
mobile growth in the past two years [5]. At LinkedIn, more than
50% our traffic is now coming from mobile, similar to other social
networking companies such as Facebook and Pinterest [3].
Many companies, including LinkedIn, have shifted to a “mobile
first” mindset, focusing their product strategies around mobile. As
a consequence, optimizing for the best user experience in mobile
has been more important than ever. However, mobile optimization
is a space that is a lot less mature than web optimization. Because
of how users consume information on mobile differently, many
lessons learnt by optimizing on the web no longer apply. So even
companies most experienced with web optimization have to start
from the bottom and relearn in the mobile space.
It is not just about coming up with “what” works in mobile, but
more importantly, we need to have methodology and system in
place to “measure” whether an idea works. A/B testing, also

known as controlled experiment, is a standard, widely used
framework to evaluate new ideas and to make data driven
decisions. We have seen much of its applications in the online
world discussed in recent publications, including several past
KDD papers from Google, Microsoft and LinkedIn [9,10,12].
However, none of these papers have a focus on mobile, or mobile
apps.
At LinkedIn, we have seen a drastic increase of mobile
experiments. The growth is more than just proportional to the
amount of development work relative to desktop. We have learnt
that because the real estate on mobile is limited, small changes
tend to have big impact. In addition, A/B testing on mobile is used
even more extensively than it is on desktop, and much of it is
attributed to a key difference between desktop and mobile
development process. Because we cannot ship code to the mobile
app other than building and releasing a new app version, feature
releases in general involve not just the app developers, but also
the app stores (e.g. Google Play or Apple App Store), and the end
users. The app store usually requires a review of the build
submitted, and a new app version is not effective until the end
users update the app. The consequence is that it may take two
weeks or more for any change to reach the majority of users, and
even longer for a coverage of greater than 90%. A/B testing is
hence heavily leveraged to mitigate risk, as it allows us to
evaluate the new feature and gradually release it accordingly,
without having to release a new version.
The fact that we cannot ship code easily to mobile apps, together
with mobile infrastructure and user behavior differences, strongly
influences how A/B tests are conducted on mobile apps. We will
discuss them in depth in Section 4, following the three steps in the
A/B testing process: design, deployment and offline analysis.
In addition to measuring features individually in the new app
version through randomized A/B tests, we also have a unique
opportunity to evaluate the mobile app as a whole using the quasi-
experimental framework [21]. Not all features can be A/B tested
due to infrastructure changes and limitations. For example,
LinkedIn recently rewrote the entire flagship app (Project
Voyager [3]). Even though some new features were tested and
evaluated independently in the old app, many features were
launched for the very first time with the new app release. How all
the features work together was a key question, but unfortunately
we were not able to conduct a randomized experiment on the new
app as a whole. However, because not all users adopt the new
version at the same time, there is a period of time where we have
both versions of the app serving real users. Obviously, simply
comparing the adopters with the non-adopters will suffer from
self-selection bias. However, we can still reasonably establish
causal relationship by carefully removing such bias using quasi-
experimental techniques (also called observational causal
inference methods in some disciplines).
To set the notation and context for both A/B and quasi A/B
testing, we review the Rubin Causal Model [23], a widely used
framework to estimate causal effect. Let 𝑌 be the outcome

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
KDD '16, August 13-17, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4232-2/16/08 $15.00
DOI: http://dx.doi.org/10.1145/2939672.2939703

mailto:yaxu@linkedin.com
mailto:nchen@linkedin.com

variable for user 𝑖, e.g. pageviews, clicks. Let 𝑍 ∈ {0, 1} be the
treatment variable, where 𝑍 = 1 if a user is in treatment
(adopted the new app), and 𝑍 = 0 otherwise. Note that in the
case of mobile adoption, 𝑍 is observed rather than randomly
generated. We also observe 𝑿𝒊, a vector of pre-exposure
covariates, such as industry or connection counts. In summary, we
observe (𝑌 , 𝑍 , 𝑿𝒊) 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛. Under the Rubin Causal
framework, each user has two potential outcomes

𝑌 =
𝑌 𝑖𝑓 𝑍 = 1
𝑌 𝑖𝑓 𝑍 = 0

We are interested in knowing the Average Treatment Effect
(ATE), the difference of the average outcomes between applying
treatment to the entire user population and applying control to the
entire user population. By definition,

Δ =
1
𝑛

𝑌 −
1
𝑛

𝑌

Of course, Δ is never known because only one of 𝑌 and 𝑌
can be observed (The fundamental problem of causal inference
[22]). Instead, it is usually estimated by

Δ =
1

𝑛
𝑌

{ , }

−
1

𝑛
𝑌

{ , }

 = 𝑌 − 𝑌

Two important assumptions are required for Δ to be an
unbiased estimator of Δ . (1) Stable Unit Treatment Value
Assumption (SUTVA), which states that the behavior of each user
in the experiment depends only on his own treatment and not on
the treatments of others. (2) Ignorable Treatment Assignment
Assumption (also known as unconfoundedness) [21], which states
that treatment assignment is independent of the two potential
outcomes, i.e.

(𝑌 , 𝑌) ⊥ 𝑍
Both assumptions are naturally satisfied in most controlled
experiments. However, the unconfoundedness assumption is often
violated when there exists variables that correlate with both
(𝑌 , 𝑌) and 𝑍 . As an example, we have observed that LinkedIn
members with premium accounts are more likely to adopt a new
version faster. Since premium members are in general more
engaged on the site, we are likely to conclude a significantly
positive impact even if the true Δ is 0 or negative. In fact, the
unconfoundedness assumption can be extended to

(𝑌 , 𝑌) ⊥ 𝑍 | 𝑿𝒊
where 𝑿𝒊 are the confounding covariates. As a result, if we can
identify all such covariates, we can still postulate a model for
𝐸(𝑌 |𝑍 , 𝑋) and estimate ATE based on

𝛥′ =
1
𝑛

(𝐸(𝑌 | 𝑍 = 1, 𝑋) − 𝐸(𝑌 | 𝑍 = 0, 𝑋))

This is a fundamental concept of quasi-experimental framework.
We will discuss more formally on this in Section 5.
Here is a summary of our contributions in this paper:
x As far as we know, we are the first to study extensively how

to evaluate mobile app through both A/B testing and quasi
A/B testing. Moreover, we are the first to propose and
establish a quasi A/B testing framework to evaluate mobile
app release.

x We identify the key differences of conducting A/B tests on
mobile vs. on desktop.

x We compare and propose quasi-experimental techniques that
have shown to be very successful in removing adoption bias,
and are used in major mobile app release at LinkedIn.

x We share insights on how users adopt new app versions,
including insights on how to measure novelty effect.

The paper is organized as follows. Section 2 starts with a review
of the existing literature in all the three areas of A/B testing,
mobile A/B testing and quasi A/B testing. Section 3 describes the
process for mobile app releases and its implications on how we
evaluate a new release. Section 4 focuses on A/B testing in mobile
app and how it is different from testing on the web. Section 5
proposes a quasi A/B testing framework to evaluate app release,
with results shared from evaluating Voyager [3]. Section 6
concludes with future work.

2. LITERATURE REVIEW
In this section we review the theoretical foundations and
applications of A/B testing and quasi A/B testing as well as
existing tools and products for mobile testing.
The theory of controlled experiment dates back to Sir Ronald A.
Fisher’s experiments at the Rothamsted Agricultural Experimental
Station in England in the 1920s [6]. Since then, many textbooks
and papers from different fields have provided theoretical
foundations [7,8] for running controlled experiments, including
the most widely adopted Rubin Causal Model [22,23]. While the
theory may be straightforward, the deployment and mining of
experiments in practice and at scale can be complex and
challenging [15]. In particular, several past KDD papers have
discussed at length the experimentation systems used at Microsoft
Bing, Google, Facebook and LinkedIn [9,10,11,12], including
best practices and pitfalls [13,14].
On the other hand, there are many situations where running a
controlled experiment is infeasible and one has to study causal
impact based on observed data. [21] discusses the assumptions of
applying the Rubin Causal Model to real evaluations. [24, 25]
show that the Ignorable Treatment Assignment Assumption is
associated with the assumptions of OLS regression. Many models
have been developed to address the challenges of observational
studies, such as propensity score models [21], Heckman’s sample
selection model [19] and Doubly Robust Estimation [18]. As far
as we know, quasi-experiment techniques have been more widely
utilized in econometrics and clinical studies [20,26], and there are
few studies of natural experiment in the Internet world. A recent
work in this area [17] described a framework for estimating causal
effect through identifying mediators and its application to
advertising.
While we focus on in-house A/B testing solutions for mobile app
development, there are companies specializing in mobile A/B
testing, such as Apptimize [27], Optimizely [28] and Mixpanel
[29]. These companies provide third party platforms and tools that
help mobile developers test in mobile. Other than these
commercial products, there seems to be very little literature
focusing on mobile A/B testing that we are able to find.

3. MOBILE APP RELEASE PROCESS AND
ITS IMPLICATIONS
In most online web development, agile software development
process is highly promoted. Being able to iterate fast and improve
continuously is crucial for both risk minimization and feature
development. Most importantly, it is key to ensure the best user
experience because any unexpected issues can be fixed or
mitigated as soon as possible. Such fast iterations are feasible for

an online website because all changes are controlled on the server
side. When a user visits a site, the server pushes the data to the
browser to render. New feature releases can happen constantly
and continuously without interruption on the end users. In an A/B
test, whether the user sees A or B is fully managed by the server
and is entirely independent of the end users behavior. Take
Linkedin.com as an example. Whether to show a red or yellow
button, whether to show a newly revamped homepage or not -
these are all changes that can happen instantaneously after server
side deployment.

However, feature release process and experimentation in a mobile
app are quite different. Instead of the app developers having full
control over the deployment and release cycle, the app release
process involves all three parties, the app owner (in our case,
LinkedIn), the app store (e.g. Google Play or Apple App Store),
and the end users. After all the code is ready, the app owner needs
to submit a build to the app store for review. Assuming the build
passes review (which in the case of iOS takes about a week),
releasing it to everyone does not mean that everyone who visits
the app will have the new version. Getting the new version is a
software upgrade, same as updates we get on our desktops where
we can delay or ignore while continuing to use the old version.
Some end users take weeks to adopt.

It is worth pointing out that Google and Apple have very different
review policies. While it takes about a week to go through
Apple’s review process, Google Play store’s review is almost
instantaneous [1]. In addition, Google allows staged roll out of a
new version [2], while Apple app store only supports full roll out.
Such differences have important implication on app development
and evaluation, as we will cover in Sections 4 and 5.

For most web facing companies who truly believe in agile
development, it is painful to have to wait for 2+ weeks for a
change to take effect, especially when our end users are dealing
with a buggy app. What’s worse, depending on how fast users
adopt new versions, it may take even longer to reach more than
90% users. We have more details on the adoption process in
Section 5.1. Moreover, even if new app versions can be built and
released every other week, it is annoying from the users’
perspective to have to constantly update the app.

This is not to say that we cannot A/B test on mobile. As a matter
of fact, there are by and large three kinds of experiments that we
can conduct on mobile app.

1. Server-side changes: There are many features on mobile
that are backend driven. Relevance features are good
examples in this category. Experiments on such changes are
conducted the same way as experiments on the web [9,10].
Because the code changes happen on the server side only, it
only takes server side deployment for the changes to take
effect, which can happen independent of the app release.

2. Client-side changes: There are many features that need to be
controlled from the app itself, including, for example, the
look and feel of a button and the number of feed items to
fetch from the backend at a time. Any code changes on these
features need to be coupled with an app release, and hence
are subject to the potential delay. Because of this, there are
quite some differences when conducting A/B tests on the app
itself. We have devoted Section 4 to go into depth on this
topic.

3. Big changes that cannot be A/B tested: There are cases
where many changes have to be bundled together and it is
impossible to put them all behind an A/B test due to

infrastructure changes and limitations. For example,
LinkedIn recently rewrote the entire flagship app (Project
Voyager [3]) and we were not able to experiment the new
app as a whole. In the web world, if we cannot split the
traffic to two different versions of the site, we are out of luck
- once we flip the switch to the new site, we lose the ability
to measure the performance of the old site side-by-side. The
only comparison that is possible between the new & old sites
is a before & after comparison, which is known to suffer
from confounding effects such as seasonality. However, for
mobile app releases, because not all users adopt the new
version at the same time, there is a period of time where we
have both versions of the app serving real users. This gives
us an opportunity to conduct a quasi-experiment. Details are
discussed in Section 5.

4. MOBILE A/B TESTING
As we have mentioned in Section 3, whenever possible, features
on mobile apps are tested through controlled experiments. Since
server-side changes are usually experimented the same way on
app and web, and we have already shared in details how web A/B
tests are conducted at LinkedIn in KDD’15 [12], we focus our
discussion in this section on the kind of experiments that are more
specific to mobile - experiments on the client-side features. Recall
that these are features that are controlled from the app, and any
code changes on these features require a new app release.

The architecture for a web-based A/B testing system usually has
the three essential components, also corresponding to the three
steps in an A/B testing process: (1) design (2) deployment (3)
offline analysis [9,12]. The same three components are needed for
a mobile A/B test. Therefore, we follow a similar structure for our
discussion in this section. We focus on highlighting the key
differences between app and web testing, while leaving the
similarities for readers to follow up in other papers [10, 11].

4.1 Design
Experimental design is arguably the most important step in the
testing workflow to get good and meaningful results. As Sir R. A.
Fisher put it [13] “To consult the statistician after an experiment is
finished is often merely to ask him to conduct a post mortem
examination. He can perhaps say what the experiment died of.”
To be more concrete, design is usually the phase when we
determine what we want to experiment on, the goal, the targeted
population, the traffic split among variants, and the duration of the
experiment.

As described in Section 3, because of the constraint with the
mobile app release process (new code cannot be shipped to end
users easily), A/B testing on any client-side changes needs to be
“planned ahead”. In other words, all experiments, including all the
variants for each of these experiments, need to be coded and
shipped with the current app build. Any new variants, including
bug fixes on any existing variant, have to wait for the next app
release. This has the following two implications: (1) A/B testing
has become more extensive. Whenever possible, new features are
always rolled out under A/B tests. One essential function of A/B
tests is risk minimization. It allows us to roll out a new feature to
a small, randomized user group to evaluate. More importantly, in
a mobile world, if a feature doesn’t perform as we intended, we
can instantly revert back to an equivalent of the older app version
by shutting down the traffic to the test, without having to go
through a client release cycle (which can take weeks for slowly
adopting users). The benefit of preventing our end users from
being stuck with a faulty app for weeks really helps promote a

truly “test everything” culture among our developers. (2)
Parameterization is used extensively to allow flexibility in
creating new variants without a client release. This is because
even though new code cannot be pushed to the client easily, new
configurations can be passed in payload, which effectively creates
a new variant as long as the client understands how to parse the
configurations. For instance, we want to experiment on the
number of feed items to fetch from the backend at a time. We can
put our best guesses in the code and experiment only with what
we have planned in place, or we can parameterize the number and
have the freedom to experiment on any numbers after the release.

Real time targeting is more prevalent in mobile experiments, as
the three most widely used targeting attributes (platform,
operating systems and app version) are only available at runtime.
Many features are unique to a particular platform and OS.
Moreover, the same feature usually performs very differently
between tablet and phone, and between iPhone and Android.
Therefore, when designing a mobile experiment, we usually need
to consider targeting a specific platform and OS combination. In
addition, many experiments only exist in certain app versions.
Obviously, newly added experiments do not apply to older app
versions. At the same time, some experiments may only exist in
older versions. It is important to target the correct version when
rolling out an experiment.

4.2 Deployment
After design is complete, deploying an experiment in web setting
usually just involves two components, the application layer that
implements the alternative variant behavior according to
experiment assignment, and the service layer that is a distributed
cache and experiment definition provider [12]. In the mobile
setting, the application layer is logically broken into two parts:

1. Server side: It communicates with the service layer, passes
experiment assignment information to the mobile client, and
logs the experiment event.

2. Mobile client side: It periodically fetches the experiment
assignment information from the server and executes it
accordingly.

As we mentioned earlier, the experiment implementation on the
mobile client side needs to be shipped with the new app version.
Once that is done, we can activate the experiment to enable a
small percentage of traffic on treatment. Similar to web
applications, the activation information propagates from the
service layer to the application server every 5 minutes. However,
this does not mean the experiment is fully deployed. As a matter
of fact, the deployment is usually delayed on the mobile client by
at least one user session. This is because new assignment
information is usually only fetched at the beginning of each
session. In addition, these new assignment usually does not take
effect till the next session. This is because we do not want to
change a user’s experience after they have started the session
already. For heavy users who visit multiple sessions a day, such
delay is small, but for light users visiting once a week, the
experiment does not actually take place till a week later. Such
delay and how it depends on user’s visitation frequency imply that
not only does the signal appear to be weaker at the beginning of
the experiment, it is also more biased towards reactions from
heavy users.

Moreover, to reduce the number of communications with the
server, assignment information is fetched for all active
experiments at once and then cached on the mobile client. This is
the case regardless of whether an experiment is actually triggered

or not. For example, there is an experiment that only affects users
who visit the “Me” tab. However, the assignment for that
experiment will still be fetched even if a user doesn’t visit “Me”
during that session. Because experiment information is tracked on
the server side, such “over fetching” means we are marking more
users as affected by the experiment than there actually are,
effectively diluting the signal when we want to evaluate the “real”
impact. One potential fix to this problem is to only track
experiment event after an experiment assignment is actually used,
not when it is fetched.

4.3 Offline Analysis
By and large, the analysis of mobile app A/B tests is done
similarly as web experiments. As mentioned in Section 4.1,
experiments can be ramped differently for different platforms and
operating systems. Even experiments that are ramped uniformly
across the population, the performance in these segments can be
drastically different. In many experiments we have conducted, it
is not unusual to see a positive lift on one platform and a negative
impact on the other. It is therefore important to always drill down
to examine the per-segment impact in addition to the overall site-
wide impact.

Besides the dilution and the delay effect discussed in Section 4.2,
one thing to watch out for is the potential interactions between
different user interfaces. Many of our members access LinkedIn
through desktop, mobile app and mobile web. While it is unusual
to drive traffic between desktop and mobile in a session or a day
(we don’t expect to change user’s mobile usage drastically in a
short period of time), it is, however, common to shift traffic
between mobile app and mobile web. For example, many mobile
users visit LinkedIn via clicking on their emails. The email link
can either take the user directly to the app (assuming he or she has
the app installed), or to the mobile web. When analyzing an
experiment, it is important to know whether an experiment may
cause or suffer from such an interaction, in which case, we cannot
evaluate app performance in isolation, but need to look at user
behavior holistically on both mobile app and mobile web. In
addition, because user experience on the app tends to be better,
directing traffic from the app to the web tends to bring down the
total engagement, which may be a confounding effect not
intended by the experiment itself.

5. MOBILE QUASI A/B TESTING
We have so far highlighted the special challenges when
conducting randomized experiments on mobile app compared
with web testing. Most of the differences result from the fact that
mobile app release cycle involves not just the app owner, but also
app stores and end users. On the other hand, the exact same
differences also create an opportunity to evaluate changes that we
are not able to A/B test on. These tend to be big changes that
involve fundamental infrastructure improvements and holistic
product redesign. One such example is LinkedIn’s recent release
of the new flagship app (Project Voyager [3]).
To be more concrete, the opportunity to evaluate such big releases
exists because of the following: First, users take time to adopt the
new app. The adoption period creates a natural experiment.
Second, Google supports staged roll out of an app. Even though
neither enables a fully randomized experiment, we can leverage
both to measure the performance of a new app version through a
quasi-experimental study. As we will lay out in this section, such
quasi-experiment, coupled with thorough validation, is able to
estimate the impact from a new app release with little bias, as
demonstrated by results from our recent Voyager launch.

This section is organized as follows. We start in Section 5.1 with a
deep dive into how mobile app adoption works, who the adopters
are and how the adopter group evolves over time. This is crucial
in helping us come up with quasi-experimental techniques to
adjust for adoption bias. Section 5.2 reviews the basic quasi-
experiment methods in the context of evaluating app release. This
is not meant to be a comprehensive literature review, but to
establish the notation and building blocks for the next section. In
the final Section 5.3, we go into depth discussing and comparing
the techniques we use to evaluate the Voyager release. Separate
methods are needed for iOS and Android, as the Android release
was a 20% staged roll out during the evaluation period.

5.1 Mobile App Adoption
Every new app version takes a while to propagate through the user
population, as it requires upgrade from the end users. Both
Android and iOS give users a lot of flexibility in managing how
they want to upgrade. By and large, there are three options: (1)
automatically update (2) automatically update only if there is Wi-
Fi access (3) manually update. Obviously the choice affects the
probability to adopt. The default setting of both operating systems
is option (2), with the difference that Android notifies users after
the update completes, but iOS updates quietly in background.

The choice of the update options and the ease of access to Wi-Fi
are the two most important variables that impact the likelihood of
adoption over time. To add to the complexity, we have no
visibility into whether a user has updated to the new version until
he or she visits the app. One can think of modeling such
mechanisms and relationships with a Latent Factor Model (with
missing data) to reveal and understand these underlying variables
[30]. Since our focus is to evaluate the app performance by
adjusting for the intrinsic adoption bias, we instead look to
understand who these adopters are and what the key differences
are between the adopters and non-adopters.

5.1.1 Adoption Over Time
Because our member populations are intrinsically different across
OS, we observe very different adoption curves between Android
and iPhone (Figure 1, Left). Adoption is much faster on iPhone,
especially during the first couple of days. As we can see in Figure
1, the adoption rate that takes Android a week to reach takes only
about three days on iPhone. In general, adoption tends to slow
down after a week on both OS. There are some people who stays
on the older version for weeks or months before they adopt, and
they tend to be the same group of users for each release, likely
those who select manual update option on their device. Note that
even though the plot only uses data from the recent major release
with significant PR pushes, almost exact same plots are observed
from other minor historical releases, indicating little social effects
on adoption of newer app versions.

From the adoption mechanism described above, it is not surprising
to see that adopters tend to consistently adopt through multiple
historical app releases. As shown in Figure 1 (Right), a previous
adopter is in general 2 – 3 times more likely to adopt again than a
previous non-adopter. Note that the risk ratio tends to be smaller
in the earlier days. This indicates that historical adoption pattern is
less predictive of future adoption shortly after launch. This can be
explained by the fact that whether a user adopts or not is largely
driven by his or her choice of auto-update options and access to
Wi-Fi. Conditional on the same user, we can treat the Wi-Fi
availability as a random process independent of users’ visit to
LinkedIn. Therefore, whether a user adopts shortly after release

has a large random component and is hard to predict based on
historical adoptions.

Figure 1. Left: adoption rate over time. Right: the probability of adopting in
current release is higher for previous adopters than for previous non-adopters.

5.1.2 Adopters vs. Non-adopters
Among the adopters, there is a big difference between those who
adopt on day one and those who adopt on day 14. We group the
adopters into cohort 1 through 14 depending on the day they
adopt. As show in the heatmap (Figure 2), it is clear that users
who adopt earlier are more engaged than the users who adopt
later. Also note that even though the diagonal has higher values, it
is not an indication that users are more engaged on adoption day.
It is an artifact that we don’t know users’ adoption status until
they visit the app, and hence by definition users are active on their
adoption day.

Figure 2. Engagement by adopter cohort. Earlier adopters are more engaged.

Now let’s turn to adopter and non-adopter differences. Note that
both adopters and non-adopters are active during the analysis
period, and their adoption labels can change over time as more
people adopt. Figure 3 (Left) plots the difference as percentage
delta of a key engagement metric between adopters and non-
adopters. The data used is from a minor historical release that is
not supposed to create any actual impact on metrics. Interestingly
enough, when the analysis period is a single day, the difference
starts at over 50%, then drastically decreases to below 10% after a
week. However, if we look at cumulative differences cross day,
the percentage delta stays at above 30% throughout the entire
week! Similar trend is observed for almost all metrics we looked
at. It turns out adopters tend to be active on more days. So if we
accumulate their activities over time, the adoption bias is bigger.
This can be explained by the simple equation below, where the
cumulative metric can be decomposed as users’ engagement on an
active day with a multiplier of total active days. Indeed, by day
seven, an average adopter is active on 62% more days, explaining
the majority of the difference in the cumulative engagement.

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡
𝑈𝑈

=
𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡
𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑎𝑦𝑠

∗
𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑎𝑦𝑠

𝑈𝑈

There are two implications. First, without modeling for adoption
bias, we can effectively mitigate it by comparing adopters and
non-adopters in a smaller time window. However it assumes the
number of visit days is not impacted by the treatment, which
should be tested separately. Second, as shown in Figure 3 (Right),
if we control for the days users are active, the difference between
adopters and non-adopters become much smaller (from over 50%
to less than 20% for day one), indicating historical active days is a
strong covariate for adjusting adoption bias.

It is worth noting that some users take more than two weeks to
adopt, but they are as active as the adopters. These are likely users
with auto-update off. It seems that users’ choice of auto-update
option is fairly independent of their engagement with LinkedIn.

Figure 3. Left: Engagement differences between adopters and non-adopters
(A/A). Single-day difference decreases drastically over time. Right: The within
cohort differences between adopters and non-adopters are much smaller.

5.2 Common Quasi-Experiment Techniques
As we have already seen in Section 5.1, there are big differences
between adopters and non-adopters. Simply comparing those who
are on the new app with those on the old app will give a
misleading estimate of treatment effect. In this section, we
evaluate common statistical techniques to reduce adoption bias; in
particular, methods based on OLS regression and propensity score
models.

5.2.1 OLS Based Methods
Assume our metric of interest follows a linear model:

 𝒀 = 𝛽 + 𝒁𝛽 + 𝑿𝜷𝟐 + 𝝐 (1)

where 𝒀 = (𝑌 , … 𝑌) is the outcome vector for users 𝑖 = 1, … , 𝑛,
𝒁 = (𝑍 , … 𝑍) is the dichotomous variable of treatment, and
𝑿 = (𝑿𝟏, … 𝑿𝒏) is a matrix representing all the covariates that
correlates with both 𝒁 and 𝒀 (e.g. historical engagement metrics).
Under this model, the coefficient 𝛽 is the ATE under the Rubin
Causal framework. If the covariates 𝑿 are omitted, the OLS
estimator of 𝛽 can be biased, and

𝑏𝑖𝑎𝑠 = (𝑫 𝑫) 𝟏𝑫 𝑿𝜷𝟐 (2)

where 𝑫 = (𝟏, 𝒁). Note that the bias is zero only if X is
independent of D (so 𝑫 𝑿 = 0, which is true for randomized
experiments) or that X does not predict Y (so 𝜷𝟐 = 0).

Practically such bias gets smaller if major covariates that
confound the treatment assignment (𝒁) and outcome variable (𝒀)
are included in the regression model. However, it is not possible
to prove that all non-ignorable covariates are included. In our
applications, we are able to evaluate the models based on a
validation framework to be discussed in Section 5.3.

There are some potential improvements on the OLS model:

1. It is unlikely that the relationship between the response
variable and the covariates is linear. We can consider
applying Box-Cox transformation [31] before fitting the
model.

2. We can generalize the treatment model (1) to an endogenous
switching model by allowing for interactions between the
treatment variable and the covariates. The model can then be
rewritten as

𝒀𝟏 = 𝑿𝟏𝜷𝟏 + 𝝐𝟏 𝑖𝑓 𝑍 = 1 (3)

𝒀𝟎 = 𝑿𝟎𝜷𝟎 + 𝝐𝟎 𝑖𝑓 𝑍 = 0 (4)

where two equations are fitted separately using data from adopters
and non-adopters respectively.

Interestingly, looking at Equation (3) alone, the problem becomes
a classical missing value problem where non-adopters are clearly
missing at “non-random”. Therefore, we can also apply many
techniques that address missing value problems to estimate
Equation (3) and (4) separately. The method we considered in
Section 5.3 is the one proposed by Heckman [19], which models
the selection process based on probit regression and assumes that
the error term in the probit model and the linear regression are
bivariate normally distributed.

5.2.2 Propensity Score Based Methods
Another family of approaches that have been developed to correct
for selection bias is through the propensity score, i.e. the
probability of receiving treatment. The propensity score is usually
estimated through a logistic regression, defined as

𝑃(𝑍 = 1|𝑋 = 𝑥) =
𝑒𝒙𝜷

1 + 𝑒𝒙𝜷

The score can be used for

1. Matching or subclassification. The intuition is that samples
with similar propensity scores can be considered as
counterfactuals. By reducing to a one-dimensional score, one
can incorporate potentially many covariates that have
predictive power on treatment selection and still obtain
reasonable matched sample sizes.

2. Weighting. With the Rubin-causal counterfactual
framework, one can show that given the true probability of
being treated we have 𝐸(()) = 𝐸(𝑌) [16]. Hence we

can use 𝑍 = 1 𝑋 as weight for adopters (and

𝑍 = 1 𝑋 as weight for non-adopters). However, such
inverse weighing mechanism assumes that the propensity
score is the true probability of being treated. A more recent
class of estimators combines the OLS method and propensity
score inverse weighing models. Such Doubly Robust
Estimators are consistent as long as at least one of the linear
model or the propensity score model is correctly specified
[18].

5.3 Evaluating Voyager Release
As we have mentioned earlier, LinkedIn has recently redesigned
and rebuilt our flagship app from scratch [3]. The new app, code
name “Voyager”, should be considerably more intuitive and
useful. One key challenge we faced was how to evaluate whether
users indeed are benefiting from using the new app. If we were
able to A/B test the app, it would have been an easy question to
answer. However, with the drastic changes on both backend and
frontend infrastructure, it is impossible to test all the changes in a
randomized, controlled setting. The closest to A/B test we can get

is to leverage Google Play store’s staged roll out functionality.
But even with the staged roll out, we still have to face adoption
bias, and therefore cannot analyze the results as a simple A/B
comparison.

As we mentioned earlier, the biggest challenge of any quasi-
experimental method is how to validate that the causal
relationship is indeed true and not due to some omitted variables
in the model. Fortunately, we are able to have a validation
framework based on historical data. Historically, we release new
app versions to app stores periodically. These regular releases
usually ship no more than minor bug fixes, which create a unique
opportunity to (1) understand the adoption behavior (section 5.1)
and consequently utilize it to build better quasi experiment
models; (2) evaluate the validity of a model. These historical
releases essentially serve as A/A tests, as it is reasonable to
assume that such incremental releases only cause minor impact
and the true average treatment effect (ATE) is close to 0. In
addition, we have also observed that those validation results hold
consistently across multiple historical versions.

Unless specified, all results discussed from here on are cumulative
up till a specific day. Even though single-day results tend to suffer
less from adoption bias (as seen in Section 5.1), it makes the
assumption that the new app does not make users visit more (or
less) days. With a release as big as Voyager, it is not a plausible
assumption.

Because of the differences in how we roll out the app in iOS and
in Android, we have to use different quasi A/B methodologies to
evaluate iOS and Android separately, which we share in sections
below.

5.3.1 iOS
Unlike in Android, there is no opportunity to release an app
version to a randomized percent of users in iOS. This makes the
adoption process fully observational. Evaluating Voyager in iOS
becomes a “classical” quasi-experiment problem and existing
techniques discussed in Section 5.2 should apply directly with
only minor improvements. In this section, we compute the bias of
each method during the week after release (in terms of percentage
delta) for a key engagement metric. To make the comparison fair,
the same set of covariates are used across methods. All results are
based on a minor historical iOS release (an A/A release).

Before we get to the comparison results, there are a couple of key
learning from building the quasi-experiment models.

First of all, many non-adopters become adopters after a couple of
days. As we have observed in Section 5.1, whether a user adopts
shortly after release is somewhat random due to Wi-Fi
availability. Such random perturbation creates samples that are
very similar in terms of covariates, but with opposite adoption
status. These samples confuse the propensity model and make it
harder to predict, as we can see in Figure 4 (Left). The baseline
AUC is only at 0.65 in the first day compared with 0.82 on day
seven. This observation leads us to remove from the non-adopter
group those users who in fact are very likely to adopt based on
historical adoptions. By removing these “random” non-adopters in
the early days, we are able to get an AUC score of close to 0.8
even on day one (green curve). Any improvement for the early
days is substantially more valuable in the production environment,
as it really helps identify problems early and iterate fast.

Figure 4. Left: AUC of the propensity model; Right: Bias of various quasi
methods evaluated for the iOS release.

Second, it is crucial to include the right features. We have
explained the rationale on the choice of some features based on
users’ adoption behavior in Section 5.1. As directly illustrated in
Figure 4 (left), removing one covariate (e.g. OS Version) can
decrease the AUC substantially.

As shown in Figure 4 (Right), the raw comparisons are extremely
biased, especially in the first days after launch. The amount of
adoption bias reduces from about 65% to 40% after a week. The
various methods have similar performance over time, with the
endogenous OLS model having a slightly smaller bias. Overall,
these methods are able to largely reduce adoption bias to about
18% on day one to about 7% on day seven.

5.3.2 Android
Play store makes it easy for app developers to do a staged roll out
[2]. We can choose to make the new version available to only a
percentage of users. This applies to both existing app users and
new users downloading from the Play store. It is a great way to
minimize risk and collect feedback from real users. It may not be
intuitive at first, but even though these users are randomly
selected, we are not able to measure the staged roll out as a
regular A/B test. The reason is because from our own tracking, we
can only tell whether a user visits with a new app or an old app,
but not their actual randomized experiment assignment. As
demonstrated in Figure 5, among those visiting with an old app,
we cannot differentiate those who are in the control bucket (entire
B group) from those who are non-adopters in the “eligible” bucket
(𝐴 group). If we naively compare members on the new app with
members on the old app, we would be comparing 𝐴 with the rest,
and hence suffer from the same adoption bias (or self-selection
bias) as a full roll out.

Figure 5. Illustrate how adoption bias exists even in Google staged roll out.

The problem, however, is a little different. In a full roll out, other
than the minor random perturbation to the label during the first
couple of days (due to Wi-Fi access), the adopters are intrinsically
different from non-adopters. Most quasi-experiment techniques
described in Section 5.2 try to remove such intrinsic difference by
modeling directly on adoption status. For example, propensity

score models build a logistic regression using adoption status as
response. When the actual adoption status is determined by a
combination of randomization and user intrinsic behavior, such
models work poorly. This is because the signal that comes with
the status is weak. The 𝐵 users who were non-adopters can
become adopters with simply a reshuffle, which obviously cannot
be modeled by any user variables.

At the same time, there is a bright side to the unique situation. In a
20% roll out, for every adopter we expect there to be four non-
adopters who are similar to him. If we have a methodology that
can identify those “would-be” adopters, we are all set. To
successfully reduce adoption bias, such method needs to have an
extremely low false positive rate, even if that leads to more false
negatives. We illustrate the idea in the following.

Assume we have a selection criteria 𝑆 to pick out potential
adopters. Apply such criteria to the two groups of users observed
(𝐴 vs. 𝐴 + 𝐵 + 𝐵). With high false positives and zero false
negatives, we have 𝑆(𝐴) = 𝐴 , and

 𝑆(𝐴 + 𝐵 + 𝐵) = 𝑆(𝐴) + 𝐵 + 𝑆(𝐵) > 𝐵

Since 𝐴 and 𝐵 are the two comparable user groups, such
selection criteria create bias. The higher the false positive rate is,
the worse the bias gets. On the other hand, if we have only false
negatives and no false positives, we get 𝑆(𝐴) ⊂ 𝐴 , and

 𝑆(𝐴 + 𝐵 + 𝐵) = 𝑆(𝐵) ⊂ 𝐵

Since 𝐴 and 𝐵 are comparable, 𝑆(𝐴) and 𝑆(𝐵) are comparable
as well. As long as the false negative rate is not too high and
𝑆(𝐴) is still a representative subset of 𝐴 (i.e. out-of-sample bias
is small), the comparison between 𝑆(𝐴) and 𝑆(𝐵) is meaningful.
In Section 5.3.2.1 and 5.3.2.2 below, we propose two methods
that are guided by such intuition.

5.3.2.1 Geometric Distribution Model
The idea is to separate the “would-be” adopters (𝐵) from the rest
of the non-adopters by directly modeling their adoption
probabilities. By selecting only users with high propensity to
adopt in both adopter and non-adopter groups, we hope to achieve
high precision in identifying comparable users. Note that different
from the usual propensity score modeling, we only use historical
data to model the adoption probabilities. The actual adoption
status itself is only used in the final step as treatment assignment
label.
As we discussed in Section 5.1, the adoption probability increases
as time goes by. We therefore need to model 𝑝 , the probability
for member 𝑖 to adopt on day t. As described in section 5.1, we do
not know whether a member has adopted the new app version
until he or she visits our app. To simplify the problem, we assume
that every member 𝑖 has a chance of 𝑝 to show up as an adopter
each day they visit, and that the probability of adopting on day 𝑡
follows a geometric distribution

𝑝 = (1 − 𝑝) 𝑝

where 𝑎 is the number of active days a user has had by day t.

Based on data from historical adoptions, we can compute the
maximum likelihood estimator (MLE) for 𝑝 to be

�̂� = argmax (1 − 𝑝) 𝑝 =
∑ 𝐼

∑ 𝐼 + ∑ 𝑘

where 𝑘 is the number of active days user 𝑖 had before adopting
historical app version 𝑗, with 𝑗 = 1, 2 … 𝑠, and 𝐼 be the indicator
function of whether user i adopted version j. Note that in our
application, we capped 𝑘 at 14 days, so if user 𝑖 did not adopt by
day 14 for version 𝑗, we have 𝑘 = 14 and 𝐼 = 0.

Finally, on each day 𝑡 after Voyager release, we compute the
probability that user 𝑖 adopts by day 𝑡 to be 1 − (1 − �̂�) ,
which is the cumulative probability based on the actual number of
active days we observe. To get the treatment effect, we only select
users with 1 − (1 − �̂�) > threshold. The threshold is chosen
based on A/A cross-validation results.

The results (Figure 6, Left) show that such method is able to
correct for almost all the selection bias towards the end of the
adoption week. However, regardless of how high a threshold we
pick, the precision in the first few days is poor. This echoes our
analysis in Section 5.1 where we observed that adoption in the
first days is hard to predict.

Figure 6. Left: Bias of the geometric distribution model. Right: Bias of the
doubly robust with matching model. Both are for Android 20% roll out.

5.3.2.2 Doubly Robust with Matching
As we mentioned early, propensity score models do not work well
in the randomized setting. However, because there is supposed to
be more users in the non-adopter group who are similar to the
adopters, matching directly on covariates themselves is supposed
to be an easier task than it is in the full roll out case (as in iOS).
There are various methods that perform matching based on
covariates, and they all trace back to two that are the most
fundamental:

1. Exact matching: This is the technique that matches each
adopted user to all possible non-adopters with exactly the
same values on all the covariates.

2. Nearest neighbor matching: This method selects the non-
adopters who are closest to each individual in the adopter
group in terms of a distance measure specified. The selection
process can be done in a couple of ways: (1) a “local” greedy
approach that chooses the closest match one at a time, in
which case it matters which adopter gets processed first; (2) a
“global” optimal approach that finds the matched users with
the smallest average absolute distance across all the matched
pairs [2].

Neither the local nor the global nearest neighbor approaches can
be easily computed in a parallelizable fashion, which makes
scaling it to millions of users a hard problem of its own. In
addition, on a smaller test data set we tried, the nearest neighbor
technique tends to under perform, and highly affected by the
distance measure chosen, particularly because we have many
categorical covariates. Exact matching, on the other hand, does
not work well when there are many covariates (or when some

covariates can take many values, such as continuous variables), as
it becomes impossible to find sufficient exact matches.
Continuous or ordinal variables have an additional challenge in
exact matching because of the lack of distance measures. A
difference of 1 pageview is treated the same as a difference of
1000 pageviews, which is clearly suboptimal.

Because of these challenges, we have decided to go with a
“Doubly Robust” approach [18], where we fit an exact matching
model first and then fits a linear regression model on the matched
user sets. The exact matching takes in only about 10 important
covariates with the continuous variables carefully bucketized to
ensure sufficient matched samples. The regression model has a lot
more covariates, including several continuous variables, which
can compensate for the somewhat coarse matching and offers
more granularity into the covariates. Because of its good
performance in validation from first day after release, this is the
approach we used in production.

Here are the steps we took for the Doubly Robust estimation:

1. Only variables that cannot be impacted by the treatment itself
are included as covariates, including variables collected
before the new app version release or stable member
attributes such as country or language.

2. For all the variables, ensure common support in both adopter
and non-adopter groups by pruning the observations where
the empirical densities do not overlap. This is to avoid
extrapolation.

3. Select a small set of variables (about 10) to be used for exact
matching. We first select representative variables to cover a
wide range of member attributes and engagement
characteristics. Further reduction is then done by dropping
one variable at a time and is cross-validated based on A/A
test results (described earlier). The goal is to produce as
many matched samples as possible without increasing bias.

4. Covariates used in exact matching are bucketized to reduce
their cardinalities. We have noticed that using quantiles to
bucketize does not work well for a lot of covariates because
of their skewed distributions. For example, the difference
between the 10th and the 20th percentiles of several variables
has no practical significance. Artificially treating them as
two entirely different buckets creates inefficiency when
matching the samples.

5. Feed the matched samples into a weighted linear regression
model, using the weights produced from the exact matching.
We use the endogenous switching model described in
Equation (3) and (4), building one model for adopters and
one for non-adopters. The models are then used to predict on
the entire matched user samples. For example, the model
trained on adopters is used to produce 𝑦(), the estimated
response under the new version (treatment), for both adopters
and non-adopters. The final doubly robust estimator of the
treatment effect is a weighted average difference between a
world where everyone has adopted and a world where no one
has adopted:

𝐷𝑅𝐸 =
1

∑ 𝑤
 𝑤 𝑦 − 𝑦() + 𝑤 𝑦() − 𝑦

where 𝑤 is the weight from matching and 𝑦 is the observed
value. WLOG we assume users 𝑖 = 1, … , 𝑚 are adopters.

We have noticed that it is important to have sufficient number of
samples that are matched. During the first day post launch, as the

number of adopters is still relatively small (especially in 20% roll
out), the set of variables we include in the matching step is much
smaller. As a result, we matched about 60% of adopters on day
one, while that number reduces to 20% after day one. On the other
hand, the matched non-adopters went from about 5% to 10%. The
median number of non-adopters matched per adopter is 3.

The validation results look very positive. As shown in Figure 6
(Right), for the two key metrics we tracked, we had only about 3 –
4 % bias on the first day, compared with an over 70% bias in the
raw comparison shown in the left plot. The bias reduces to less
than 1% after day three.

5.3.3 Novelty Effect
For big releases that involve drastically different user experience,
we usually expect strong novelty effect, as users tend to explore
the new experience more at the beginning. One obvious question
when it comes to evaluating the performance of a new app version
is: is there novelty effect and if so, how long does it take for it to
go away? In a randomized A/B test, a simple and practical
approach is to check whether the daily treatment effect, measured
as the percentage delta between treatment and control, dies down
as days go by. With adoption bias, novelty effect is confounded
by the fact that people who adopt earlier are simply different from
people who adopt later. The quasi-A/B framework in Section
5.3.2.2 provides us with a way to separate out the inconsistent
adoption bias and the novelty effect.

 Figure 7. Novelty effect goes away after the first couple of days.

We start with identifying two cohorts of users: the adopter cohort
and the non-adopter cohort. Obviously, if we construct the cohorts
on day one, we will have some of the non-adopters converted to
be adopters during the period of evaluation. Because this is a
retrospective study, we can overcome this problem by removing
users who ended up adopting during this period from the non-
adopter cohort (we can safely assume there is no conversion the
other way around, going from adopter to non-adopter). As a
second step, we match the cohorts using the same exact matching
method as outlined in Section 5.3.2.2. This gives us two matched
cohorts with weights. Finally, we remove further bias by applying
a weighted linear regression on the matched cohorts as in the
doubly robust approach. It is important to note that even though
the matched cohorts are constructed once, the evaluation is done
on the same cohorts daily, regardless whether a cohort user is
active in that particular day. As shown in Figure 7, the treatment
effect (measured as percent delta) is much larger in the first
couple of days and then settles down to a smaller, consistent
value, providing compelling evidence that the novelty effect
lasted for just a couple of days.

6. SUMMARY AND FUTURE WORK
In this paper we discussed many differences when experimenting
on mobile compared with on desktop. We also proposed and
established a quasi A/B testing framework to evaluate mobile app

release. Many insights around how users adopt a new app version
were shared and discussed.
One very interesting problem that we didn’t cover is to understand
the latent factors underlying users’ adoption behavior (Section
5.1), which should help further improve the quasi models.
Moreover, notice how the quasi models have a lot less bias for
Android (Figure 6) than they have for iOS (Figure 4). It is because
Android was a randomized 20% roll out. If Apple App Store also
supports a staged roll out feature, it will greatly benefit not only
the app developers, but also app users, as they will get apps that
are better evaluated and optimized.

7. ACKNOWLEDGEMENT
The authors wish to thank Bryan Ng, Aarthi Jayaram, Yael Garten
and Kiran Prasad for insightful discussions, Romer Rosales and
Eytan Bakshy for feedback. We would also like to thank all
members of the experimentation team, especially Weitao Duan
who was involved in the quasi A/B effort. Finally this work
wouldn’t have been possible without the guidance and support of
Igor Perisic.

8. REFERENCES
[1] Sarah Perez [Online] http://techcrunch.com/2015/03/17/app-

submissions-on-google-play-now-reviewed-by-staff-will-
include-age-based-ratings/

[2] Google Play [Online]
https://support.google.com/googleplay/android-
developer/answer/6346149?hl=en&ref_topic=3450989

[3] Jordan Novet "LinkedIn shows off Project Voyager, its new
flagship mobile app" [Online]
http://venturebeat.com/2015/10/14/linkedin-shows-off-
project-voyager-its-new-flagship-mobile-app/

[4] Fisher, Ronald A. Presidential Address. Sankhya: The Indian
Journal of Statistics. 1938, Vol. 4, 1.

[5] The 2015 U.S. Mobile App Report [Online]
https://www.comscore.com/Insights/Presentations-and-
Whitepapers/2015/The-2015-US-Mobile-App-Report

[6] Yates, Frank, Sir Ronald Fisher and the Design of
Experiments. Biometrics, 20(2):307–321, 1964.

[7] Box, George EP, J. Stuart Hunter, and William Gordon
Hunter. Statistics for experimenters: design, innovation, and
discovery. Vol. 2. New York: Wiley-Interscience, 2005.

[8] Gerber, A. S., and Green, D. P. Field Experiments: Design,
Analysis, and Interpretation. WW Norton, 2012

[9] Tang, Diane, et al. Overlapping Experiment Infrastructure:
More, Better, Faster Experimentation. Proceedings of the
16th Conference on Knowledge Discovery and Data Mining.
ACM, 2010.

[10] Kohavi, Ron, et al. Online Controlled Experiments at Large
Scale. KDD 2013: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data
mining. 2013. http://bit.ly/ExPScale.

[11] Bakshy, Eytan, Eckles, Dean and Bernstein, Michael S.
Designing and Deploying Online Field Experiments.
Proceedings of the 23rd international conference on World
Wide Web, pages 283-292, ACM, 2014

[12] Xu, Ya, et al. "From Infrastructure to Culture: A/B Testing
Challenges in Large Scale Social Networks." Proceedings of
the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015.

[13] Kohavi, Ron, et al. Trustworthy online controlled
experiments: Five puzzling outcomes explained. Proceedings
of the 18th Conference on Knowledge Discovery and Data
Mining. 2012, www.exp-
platform.com/Pages/PuzzingOutcomesExplained.aspx.

[14] Kohavi, Ron, et al. Seven Rules of Thumb for Web Site
Experimenters. KDD 2014: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining. 2014.

[15] Kohavi, Ron. et al. Controlled experiments on the web:
survey and practical guide. Data Mining and Knowledge
Discovery. February 2009, Vol. 18, 1, pp. 140-181.
http://www.exp-platform.com/Pages/hippo_long.aspx.

[16] Imbens, Guido M., and Jeffrey M. Wooldridge. Recent
developments in the econometrics of program evaluation.
No. w14251. National Bureau of Economic Research, 2008.

[17] Hill, Daniel N., et al. "Measuring Causal Impact of Online
Actions via Natural Experiments: Application to Display
Advertising." Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 2015.

[18] Funk, Michele Jonsson, et al. "Doubly robust estimation of
causal effects."American journal of epidemiology 173.7
(2011): 761-767.

[19] Heckman, James J. "Sample selection bias as a specification
error (with an application to the estimation of labor supply
functions)." (1977).

[20] Heckman, James J., and Richard Robb. "Alternative
methods for evaluating the impact of interventions: An
overview." Journal of econometrics 30.1 (1985): 239-267.

[21] Rosenbaum, Paul R., and Donald B. Rubin. "The central role
of the propensity score in observational studies for causal
effects." Biometrika 70.1 (1983): 41-55.

[22] Holland, Paul W. "Statistics and causal inference." Journal of
the American statistical Association 81.396 (1986): 945-960.

[23] Rubin, Donald B. "Estimating causal effects of treatments in
randomized and nonrandomized studies." Journal of
educational Psychology 66.5 (1974): 688.

[24] Kennedy, Peter. A guide to econometrics. MIT press, 2003.
[25] Greene, William H. Econometric analysis. Pearson

Education India, 2003.
[26] Harris, Anthony D., et al. "The use and interpretation of

quasi-experimental studies in medical informatics." Journal
of the American Medical Informatics Association 13.1
(2006): 16-23.

[27] Apptimize [Online] http://apptimize.com/
[28] Optimizely [Online] http://optimizely.com/
[29] Mixpanel [Online] https://mixpanel.com/
[30] Agarwal, Deepak, and Bee-Chung Chen. "Regression-based

latent factor models." Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2009

[31] Box, George EP, and David R. Cox. "An analysis of
transformations." Journal of the Royal Statistical Society.
Series B (Methodological) (1964): 211-252

http://techcrunch.com/2015/03/17/app-submissions-on-google-play-now-reviewed-by-staff-will-include-age-based-ratings/
http://techcrunch.com/2015/03/17/app-submissions-on-google-play-now-reviewed-by-staff-will-include-age-based-ratings/
http://techcrunch.com/2015/03/17/app-submissions-on-google-play-now-reviewed-by-staff-will-include-age-based-ratings/
http://venturebeat.com/2015/10/14/linkedin-shows-off-project-voyager-its-new-flagship-mobile-app/
http://venturebeat.com/2015/10/14/linkedin-shows-off-project-voyager-its-new-flagship-mobile-app/
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report
http://apptimize.com/
http://optimizely.com/
https://mixpanel.com/mobile-ab-testing/?from=mobile-ab4&gclid=CL-lyPTd8coCFQkyaQod_oAPVQ

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. MOBILE APP RELEASE PROCESS AND ITS IMPLICATIONS
	4. MOBILE A/B TESTING
	4.1 Design
	4.2 Deployment
	4.3 Offline Analysis

	5. MOBILE QUASI A/B TESTING
	5.1 Mobile App Adoption
	5.1.1 Adoption Over Time
	5.1.2 Adopters vs. Non-adopters

	5.2 Common Quasi-Experiment Techniques
	5.2.1 OLS Based Methods
	5.2.2 Propensity Score Based Methods

	5.3 Evaluating Voyager Release
	5.3.1 iOS
	5.3.2 Android
	5.3.2.1 Geometric Distribution Model
	5.3.2.2 Doubly Robust with Matching

	5.3.3 Novelty Effect

	6. SUMMARY AND FUTURE WORK
	7. ACKNOWLEDGEMENT
	8. REFERENCES

