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ABSTRACT 
We have seen an explosive growth of mobile usage, particularly 
on mobile apps. It is more important than ever to be able to 
properly evaluate mobile app release. A/B testing is a standard 
framework to evaluate new ideas. We have seen much of its 
applications in the online world across the industry [9,10,12]. 
Running A/B tests on mobile apps turns out to be quite different, 
and much of it is attributed to the fact that we cannot ship code 
easily to mobile apps other than going through a lengthy build, 
review and release process. Mobile infrastructure and user 
behavior differences also contribute to how A/B tests are 
conducted differently on mobile apps, which will be discussed in 
details in this paper. In addition to measuring features individually 
in the new app version through randomized A/B tests, we have a 
unique opportunity to evaluate the mobile app as a whole using 
the quasi-experimental framework [21]. Not all features can be 
A/B tested due to infrastructure changes and wholistic product 
redesign. We propose and establish quasi-experimental techniques 
for measuring impact from mobile app release, with results shared 
from a recent major app launch at LinkedIn. 
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1. INTRODUCTION 
It is clear that mobile is taking over the Internet. In the U.S., two 
out of three digital media minutes is now happening on mobile. 
Without question, mobile app usage has been the single most 
important driver by far, contributing to nearly 90% of the massive 
mobile growth in the past two years [5]. At LinkedIn, more than 
50% our traffic is now coming from mobile, similar to other social 
networking companies such as Facebook and Pinterest [3]. 
Many companies, including LinkedIn, have shifted to a “mobile 
first” mindset, focusing their product strategies around mobile. As 
a consequence, optimizing for the best user experience in mobile 
has been more important than ever. However, mobile optimization 
is a space that is a lot less mature than web optimization. Because 
of how users consume information on mobile differently, many 
lessons learnt by optimizing on the web no longer apply. So even 
companies most experienced with web optimization have to start 
from the bottom and relearn in the mobile space.  
It is not just about coming up with “what” works in mobile, but 
more importantly, we need to have methodology and system in 
place to “measure” whether an idea works. A/B testing, also 

known as controlled experiment, is a standard, widely used 
framework to evaluate new ideas and to make data driven 
decisions. We have seen much of its applications in the online 
world discussed in recent publications, including several past 
KDD papers from Google, Microsoft and LinkedIn [9,10,12]. 
However, none of these papers have a focus on mobile, or mobile 
apps. 
At LinkedIn, we have seen a drastic increase of mobile 
experiments. The growth is more than just proportional to the 
amount of development work relative to desktop. We have learnt 
that because the real estate on mobile is limited, small changes 
tend to have big impact. In addition, A/B testing on mobile is used 
even more extensively than it is on desktop, and much of it is 
attributed to a key difference between desktop and mobile 
development process. Because we cannot ship code to the mobile 
app other than building and releasing a new app version, feature 
releases in general involve not just the app developers, but also 
the app stores (e.g. Google Play or Apple App Store), and the end 
users. The app store usually requires a review of the build 
submitted, and a new app version is not effective until the end 
users update the app. The consequence is that it may take two 
weeks or more for any change to reach the majority of users, and 
even longer for a coverage of greater than 90%. A/B testing is 
hence heavily leveraged to mitigate risk, as it allows us to 
evaluate the new feature and gradually release it accordingly, 
without having to release a new version.  
The fact that we cannot ship code easily to mobile apps, together 
with mobile infrastructure and user behavior differences, strongly 
influences how A/B tests are conducted on mobile apps. We will 
discuss them in depth in Section 4, following the three steps in the 
A/B testing process: design, deployment and offline analysis. 
In addition to measuring features individually in the new app 
version through randomized A/B tests, we also have a unique 
opportunity to evaluate the mobile app as a whole using the quasi-
experimental framework [21]. Not all features can be A/B tested 
due to infrastructure changes and limitations. For example, 
LinkedIn recently rewrote the entire flagship app (Project 
Voyager [3]). Even though some new features were tested and 
evaluated independently in the old app, many features were 
launched for the very first time with the new app release. How all 
the features work together was a key question, but unfortunately 
we were not able to conduct a randomized experiment on the new 
app as a whole. However, because not all users adopt the new 
version at the same time, there is a period of time where we have 
both versions of the app serving real users. Obviously, simply 
comparing the adopters with the non-adopters will suffer from 
self-selection bias. However, we can still reasonably establish 
causal relationship by carefully removing such bias using quasi-
experimental techniques (also called observational causal 
inference methods in some disciplines).  
To set the notation and context for both A/B and quasi A/B 
testing, we review the Rubin Causal Model [23], a widely used 
framework to estimate causal effect. Let 𝑌௜ be the outcome 
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variable for user 𝑖, e.g. pageviews, clicks. Let 𝑍௜  ∈  {0, 1} be the 
treatment variable, where 𝑍௜  =  1 if a user is in treatment 
(adopted the new app), and 𝑍௜  =  0 otherwise. Note that in the 
case of mobile adoption, 𝑍௜  is observed rather than randomly 
generated. We also observe 𝑿𝒊, a vector of pre-exposure 
covariates, such as industry or connection counts. In summary, we 
observe (𝑌௜, 𝑍௜, 𝑿𝒊)  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛. Under the Rubin Causal 
framework, each user has two potential outcomes 

𝑌௜ =  ൜
𝑌௜ଵ   𝑖𝑓   𝑍௜ = 1
𝑌௜଴   𝑖𝑓   𝑍௜ = 0 

We are interested in knowing the Average Treatment Effect 
(ATE), the difference of the average outcomes between applying 
treatment to the entire user population and applying control to the 
entire user population. By definition,  

Δ஺்ா =  
1
𝑛 ෍ 𝑌௜ଵ

௡

ଵ

−  
1
𝑛 ෍ 𝑌௜଴

௡

ଵ

 

Of course, Δ஺்ா  is never known because only one of 𝑌௜ଵ and 𝑌௜଴ 
can be observed (The fundamental problem of causal inference 
[22]). Instead, it is usually estimated by 

Δ෡஺்ா =  
1

𝑛ଵ
෍ 𝑌௜ଵ

{௜,௓೔ୀଵ }

−  
1

𝑛଴
෍ 𝑌௜଴
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 =  𝑌തଵ −  𝑌ത ଴ 

Two important assumptions are required for Δ෡஺்ா  to be an 
unbiased estimator of Δ஺்ா . (1) Stable Unit Treatment Value 
Assumption (SUTVA), which states that the behavior of each user 
in the experiment depends only on his own treatment and not on 
the treatments of others. (2) Ignorable Treatment Assignment 
Assumption (also known as unconfoundedness) [21], which states 
that treatment assignment is independent of the two potential 
outcomes, i.e.  

(𝑌௜଴, 𝑌௜ଵ) ⊥ 𝑍௜  
Both assumptions are naturally satisfied in most controlled 
experiments. However, the unconfoundedness assumption is often 
violated when there exists variables that correlate with both 
(𝑌௜଴, 𝑌௜ଵ) and 𝑍௜ . As an example, we have observed that LinkedIn 
members with premium accounts are more likely to adopt a new 
version faster. Since premium members are in general more 
engaged on the site, we are likely to conclude a significantly 
positive impact even if the true Δ஺்ா  is 0 or negative. In fact, the 
unconfoundedness assumption can be extended to  

(𝑌௜଴, 𝑌௜ଵ) ⊥ 𝑍௜ | 𝑿𝒊 
where 𝑿𝒊 are the confounding covariates. As a result, if we can 
identify all such covariates, we can still postulate a model for 
𝐸(𝑌௜|𝑍௜, 𝑋௜) and estimate ATE based on  

𝛥′஺்ா =  
1
𝑛 ෍(𝐸(𝑌௜ | 𝑍௜ = 1, 𝑋௜)

௡

௜ୀଵ

−  𝐸(𝑌௜ | 𝑍௜ = 0, 𝑋௜))  

This is a fundamental concept of quasi-experimental framework. 
We will discuss more formally on this in Section 5.  
Here is a summary of our contributions in this paper: 
x As far as we know, we are the first to study extensively how 

to evaluate mobile app through both A/B testing and quasi 
A/B testing. Moreover, we are the first to propose and 
establish a quasi A/B testing framework to evaluate mobile 
app release. 

x We identify the key differences of conducting A/B tests on 
mobile vs. on desktop.  

x We compare and propose quasi-experimental techniques that 
have shown to be very successful in removing adoption bias, 
and are used in major mobile app release at LinkedIn.  

x We share insights on how users adopt new app versions, 
including insights on how to measure novelty effect. 

The paper is organized as follows. Section 2 starts with a review 
of the existing literature in all the three areas of A/B testing, 
mobile A/B testing and quasi A/B testing. Section 3 describes the 
process for mobile app releases and its implications on how we 
evaluate a new release. Section 4 focuses on A/B testing in mobile 
app and how it is different from testing on the web. Section 5 
proposes a quasi A/B testing framework to evaluate app release, 
with results shared from evaluating Voyager [3]. Section 6 
concludes with future work. 

2. LITERATURE REVIEW 
In this section we review the theoretical foundations and 
applications of A/B testing and quasi A/B testing as well as 
existing tools and products for mobile testing. 
The theory of controlled experiment dates back to Sir Ronald A. 
Fisher’s experiments at the Rothamsted Agricultural Experimental 
Station in England in the 1920s [6]. Since then, many textbooks 
and papers from different fields have provided theoretical 
foundations [7,8] for running controlled experiments, including 
the most widely adopted Rubin Causal Model [22,23]. While the 
theory may be straightforward, the deployment and mining of 
experiments in practice and at scale can be complex and 
challenging [15]. In particular, several past KDD papers have 
discussed at length the experimentation systems used at Microsoft 
Bing, Google, Facebook and LinkedIn [9,10,11,12], including 
best practices and pitfalls [13,14].  
On the other hand, there are many situations where running a 
controlled experiment is infeasible and one has to study causal 
impact based on observed data. [21] discusses the assumptions of 
applying the Rubin Causal Model to real evaluations. [24, 25] 
show that the Ignorable Treatment Assignment Assumption is 
associated with the assumptions of OLS regression. Many models 
have been developed to address the challenges of observational 
studies, such as propensity score models [21], Heckman’s sample 
selection model [19] and Doubly Robust Estimation [18]. As far 
as we know, quasi-experiment techniques have been more widely 
utilized in econometrics and clinical studies [20,26], and there are 
few studies of natural experiment in the Internet world. A recent 
work in this area [17] described a framework for estimating causal 
effect through identifying mediators and its application to 
advertising.  
While we focus on in-house A/B testing solutions for mobile app 
development, there are companies specializing in mobile A/B 
testing, such as Apptimize [27], Optimizely [28] and Mixpanel 
[29]. These companies provide third party platforms and tools that 
help mobile developers test in mobile. Other than these 
commercial products, there seems to be very little literature 
focusing on mobile A/B testing that we are able to find. 

3. MOBILE APP RELEASE PROCESS AND 
ITS IMPLICATIONS 
In most online web development, agile software development 
process is highly promoted. Being able to iterate fast and improve 
continuously is crucial for both risk minimization and feature 
development. Most importantly, it is key to ensure the best user 
experience because any unexpected issues can be fixed or 
mitigated as soon as possible. Such fast iterations are feasible for 



an online website because all changes are controlled on the server 
side. When a user visits a site, the server pushes the data to the 
browser to render. New feature releases can happen constantly 
and continuously without interruption on the end users. In an A/B 
test, whether the user sees A or B is fully managed by the server 
and is entirely independent of the end users behavior. Take 
Linkedin.com as an example. Whether to show a red or yellow 
button, whether to show a newly revamped homepage or not - 
these are all changes that can happen instantaneously after server 
side deployment.  

However, feature release process and experimentation in a mobile 
app are quite different. Instead of the app developers having full 
control over the deployment and release cycle, the app release 
process involves all three parties, the app owner (in our case, 
LinkedIn), the app store (e.g. Google Play or Apple App Store), 
and the end users. After all the code is ready, the app owner needs 
to submit a build to the app store for review. Assuming the build 
passes review (which in the case of iOS takes about a week), 
releasing it to everyone does not mean that everyone who visits 
the app will have the new version. Getting the new version is a 
software upgrade, same as updates we get on our desktops where 
we can delay or ignore while continuing to use the old version. 
Some end users take weeks to adopt.  

It is worth pointing out that Google and Apple have very different 
review policies.  While it takes about a week to go through 
Apple’s review process, Google Play store’s review is almost 
instantaneous [1]. In addition, Google allows staged roll out of a 
new version [2], while Apple app store only supports full roll out. 
Such differences have important implication on app development 
and evaluation, as we will cover in Sections 4 and 5.  

For most web facing companies who truly believe in agile 
development, it is painful to have to wait for 2+ weeks for a 
change to take effect, especially when our end users are dealing 
with a buggy app. What’s worse, depending on how fast users 
adopt new versions, it may take even longer to reach more than 
90% users. We have more details on the adoption process in 
Section 5.1. Moreover, even if new app versions can be built and 
released every other week, it is annoying from the users’ 
perspective to have to constantly update the app. 

This is not to say that we cannot A/B test on mobile. As a matter 
of fact, there are by and large three kinds of experiments that we 
can conduct on mobile app.  

1. Server-side changes: There are many features on mobile 
that are backend driven. Relevance features are good 
examples in this category. Experiments on such changes are 
conducted the same way as experiments on the web [9,10]. 
Because the code changes happen on the server side only, it 
only takes server side deployment for the changes to take 
effect, which can happen independent of the app release. 

2. Client-side changes: There are many features that need to be 
controlled from the app itself, including, for example, the 
look and feel of a button and the number of feed items to 
fetch from the backend at a time. Any code changes on these 
features need to be coupled with an app release, and hence 
are subject to the potential delay. Because of this, there are 
quite some differences when conducting A/B tests on the app 
itself. We have devoted Section 4 to go into depth on this 
topic. 

3. Big changes that cannot be A/B tested: There are cases 
where many changes have to be bundled together and it is 
impossible to put them all behind an A/B test due to 

infrastructure changes and limitations. For example, 
LinkedIn recently rewrote the entire flagship app (Project 
Voyager [3]) and we were not able to experiment the new 
app as a whole. In the web world, if we cannot split the 
traffic to two different versions of the site, we are out of luck 
- once we flip the switch to the new site, we lose the ability 
to measure the performance of the old site side-by-side. The 
only comparison that is possible between the new & old sites 
is a before & after comparison, which is known to suffer 
from confounding effects such as seasonality. However, for 
mobile app releases, because not all users adopt the new 
version at the same time, there is a period of time where we 
have both versions of the app serving real users. This gives 
us an opportunity to conduct a quasi-experiment. Details are 
discussed in Section 5.    

4. MOBILE A/B TESTING 
As we have mentioned in Section 3, whenever possible, features 
on mobile apps are tested through controlled experiments. Since 
server-side changes are usually experimented the same way on 
app and web, and we have already shared in details how web A/B 
tests are conducted at LinkedIn in KDD’15 [12], we focus our 
discussion in this section on the kind of experiments that are more 
specific to mobile - experiments on the client-side features. Recall 
that these are features that are controlled from the app, and any 
code changes on these features require a new app release. 

The architecture for a web-based A/B testing system usually has 
the three essential components, also corresponding to the three 
steps in an A/B testing process: (1) design (2) deployment (3) 
offline analysis [9,12]. The same three components are needed for 
a mobile A/B test. Therefore, we follow a similar structure for our 
discussion in this section. We focus on highlighting the key 
differences between app and web testing, while leaving the 
similarities for readers to follow up in other papers [10, 11]. 

4.1 Design 
Experimental design is arguably the most important step in the 
testing workflow to get good and meaningful results. As Sir R. A. 
Fisher put it [13] “To consult the statistician after an experiment is 
finished is often merely to ask him to conduct a post mortem 
examination. He can perhaps say what the experiment died of.” 
To be more concrete, design is usually the phase when we 
determine what we want to experiment on, the goal, the targeted 
population, the traffic split among variants, and the duration of the 
experiment.  

As described in Section 3, because of the constraint with the 
mobile app release process (new code cannot be shipped to end 
users easily), A/B testing on any client-side changes needs to be 
“planned ahead”. In other words, all experiments, including all the 
variants for each of these experiments, need to be coded and 
shipped with the current app build. Any new variants, including 
bug fixes on any existing variant, have to wait for the next app 
release. This has the following two implications: (1) A/B testing 
has become more extensive. Whenever possible, new features are 
always rolled out under A/B tests. One essential function of A/B 
tests is risk minimization. It allows us to roll out a new feature to 
a small, randomized user group to evaluate. More importantly, in 
a mobile world, if a feature doesn’t perform as we intended, we 
can instantly revert back to an equivalent of the older app version 
by shutting down the traffic to the test, without having to go 
through a client release cycle (which can take weeks for slowly 
adopting users). The benefit of preventing our end users from 
being stuck with a faulty app for weeks really helps promote a 



truly “test everything” culture among our developers. (2) 
Parameterization is used extensively to allow flexibility in 
creating new variants without a client release. This is because 
even though new code cannot be pushed to the client easily, new 
configurations can be passed in payload, which effectively creates 
a new variant as long as the client understands how to parse the 
configurations. For instance, we want to experiment on the 
number of feed items to fetch from the backend at a time. We can 
put our best guesses in the code and experiment only with what 
we have planned in place, or we can parameterize the number and 
have the freedom to experiment on any numbers after the release. 

Real time targeting is more prevalent in mobile experiments, as 
the three most widely used targeting attributes (platform, 
operating systems and app version) are only available at runtime. 
Many features are unique to a particular platform and OS. 
Moreover, the same feature usually performs very differently 
between tablet and phone, and between iPhone and Android. 
Therefore, when designing a mobile experiment, we usually need 
to consider targeting a specific platform and OS combination. In 
addition, many experiments only exist in certain app versions. 
Obviously, newly added experiments do not apply to older app 
versions. At the same time, some experiments may only exist in 
older versions. It is important to target the correct version when 
rolling out an experiment.  

4.2 Deployment 
After design is complete, deploying an experiment in web setting 
usually just involves two components, the application layer that 
implements the alternative variant behavior according to 
experiment assignment, and the service layer that is a distributed 
cache and experiment definition provider [12]. In the mobile 
setting, the application layer is logically broken into two parts:  

1. Server side: It communicates with the service layer, passes 
experiment assignment information to the mobile client, and 
logs the experiment event.  

2. Mobile client side: It periodically fetches the experiment 
assignment information from the server and executes it 
accordingly. 

As we mentioned earlier, the experiment implementation on the 
mobile client side needs to be shipped with the new app version. 
Once that is done, we can activate the experiment to enable a 
small percentage of traffic on treatment. Similar to web 
applications, the activation information propagates from the 
service layer to the application server every 5 minutes. However, 
this does not mean the experiment is fully deployed. As a matter 
of fact, the deployment is usually delayed on the mobile client by 
at least one user session. This is because new assignment 
information is usually only fetched at the beginning of each 
session. In addition, these new assignment usually does not take 
effect till the next session. This is because we do not want to 
change a user’s experience after they have started the session 
already. For heavy users who visit multiple sessions a day, such 
delay is small, but for light users visiting once a week, the 
experiment does not actually take place till a week later. Such 
delay and how it depends on user’s visitation frequency imply that 
not only does the signal appear to be weaker at the beginning of 
the experiment, it is also more biased towards reactions from 
heavy users.  

Moreover, to reduce the number of communications with the 
server, assignment information is fetched for all active 
experiments at once and then cached on the mobile client. This is 
the case regardless of whether an experiment is actually triggered 

or not. For example, there is an experiment that only affects users 
who visit the “Me” tab. However, the assignment for that 
experiment will still be fetched even if a user doesn’t visit “Me” 
during that session. Because experiment information is tracked on 
the server side, such “over fetching” means we are marking more 
users as affected by the experiment than there actually are, 
effectively diluting the signal when we want to evaluate the “real” 
impact. One potential fix to this problem is to only track 
experiment event after an experiment assignment is actually used, 
not when it is fetched. 

4.3 Offline Analysis 
By and large, the analysis of mobile app A/B tests is done 
similarly as web experiments. As mentioned in Section 4.1, 
experiments can be ramped differently for different platforms and 
operating systems. Even experiments that are ramped uniformly 
across the population, the performance in these segments can be 
drastically different. In many experiments we have conducted, it 
is not unusual to see a positive lift on one platform and a negative 
impact on the other. It is therefore important to always drill down 
to examine the per-segment impact in addition to the overall site-
wide impact. 

Besides the dilution and the delay effect discussed in Section 4.2, 
one thing to watch out for is the potential interactions between 
different user interfaces. Many of our members access LinkedIn 
through desktop, mobile app and mobile web. While it is unusual 
to drive traffic between desktop and mobile in a session or a day 
(we don’t expect to change user’s mobile usage drastically in a 
short period of time), it is, however, common to shift traffic 
between mobile app and mobile web. For example, many mobile 
users visit LinkedIn via clicking on their emails. The email link 
can either take the user directly to the app (assuming he or she has 
the app installed), or to the mobile web. When analyzing an 
experiment, it is important to know whether an experiment may 
cause or suffer from such an interaction, in which case, we cannot 
evaluate app performance in isolation, but need to look at user 
behavior holistically on both mobile app and mobile web. In 
addition, because user experience on the app tends to be better, 
directing traffic from the app to the web tends to bring down the 
total engagement, which may be a confounding effect not 
intended by the experiment itself.  

5. MOBILE QUASI A/B TESTING 
We have so far highlighted the special challenges when 
conducting randomized experiments on mobile app compared 
with web testing. Most of the differences result from the fact that 
mobile app release cycle involves not just the app owner, but also 
app stores and end users. On the other hand, the exact same 
differences also create an opportunity to evaluate changes that we 
are not able to A/B test on. These tend to be big changes that 
involve fundamental infrastructure improvements and holistic 
product redesign.  One such example is LinkedIn’s recent release 
of the new flagship app (Project Voyager [3]). 
To be more concrete, the opportunity to evaluate such big releases 
exists because of the following: First, users take time to adopt the 
new app. The adoption period creates a natural experiment.  
Second, Google supports staged roll out of an app. Even though 
neither enables a fully randomized experiment, we can leverage 
both to measure the performance of a new app version through a 
quasi-experimental study. As we will lay out in this section, such 
quasi-experiment, coupled with thorough validation, is able to 
estimate the impact from a new app release with little bias, as 
demonstrated by results from our recent Voyager launch.  



This section is organized as follows. We start in Section 5.1 with a 
deep dive into how mobile app adoption works, who the adopters 
are and how the adopter group evolves over time. This is crucial 
in helping us come up with quasi-experimental techniques to 
adjust for adoption bias. Section 5.2 reviews the basic quasi-
experiment methods in the context of evaluating app release. This 
is not meant to be a comprehensive literature review, but to 
establish the notation and building blocks for the next section. In 
the final Section 5.3, we go into depth discussing and comparing 
the techniques we use to evaluate the Voyager release. Separate 
methods are needed for iOS and Android, as the Android release 
was a 20% staged roll out during the evaluation period. 

5.1 Mobile App Adoption 
Every new app version takes a while to propagate through the user 
population, as it requires upgrade from the end users. Both 
Android and iOS give users a lot of flexibility in managing how 
they want to upgrade. By and large, there are three options: (1) 
automatically update (2) automatically update only if there is Wi-
Fi access (3) manually update. Obviously the choice affects the 
probability to adopt. The default setting of both operating systems 
is option (2), with the difference that Android notifies users after 
the update completes, but iOS updates quietly in background. 

The choice of the update options and the ease of access to Wi-Fi 
are the two most important variables that impact the likelihood of 
adoption over time. To add to the complexity, we have no 
visibility into whether a user has updated to the new version until 
he or she visits the app. One can think of modeling such 
mechanisms and relationships with a Latent Factor Model (with 
missing data) to reveal and understand these underlying variables 
[30]. Since our focus is to evaluate the app performance by 
adjusting for the intrinsic adoption bias, we instead look to 
understand who these adopters are and what the key differences 
are between the adopters and non-adopters.  

5.1.1 Adoption Over Time 
Because our member populations are intrinsically different across 
OS, we observe very different adoption curves between Android 
and iPhone (Figure 1, Left). Adoption is much faster on iPhone, 
especially during the first couple of days. As we can see in Figure 
1, the adoption rate that takes Android a week to reach takes only 
about three days on iPhone. In general, adoption tends to slow 
down after a week on both OS. There are some people who stays 
on the older version for weeks or months before they adopt, and 
they tend to be the same group of users for each release, likely 
those who select manual update option on their device. Note that 
even though the plot only uses data from the recent major release 
with significant PR pushes, almost exact same plots are observed 
from other minor historical releases, indicating little social effects 
on adoption of newer app versions.  

From the adoption mechanism described above, it is not surprising 
to see that adopters tend to consistently adopt through multiple 
historical app releases. As shown in Figure 1 (Right), a previous 
adopter is in general 2 – 3 times more likely to adopt again than a 
previous non-adopter. Note that the risk ratio tends to be smaller 
in the earlier days. This indicates that historical adoption pattern is 
less predictive of future adoption shortly after launch. This can be 
explained by the fact that whether a user adopts or not is largely 
driven by his or her choice of auto-update options and access to 
Wi-Fi. Conditional on the same user, we can treat the Wi-Fi 
availability as a random process independent of users’ visit to 
LinkedIn. Therefore, whether a user adopts shortly after release 

has a large random component and is hard to predict based on 
historical adoptions. 

 
Figure 1. Left: adoption rate over time. Right: the probability of adopting in 
current release is higher for previous adopters than for previous non-adopters.  

5.1.2 Adopters vs. Non-adopters 
Among the adopters, there is a big difference between those who 
adopt on day one and those who adopt on day 14. We group the 
adopters into cohort 1 through 14 depending on the day they 
adopt. As show in the heatmap (Figure 2), it is clear that users 
who adopt earlier are more engaged than the users who adopt 
later. Also note that even though the diagonal has higher values, it 
is not an indication that users are more engaged on adoption day.  
It is an artifact that we don’t know users’ adoption status until 
they visit the app, and hence by definition users are active on their 
adoption day. 

 
Figure 2. Engagement by adopter cohort. Earlier adopters are more engaged. 

Now let’s turn to adopter and non-adopter differences. Note that 
both adopters and non-adopters are active during the analysis 
period, and their adoption labels can change over time as more 
people adopt. Figure 3 (Left) plots the difference as percentage 
delta of a key engagement metric between adopters and non-
adopters. The data used is from a minor historical release that is 
not supposed to create any actual impact on metrics. Interestingly 
enough, when the analysis period is a single day, the difference 
starts at over 50%, then drastically decreases to below 10% after a 
week. However, if we look at cumulative differences cross day, 
the percentage delta stays at above 30% throughout the entire 
week! Similar trend is observed for almost all metrics we looked 
at. It turns out adopters tend to be active on more days. So if we 
accumulate their activities over time, the adoption bias is bigger. 
This can be explained by the simple equation below, where the 
cumulative metric can be decomposed as users’ engagement on an 
active day with a multiplier of total active days. Indeed, by day 
seven, an average adopter is active on 62% more days, explaining 
the majority of the difference in the cumulative engagement. 

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡
𝑈𝑈

=
𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡
𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑎𝑦𝑠

∗
𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑎𝑦𝑠

𝑈𝑈
 



There are two implications. First, without modeling for adoption 
bias, we can effectively mitigate it by comparing adopters and 
non-adopters in a smaller time window. However it assumes the 
number of visit days is not impacted by the treatment, which 
should be tested separately. Second, as shown in Figure 3 (Right), 
if we control for the days users are active, the difference between 
adopters and non-adopters become much smaller (from over 50% 
to less than 20% for day one), indicating historical active days is a 
strong covariate for adjusting adoption bias.  

It is worth noting that some users take more than two weeks to 
adopt, but they are as active as the adopters. These are likely users 
with auto-update off. It seems that users’ choice of auto-update 
option is fairly independent of their engagement with LinkedIn.  

 
Figure 3. Left: Engagement differences between adopters and non-adopters 
(A/A). Single-day difference decreases drastically over time. Right: The within 
cohort differences between adopters and non-adopters are much smaller. 

5.2 Common Quasi-Experiment Techniques  
As we have already seen in Section 5.1, there are big differences 
between adopters and non-adopters. Simply comparing those who 
are on the new app with those on the old app will give a 
misleading estimate of treatment effect. In this section, we 
evaluate common statistical techniques to reduce adoption bias; in 
particular, methods based on OLS regression and propensity score 
models. 

5.2.1 OLS Based Methods 
Assume our metric of interest follows a linear model:  

                        𝒀 =  𝛽଴ +  𝒁𝛽ଵ + 𝑿𝜷𝟐 +  𝝐 (1) 

where 𝒀 = (𝑌ଵ, … 𝑌௡)் is the outcome vector for users 𝑖 = 1, … , 𝑛, 
𝒁 = (𝑍ଵ, … 𝑍௡)் is the dichotomous variable of treatment, and 
𝑿 = (𝑿𝟏, … 𝑿𝒏)்  is a matrix representing all the covariates that 
correlates with both 𝒁 and 𝒀 (e.g. historical engagement metrics). 
Under this model, the coefficient 𝛽ଵ is the ATE under the Rubin 
Causal framework. If the covariates 𝑿 are omitted, the OLS 
estimator of 𝛽ଵ can be biased, and  

𝑏𝑖𝑎𝑠 =  (𝑫்𝑫)ି𝟏𝑫்𝑿𝜷𝟐 (2) 

where 𝑫 = (𝟏, 𝒁). Note that the bias is zero only if X is 
independent of D (so 𝑫்𝑿 = 0, which is true for randomized 
experiments) or that X does not predict Y (so 𝜷𝟐 = 0). 

Practically such bias gets smaller if major covariates that 
confound the treatment assignment (𝒁) and outcome variable (𝒀) 
are included in the regression model. However, it is not possible 
to prove that all non-ignorable covariates are included. In our 
applications, we are able to evaluate the models based on a 
validation framework to be discussed in Section 5.3. 

There are some potential improvements on the OLS model:  

1. It is unlikely that the relationship between the response 
variable and the covariates is linear. We can consider 
applying Box-Cox transformation [31] before fitting the 
model. 

2. We can generalize the treatment model (1) to an endogenous 
switching model by allowing for interactions between the 
treatment variable and the covariates. The model can then be 
rewritten as  

𝒀𝟏 = 𝑿𝟏𝜷𝟏 +  𝝐𝟏  𝑖𝑓 𝑍 = 1 (3) 

𝒀𝟎 = 𝑿𝟎𝜷𝟎 +  𝝐𝟎  𝑖𝑓 𝑍 = 0 (4) 

where two equations are fitted separately using data from adopters 
and non-adopters respectively.  

Interestingly, looking at Equation (3) alone, the problem becomes 
a classical missing value problem where non-adopters are clearly 
missing at “non-random”. Therefore, we can also apply many 
techniques that address missing value problems to estimate 
Equation (3) and (4) separately. The method we considered in 
Section 5.3 is the one proposed by Heckman [19], which models 
the selection process based on probit regression and assumes that 
the error term in the probit model and the linear regression are 
bivariate normally distributed. 

5.2.2 Propensity Score Based Methods 
Another family of approaches that have been developed to correct 
for selection bias is through the propensity score, i.e. the 
probability of receiving treatment. The propensity score is usually 
estimated through a logistic regression, defined as  

𝑃(𝑍 = 1|𝑋 = 𝑥) =  
𝑒𝒙𝜷

1 +  𝑒𝒙𝜷 

The score can be used for 

1. Matching or subclassification. The intuition is that samples 
with similar propensity scores can be considered as 
counterfactuals. By reducing to a one-dimensional score, one 
can incorporate potentially many covariates that have 
predictive power on treatment selection and still obtain 
reasonable matched sample sizes.  

2. Weighting. With the Rubin-causal counterfactual 
framework, one can show that given the true probability of 
being treated we have 𝐸( ௒೔

௉(௓೔ୀଵ))  =  𝐸(𝑌௜ଵ) [16]. Hence we 

can use ଵ
௉൫𝑍௜ = 1ห𝑋൯

 as weight for adopters (and 
ଵ

ଵି௉൫𝑍௜ = 1ห𝑋൯
 as weight for non-adopters). However, such 

inverse weighing mechanism assumes that the propensity 
score is the true probability of being treated. A more recent 
class of estimators combines the OLS method and propensity 
score inverse weighing models. Such Doubly Robust 
Estimators are consistent as long as at least one of the linear 
model or the propensity score model is correctly specified 
[18]. 

5.3 Evaluating Voyager Release 
As we have mentioned earlier, LinkedIn has recently redesigned 
and rebuilt our flagship app from scratch [3].  The new app, code 
name “Voyager”, should be considerably more intuitive and 
useful. One key challenge we faced was how to evaluate whether 
users indeed are benefiting from using the new app. If we were 
able to A/B test the app, it would have been an easy question to 
answer. However, with the drastic changes on both backend and 
frontend infrastructure, it is impossible to test all the changes in a 
randomized, controlled setting. The closest to A/B test we can get 



is to leverage Google Play store’s staged roll out functionality. 
But even with the staged roll out, we still have to face adoption 
bias, and therefore cannot analyze the results as a simple A/B 
comparison.   

As we mentioned earlier, the biggest challenge of any quasi-
experimental method is how to validate that the causal 
relationship is indeed true and not due to some omitted variables 
in the model. Fortunately, we are able to have a validation 
framework based on historical data. Historically, we release new 
app versions to app stores periodically.  These regular releases 
usually ship no more than minor bug fixes, which create a unique 
opportunity to (1) understand the adoption behavior (section 5.1) 
and consequently utilize it to build better quasi experiment 
models; (2) evaluate the validity of a model. These historical 
releases essentially serve as A/A tests, as it is reasonable to 
assume that such incremental releases only cause minor impact 
and the true average treatment effect (ATE) is close to 0. In 
addition, we have also observed that those validation results hold 
consistently across multiple historical versions.  

Unless specified, all results discussed from here on are cumulative 
up till a specific day. Even though single-day results tend to suffer 
less from adoption bias (as seen in Section 5.1), it makes the 
assumption that the new app does not make users visit more (or 
less) days. With a release as big as Voyager, it is not a plausible 
assumption.  

Because of the differences in how we roll out the app in iOS and 
in Android, we have to use different quasi A/B methodologies to 
evaluate iOS and Android separately, which we share in sections 
below.  

5.3.1 iOS 
Unlike in Android, there is no opportunity to release an app 
version to a randomized percent of users in iOS. This makes the 
adoption process fully observational. Evaluating Voyager in iOS 
becomes a “classical” quasi-experiment problem and existing 
techniques discussed in Section 5.2 should apply directly with 
only minor improvements. In this section, we compute the bias of 
each method during the week after release (in terms of percentage 
delta) for a key engagement metric. To make the comparison fair, 
the same set of covariates are used across methods. All results are 
based on a minor historical iOS release (an A/A release). 

Before we get to the comparison results, there are a couple of key 
learning from building the quasi-experiment models. 

First of all, many non-adopters become adopters after a couple of 
days. As we have observed in Section 5.1, whether a user adopts 
shortly after release is somewhat random due to Wi-Fi 
availability. Such random perturbation creates samples that are 
very similar in terms of covariates, but with opposite adoption 
status. These samples confuse the propensity model and make it 
harder to predict, as we can see in Figure 4 (Left). The baseline 
AUC is only at 0.65 in the first day compared with 0.82 on day 
seven.  This observation leads us to remove from the non-adopter 
group those users who in fact are very likely to adopt based on 
historical adoptions. By removing these “random” non-adopters in 
the early days, we are able to get an AUC score of close to 0.8 
even on day one (green curve). Any improvement for the early 
days is substantially more valuable in the production environment, 
as it really helps identify problems early and iterate fast. 

Figure 4. Left: AUC of the propensity model; Right: Bias of various quasi 
methods evaluated for the iOS release. 

Second, it is crucial to include the right features. We have 
explained the rationale on the choice of some features based on 
users’ adoption behavior in Section 5.1. As directly illustrated in 
Figure 4 (left), removing one covariate (e.g. OS Version) can 
decrease the AUC substantially. 

As shown in Figure 4 (Right), the raw comparisons are extremely 
biased, especially in the first days after launch. The amount of 
adoption bias reduces from about 65% to 40% after a week. The 
various methods have similar performance over time, with the 
endogenous OLS model having a slightly smaller bias. Overall, 
these methods are able to largely reduce adoption bias to about 
18% on day one to about 7% on day seven. 

5.3.2 Android  
Play store makes it easy for app developers to do a staged roll out 
[2]. We can choose to make the new version available to only a 
percentage of users. This applies to both existing app users and 
new users downloading from the Play store. It is a great way to 
minimize risk and collect feedback from real users. It may not be 
intuitive at first, but even though these users are randomly 
selected, we are not able to measure the staged roll out as a 
regular A/B test. The reason is because from our own tracking, we 
can only tell whether a user visits with a new app or an old app, 
but not their actual randomized experiment assignment. As 
demonstrated in Figure 5, among those visiting with an old app, 
we cannot differentiate those who are in the control bucket (entire 
B group) from those who are non-adopters in the “eligible” bucket 
(𝐴ଶ group). If we naively compare members on the new app with 
members on the old app, we would be comparing 𝐴ଵ with the rest, 
and hence suffer from the same adoption bias (or self-selection 
bias) as a full roll out. 

 
Figure 5. Illustrate how adoption bias exists even in Google staged roll out.  

The problem, however, is a little different. In a full roll out, other 
than the minor random perturbation to the label during the first 
couple of days (due to Wi-Fi access), the adopters are intrinsically 
different from non-adopters. Most quasi-experiment techniques 
described in Section 5.2 try to remove such intrinsic difference by 
modeling directly on adoption status. For example, propensity 



score models build a logistic regression using adoption status as 
response. When the actual adoption status is determined by a 
combination of randomization and user intrinsic behavior, such 
models work poorly. This is because the signal that comes with 
the status is weak. The 𝐵ଵ users who were non-adopters can 
become adopters with simply a reshuffle, which obviously cannot 
be modeled by any user variables.  

At the same time, there is a bright side to the unique situation. In a 
20% roll out, for every adopter we expect there to be four non-
adopters who are similar to him. If we have a methodology that 
can identify those “would-be” adopters, we are all set. To 
successfully reduce adoption bias, such method needs to have an 
extremely low false positive rate, even if that leads to more false 
negatives. We illustrate the idea in the following. 

Assume we have a selection criteria 𝑆 to pick out potential 
adopters. Apply such criteria to the two groups of users observed 
(𝐴ଵ vs. 𝐴ଶ + 𝐵ଵ + 𝐵ଶ). With high false positives and zero false 
negatives, we have 𝑆(𝐴ଵ)  =  𝐴ଵ, and 

 𝑆(𝐴ଶ + 𝐵ଵ + 𝐵ଶ) =  𝑆(𝐴ଶ)  +  𝐵ଵ  +  𝑆(𝐵ଶ)  >  𝐵ଵ  

Since 𝐴ଵ and 𝐵ଵ are the two comparable user groups, such 
selection criteria create bias. The higher the false positive rate is, 
the worse the bias gets. On the other hand, if we have only false 
negatives and no false positives, we get 𝑆(𝐴ଵ) ⊂  𝐴ଵ, and 

 𝑆(𝐴ଶ + 𝐵ଵ + 𝐵ଶ) =  𝑆(𝐵ଵ) ⊂  𝐵ଵ 

Since 𝐴ଵ and 𝐵ଵ are comparable, 𝑆(𝐴ଵ) and 𝑆(𝐵ଵ) are comparable 
as well. As long as the false negative rate is not too high and 
𝑆(𝐴ଵ) is still a representative subset of 𝐴ଵ (i.e. out-of-sample bias 
is small), the comparison between 𝑆(𝐴ଵ) and 𝑆(𝐵ଵ) is meaningful. 
In Section 5.3.2.1 and 5.3.2.2 below, we propose two methods 
that are guided by such intuition. 

5.3.2.1 Geometric Distribution Model 
The idea is to separate the “would-be” adopters (𝐵ଵ) from the rest 
of the non-adopters by directly modeling their adoption 
probabilities. By selecting only users with high propensity to 
adopt in both adopter and non-adopter groups, we hope to achieve 
high precision in identifying comparable users. Note that different 
from the usual propensity score modeling, we only use historical 
data to model the adoption probabilities. The actual adoption 
status itself is only used in the final step as treatment assignment 
label.  
As we discussed in Section 5.1, the adoption probability increases 
as time goes by. We therefore need to model 𝑝௜௧, the probability 
for member 𝑖 to adopt on day t. As described in section 5.1, we do 
not know whether a member has adopted the new app version 
until he or she visits our app. To simplify the problem, we assume 
that every member 𝑖 has a chance of 𝑝௜ to show up as an adopter 
each day they visit, and that the probability of adopting on day 𝑡 
follows a geometric distribution 

𝑝௜௧ = (1 −  𝑝௜)௔೔೟ିଵ𝑝௜ 

where 𝑎௜௧ is the number of active days a user has had by day t. 

Based on data from historical adoptions, we can compute the 
maximum likelihood estimator (MLE) for 𝑝௜ to be 

𝑝̂௜ = argmax
௣೔

ෑ(1 −  𝑝௜)௞೔ೕିଵ𝑝௜
ூ೔ೕ

௦

௝ୀଵ

=  
∑ 𝐼௜௝௝

∑ 𝐼௜௝௝ + ∑ 𝑘௜௝௝
 

where 𝑘௜௝  is the number of active days user 𝑖 had before adopting 
historical app version 𝑗, with 𝑗 =  1, 2 … 𝑠, and 𝐼௜௝ be the indicator 
function of whether user i adopted version j. Note that in our 
application, we capped 𝑘௜௝  at 14 days, so if user 𝑖 did not adopt by 
day 14 for version 𝑗, we have 𝑘௜௝ = 14 and 𝐼௜௝ = 0. 

Finally, on each day 𝑡 after Voyager release, we compute the 
probability that user 𝑖 adopts by day 𝑡 to be 1 − (1 −  𝑝̂௜)௔೔೟, 
which is the cumulative probability based on the actual number of 
active days we observe. To get the treatment effect, we only select 
users with 1 − (1 −  𝑝̂௜)௔೔೟ > threshold. The threshold is chosen 
based on A/A cross-validation results. 

The results (Figure 6, Left) show that such method is able to 
correct for almost all the selection bias towards the end of the 
adoption week. However, regardless of how high a threshold we 
pick, the precision in the first few days is poor. This echoes our 
analysis in Section 5.1 where we observed that adoption in the 
first days is hard to predict. 

 
Figure 6. Left: Bias of the geometric distribution model. Right: Bias of the 
doubly robust with matching model. Both are for Android 20% roll out.  

5.3.2.2 Doubly Robust with Matching 
As we mentioned early, propensity score models do not work well 
in the randomized setting. However, because there is supposed to 
be more users in the non-adopter group who are similar to the 
adopters, matching directly on covariates themselves is supposed 
to be an easier task than it is in the full roll out case (as in iOS). 
There are various methods that perform matching based on 
covariates, and they all trace back to two that are the most 
fundamental: 

1. Exact matching: This is the technique that matches each 
adopted user to all possible non-adopters with exactly the 
same values on all the covariates. 

2. Nearest neighbor matching: This method selects the non-
adopters who are closest to each individual in the adopter 
group in terms of a distance measure specified. The selection 
process can be done in a couple of ways: (1) a “local” greedy 
approach that chooses the closest match one at a time, in 
which case it matters which adopter gets processed first; (2) a 
“global” optimal approach that finds the matched users with 
the smallest average absolute distance across all the matched 
pairs [2].  

Neither the local nor the global nearest neighbor approaches can 
be easily computed in a parallelizable fashion, which makes 
scaling it to millions of users a hard problem of its own. In 
addition, on a smaller test data set we tried, the nearest neighbor 
technique tends to under perform, and highly affected by the 
distance measure chosen, particularly because we have many 
categorical covariates. Exact matching, on the other hand, does 
not work well when there are many covariates (or when some 



covariates can take many values, such as continuous variables), as 
it becomes impossible to find sufficient exact matches. 
Continuous or ordinal variables have an additional challenge in 
exact matching because of the lack of distance measures. A 
difference of 1 pageview is treated the same as a difference of 
1000 pageviews, which is clearly suboptimal.  

Because of these challenges, we have decided to go with a 
“Doubly Robust” approach [18], where we fit an exact matching 
model first and then fits a linear regression model on the matched 
user sets. The exact matching takes in only about 10 important 
covariates with the continuous variables carefully bucketized to 
ensure sufficient matched samples. The regression model has a lot 
more covariates, including several continuous variables, which 
can compensate for the somewhat coarse matching and offers 
more granularity into the covariates. Because of its good 
performance in validation from first day after release, this is the 
approach we used in production. 

Here are the steps we took for the Doubly Robust estimation: 

1. Only variables that cannot be impacted by the treatment itself 
are included as covariates, including variables collected 
before the new app version release or stable member 
attributes such as country or language. 

2. For all the variables, ensure common support in both adopter 
and non-adopter groups by pruning the observations where 
the empirical densities do not overlap. This is to avoid 
extrapolation.  

3. Select a small set of variables (about 10) to be used for exact 
matching. We first select representative variables to cover a 
wide range of member attributes and engagement 
characteristics. Further reduction is then done by dropping 
one variable at a time and is cross-validated based on A/A 
test results (described earlier). The goal is to produce as 
many matched samples as possible without increasing bias. 

4. Covariates used in exact matching are bucketized to reduce 
their cardinalities. We have noticed that using quantiles to 
bucketize does not work well for a lot of covariates because 
of their skewed distributions. For example, the difference 
between the 10th and the 20th percentiles of several variables 
has no practical significance. Artificially treating them as 
two entirely different buckets creates inefficiency when 
matching the samples. 

5. Feed the matched samples into a weighted linear regression 
model, using the weights produced from the exact matching. 
We use the endogenous switching model described in 
Equation (3) and (4), building one model for adopters and 
one for non-adopters. The models are then used to predict on 
the entire matched user samples. For example, the model 
trained on adopters is used to produce 𝑦ො௜

(ଵ), the estimated 
response under the new version (treatment), for both adopters 
and non-adopters. The final doubly robust estimator of the 
treatment effect is a weighted average difference between a 
world where everyone has adopted and a world where no one 
has adopted:  

𝐷𝑅𝐸 =
1

൫∑ 𝑤௜
௡
௜ୀଵ ൯

 ൭෍ 𝑤௜ ቀ𝑦௜ − 𝑦ො௜
(଴)ቁ

௠

௜ୀଵ

+ ෍ 𝑤௜ ቀ𝑦ො௜
(ଵ) − 𝑦௜ቁ

௡

௜ୀ௠ାଵ
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where 𝑤௜ is the weight from matching and 𝑦௜  is the observed 
value. WLOG we assume users 𝑖 = 1, … , 𝑚 are adopters. 

We have noticed that it is important to have sufficient number of 
samples that are matched. During the first day post launch, as the 

number of adopters is still relatively small (especially in 20% roll 
out), the set of variables we include in the matching step is much 
smaller. As a result, we matched about 60% of adopters on day 
one, while that number reduces to 20% after day one. On the other 
hand, the matched non-adopters went from about 5% to 10%. The 
median number of non-adopters matched per adopter is 3. 

The validation results look very positive. As shown in Figure 6 
(Right), for the two key metrics we tracked, we had only about 3 – 
4 % bias on the first day, compared with an over 70% bias in the 
raw comparison shown in the left plot. The bias reduces to less 
than 1% after day three.  

5.3.3 Novelty Effect 
For big releases that involve drastically different user experience, 
we usually expect strong novelty effect, as users tend to explore 
the new experience more at the beginning. One obvious question 
when it comes to evaluating the performance of a new app version 
is: is there novelty effect and if so, how long does it take for it to 
go away? In a randomized A/B test, a simple and practical 
approach is to check whether the daily treatment effect, measured 
as the percentage delta between treatment and control, dies down 
as days go by. With adoption bias, novelty effect is confounded 
by the fact that people who adopt earlier are simply different from 
people who adopt later. The quasi-A/B framework in Section 
5.3.2.2 provides us with a way to separate out the inconsistent 
adoption bias and the novelty effect. 

      
       Figure 7. Novelty effect goes away after the first couple of days. 

We start with identifying two cohorts of users: the adopter cohort 
and the non-adopter cohort. Obviously, if we construct the cohorts 
on day one, we will have some of the non-adopters converted to 
be adopters during the period of evaluation. Because this is a 
retrospective study, we can overcome this problem by removing 
users who ended up adopting during this period from the non-
adopter cohort (we can safely assume there is no conversion the 
other way around, going from adopter to non-adopter). As a 
second step, we match the cohorts using the same exact matching 
method as outlined in Section 5.3.2.2. This gives us two matched 
cohorts with weights. Finally, we remove further bias by applying 
a weighted linear regression on the matched cohorts as in the 
doubly robust approach. It is important to note that even though 
the matched cohorts are constructed once, the evaluation is done 
on the same cohorts daily, regardless whether a cohort user is 
active in that particular day. As shown in Figure 7, the treatment 
effect (measured as percent delta) is much larger in the first 
couple of days and then settles down to a smaller, consistent 
value, providing compelling evidence that the novelty effect 
lasted for just a couple of days. 

6. SUMMARY AND FUTURE WORK 
In this paper we discussed many differences when experimenting 
on mobile compared with on desktop. We also proposed and 
established a quasi A/B testing framework to evaluate mobile app 



release. Many insights around how users adopt a new app version 
were shared and discussed.  
One very interesting problem that we didn’t cover is to understand 
the latent factors underlying users’ adoption behavior (Section 
5.1), which should help further improve the quasi models.  
Moreover, notice how the quasi models have a lot less bias for 
Android (Figure 6) than they have for iOS (Figure 4). It is because 
Android was a randomized 20% roll out. If Apple App Store also 
supports a staged roll out feature, it will greatly benefit not only 
the app developers, but also app users, as they will get apps that 
are better evaluated and optimized.  
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