Causality

Jonas Peters
MPI for Intelligent Systems, Tübingen

MLSS, Cádiz
18th May 2016

is based on work by ...

- UCLA: Judea Pearl
- CMU: Peter Spirtes, Clark Glymour, Richard Scheines
- Harvard University: Donald Rubin, Jamie Robins
- ETH Zürich: Peter Bühlmann, Nicolai Meinshausen
- Max-Planck-Institute Tübingen: Dominik Janzing, Bernhard Schölkopf
- University of Amsterdam: Joris Mooij
- Patrik Hoyer
- ... and many others

Step 1：Consider the following problem．

这里提出的问题就是如果我们抑制这其中一个基因的表达，结果会是什么

Step 2：Causality matters！

如果我们可以确认A是导致phenotype的原因，那么我们就有更高的确信度，认为如果我们一直A的表达，预测的phenotyoe会很低

但是对于gene B 来说，如果你不能确认它是原因的话，
那么仅仅通过相关性是预测不出干预效果的，因为confounder的作用

Step 3: What is a causal model?

Step 4: What questions are being asked?

- How to compute interventions?
- What if there are hidden variables?
- What are nice graphical representations?
- Can we test counterfactual statements?
- Can we infer the graph structure?

Example: chocolate

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Example: chocolate

Confectionery

HEADLINES | TRENDS | TECHNOLOGY | PRODUCTS | JOBS | EVENTS | RELATED SITES |

```
    HEADLINES > REGULATION & SAFETY
```

Subscribe to the Newsletter

Text size

Eating chocolate produces Nobel prize winners, says study
By Oliver Nieburg ${ }^{\text {Nㅜㄴ }}$, 11-Oct-2012
Related tags: noble prize, nobel laureate, Einstein, Marie Curie, chocolate, brain, Switzerland, Sweden, candy

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Example: chocolate

Example: smoking

BRITISH MEDICAL JOURNAL
 LONDON SATURDAY SEPTEMBER 301950

SMOKING AND CARCINOMA OF THE LUNG PRELIMINARY REPORT

BY
RICHARD DOLL, M.D., M.R.C.P.
Member of the Statistical Research Unit of the Medical Research Council
AND
A. BRADFORD HILL, Ph.D., D.Sc.

Professor of Medical Statistics, London School of Hygiene and Tropical Medicine; Honorary Director of the Statistical Research Unit of the Medical Research Council

Abstract

In England and Wales the phenomenal increase in the number of deaths attributed to cancer of the lung provides one of the most striking changes in the pattern of mortality recorded by the Registrar-General. For example, in the quarter of a century between 1922 and 1947 the annual number of deaths recorded increased from 612 to

whole explanation, although no one would deny that it may well have been contributory. As a corollary, it is right and proper to seek for other causes.

Possible Causes of the Increase

Two main causes have from time to time been put for-

Example: smoking

BRITISH

 MEDICAL
JOURNAL

Table VII.-Estimate of Total Amount of Tobacco Ever Consumed by Smokers; Lung-carcinoma Patients and Control Patients with Diseases Other Than Cancer

Disease Group	No. Who have Smoked Altogether					$\begin{gathered} \text { Probability } \\ \text { Test } \end{gathered}$
	$\begin{gathered} 365 \\ \text { Cigs.- } \end{gathered}$	$\begin{aligned} & 50,000 \\ & \text { Cigs.- } \end{aligned}$	$\begin{gathered} 150,000 \\ \begin{array}{c} \text { Cigs.- } \end{array} \end{gathered}$	$\begin{array}{\|c\|c} 250,000 \\ \text { Cigs. } \end{array}$	$\begin{aligned} & 500,000 \\ & \text { Cigs. }+ \end{aligned}$	
Males: Lung-carcinoma patients (647)	$\begin{gathered} 19 \\ (2.9 \%) \end{gathered}$	$\mid(22 \cdot 4 \%)$	$\stackrel{183}{(28.3 \%)}$	$\underset{(34 \cdot 8 \%)}{225}$	$\begin{gathered} 75 \\ (11.6 \%) \end{gathered}$	$\begin{aligned} & \chi^{2}=30 \cdot 60 ; \\ & n=4 ; \end{aligned}$
Control patients with diseases other than cancer (622).	$\begin{gathered} 36 \\ (5 \cdot 8 \%) \end{gathered}$	$\begin{gathered} 190 \\ (30 \cdot 5 \%) \end{gathered}$	$\begin{gathered} 182 \\ (29 \cdot 3 \%) \end{gathered}$	$\begin{array}{\|l\|} \hline 179 \\ (28.9 \%) \end{array}$	$\begin{gathered} 35 \\ (5 \cdot 6 \%) \end{gathered}$	$\mathrm{P}<0$
Females: Lung-carcinoma patients (41). .	$\begin{array}{\|c\|} \hline 10 \\ (24 \cdot 4 \%) \end{array}$	$\begin{gathered} 19 \\ (46 \cdot 3 \%) \end{gathered}$	$\begin{gathered} 5 \\ (12 \cdot 2 \%) \end{gathered}$	$\begin{array}{\|c} 7 \\ (17 \cdot 1 \%) \end{array}$	$\stackrel{0}{(0.0 \%)}$	$\begin{aligned} & \chi^{2}=1 \\ & n=2 \end{aligned}$
Control patients with diseases ot her than cancer (28)..	$\begin{array}{\|c} 19 \\ (67 \cdot 9 \%) \end{array}$	$\stackrel{5}{(17 \cdot 9 \%)}$	$\begin{gathered} 3 \\ (10.7 \%) \end{gathered}$	$\begin{gathered} 1 \\ (3 \cdot 6 \%) \end{gathered}$	$\stackrel{0}{(0.0 \%)}$	0.01 (Women smoking 15 or more cig arettes a day grouped together)

UNG

ouncil.
y Director of the Statistical

1 no one would deny that it butory. As a corollary, it is r other causes.
of the Increase
om time to time been put for-

Example: smoking

BRITISH MEDICAL JOURNAL

Example: myopia

Present refraction

- High hyperopiaEmmetropiaHyperopiaMyopia
- High myopia

Night-time ambient lighting before 2 yr of age

Example: myopia

Present refraction
$\begin{array}{ll}\square \text { High hyperopia } & \square \text { Emmetropia } \\ \square \text { Hyperopia } & \square \text { Myopia } \\ & \square \text { High myopia }\end{array}$

"the strength of the association . . . does suggest that the absence of a daily period of darkness during childhood is a potential precipitating factor in the development of myopia"

Example: myopia

Patente

Night light with sleep timer
 US 20050007889 A1

ZUSAMMENFASSUNG

A timer a light and an optional music source is located on or in a housing of a nightlight assembly. When this assembly is plugged into a source of electric power, the timer is set to a selected time for the light and optional music to remain on. After this selected time has elapsed, the light and music automatically turns off, allowing for sleep in appropriate darkness and silence.

Veröffentichungsnummer	US20050007889 A
Publikationstyp	Anmeldung
Anmeldenummer	US 10/614,245
Veröffentichungsdatum	13. Jan. 2005
Eingetragen	8. Juli 2003
Prioritätsdatum ©	8. Juli 2003
Erfinder	Karin Peterson
Ursprünglich Peterson Karin Lyn Bevollmáchtigter BiBTeX, EndNote, F Zitat exportieren	

Klassifizierungen (4)
Externe Links: USPTO, USPTO-Zuordnung, Esp

BILDER (3)

Example: myopia

Patente

Night light with sleep timer
 US 20050007889 A1

ZUSAMMENFASSUNG

A timer a light and an optional music source is located on or in a housing of a nightlight assembly. When this assembly is plugged into a source of electric power, the timer is set to a selected time for the light and optional music to remain on. After this selected time has elapsed, the light and music automatically turns off, allowing for sleep in appropriate darkness and silence.

Veröffentlichungsnummer	US20050007889 A
Publikationstyp	Anmeldung
Anmeldenummer	US 10/614,245
Veröffentichungsdatum	13. Jan. 2005
Eingetragen	8. Juli 2003
Prioritätsdatum (?	8. Juli 2003
Erfinder	Karin Peterson
Ursprünglich Bevollmáchtigter	Peterson Karin Lyn
Zitat exportieren	BiBTeX, EndNote, F

Klassifizierungen (4)
Externe Links: USPTO, USPTO-Zuordnung, Esp

BILDER (3)

Question: Does the night light with sleep timer help?

Example: kidney stones

	Treatment A	Treatment B
	$\frac{273}{350}=0.78$	$\frac{289}{350}=0.83$
	$\frac{562}{700}=0.80$	

Charig et al.: Comparison of treatment of renal calculi by open surgery, (...) , British Medical Journal, 1986

Example: kidney stones

	Treatment A	Treatment B
Small Stones $\left(\frac{357}{70}=0.51\right)$	$\frac{81}{87}=0.93$	$\frac{234}{270}=0.87$
Large Stones $\left(\frac{343}{700}=0.49\right)$	$\frac{192}{263}=0.73$	$\frac{55}{80}=0.69$
	$\frac{273}{350}=0.78$	$\frac{289}{350}=0.83$
	$\frac{562}{700}=0.80$	

Charig et al.: Comparison of treatment of renal calculi by open surgery, (...) , British Medical Journal, 1986

Example: kidney stones

underlying ground truth:

Example: kidney stones

underlying ground truth:

Question: What is the expected recovery if all get treatment B ? (Make treatment independent of size.)

Example: advertisement

Example: advertisement

Example: advertisement

Question: How do we choose an optimal main line reserve?

Bottou et al.: Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising, JMLR 2013

Example: gene interactions

genetic perturbation experiments for yeast

- $p=6170$ genes
- $n_{\text {obs }}=160$ wild-types
- $n_{\text {int }}=1479$ gene deletions (targets known)

Example: gene interactions

genetic perturbation experiments for yeast

- $p=6170$ genes
- $n_{\text {obs }}=160$ wild-types
- $n_{\text {int }}=1479$ gene deletions (targets known)
observational training data

- Causal relationships are often stable!

Kemmeren et al.: Large-scale genetic perturbations reveal reg. networks and an abundance of gene-specific repressors. Cell, 2014

Part I: Causal Language and causal reasoning

SEMs: structural equations with noise distribution.

$$
\begin{aligned}
& X_{1}:=f_{1}\left(X_{3}, N_{1}\right) \\
& X_{2}:=f_{2}\left(X_{1}, N_{2}\right) \\
& X_{3}:=f_{3}\left(N_{3}\right) \\
& X_{4}:=f_{4}\left(X_{2}, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

SEMs model observational distributions over X_{1}, \ldots, X_{d}.

$$
\begin{aligned}
& X_{1}:=f_{1}\left(X_{3}, N_{1}\right) \\
& X_{2}:=f_{2}\left(X_{1}, N_{2}\right) \\
& X_{3}:=f_{3}\left(N_{3}\right) \\
& X_{4}:=f_{4}\left(X_{2}, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

SEMs can model interventions, too.

SEMs model observational distributions over X_{1}, \ldots, X_{d}.

$$
\begin{aligned}
& X_{1}:=f_{1}\left(X_{3}, N_{1}\right) \\
& X_{2}:=f_{2}\left(X_{1}, N_{2}\right) \\
& X_{3}:=f_{3}\left(N_{3}\right) \\
& X_{4}:=f_{4}\left(X_{2}, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

SEMs can model interventions, too.

Example: kidney stones

Given: graph and P.

$$
\begin{aligned}
T & :=f_{1}\left(S, N_{1}\right) \\
R & :=f_{2}\left(T, S, N_{2}\right) \\
S & :=f_{3}\left(N_{3}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

Example: kidney stones

Given: graph and P. We can then compute $\tilde{P}=P_{\mathrm{do}(T=A)}$.

$$
\begin{aligned}
& T:=f_{1}\left(S, N_{1}\right) T:=A \\
& R:=f_{2}\left(T, S, N_{2}\right) \\
& S:=f_{3}\left(N_{3}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

Example: kidney stones

	Treatment A	Treatment B
Small Stones $\left(\frac{357}{700}=0.51\right)$	$\frac{81}{87}=0.93$	$\frac{234}{270}=0.87$
Large Stones $\left(\frac{343}{700}=0.49\right)$	$\frac{192}{263}=0.73$	$\frac{55}{80}=0.69$
	$\frac{273}{350}=0.78$	$\frac{289}{350}=0.83$
	$\frac{562}{700}=0.80$	

Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British Medical Journal, 1986

Example: kidney stones

$$
\begin{aligned}
E_{d o(T:=A)} R & =P_{d o(T:=A)}(R=1) \\
& =\sum_{s} P_{d o(T:=A)}(R=1, S=s, T=A) \\
& =\sum_{s} P_{d o(T:=A)}(R=1 \mid S=s, T=A) P_{d o(T:=A)}(S=s, T=A) \\
& =\sum_{s} P_{d o(T:=A)}(R=1 \mid S=s, T=A) P_{d o(T:=A)}(S=s) \\
& =\sum_{s} P(R=1 \mid S=s, T=A) P(S=s) \\
& =0.832 \\
& >0.782 \\
& =\cdots \\
& =P_{d o(T:=B)}(R=1)=E_{d o(T:=B)} R
\end{aligned}
$$

Definition

Given an SEM, there is a total causal effect from X to Y if one of the following equivalent statements is satisfied:

Definition

Given an SEM, there is a total causal effect from X to Y if one of the following equivalent statements is satisfied:
(i) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}$ for some random variable \tilde{N}_{X}.
(ii) There are x^{\triangle} and x^{\square}, such that $P_{\text {do } X:=x^{\triangle}}^{Y} \neq P_{\text {do } X:=x^{\square}}^{Y}$.
(iii) There is x^{\triangle}, such that $P_{\text {do }}^{Y} X:=x \triangle \neq P^{Y}$.
(iv) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}^{X, Y}$ for any \tilde{N}_{X} whose distribution has full support.

Definition

Given an SEM, there is a total causal effect from X to Y if one of the following equivalent statements is satisfied:
(i) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}$ for some random variable \tilde{N}_{X}.
(ii) There are x^{\triangle} and x^{\square}, such that $P_{\text {do } X:=x^{\triangle}}^{Y} \neq P_{\text {do } X:=x^{\square}}^{Y}$.
(iii) There is x^{\triangle}, such that $P_{\text {do }}^{Y} X:=x \triangle \neq P^{Y}$.
(iv) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}^{X, Y}$ for any \tilde{N}_{X} whose distribution has full support.

Causal strength?

Definition

Given an SEM, there is a total causal effect from X to Y if one of the following equivalent statements is satisfied:
(i) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}$ for some random variable \tilde{N}_{X}.
(ii) There are x^{\triangle} and x^{\square}, such that $P_{\text {do } X:=x^{\triangle}}^{Y} \neq P_{\text {do } X:=x}^{Y}$.
(iii) There is x^{\triangle}, such that $P_{\text {do }}^{Y} X:=x \triangle \neq P^{Y}$.
(iv) $X \nVdash Y$ in $P_{\text {do } X:=\tilde{N}_{X}}^{X, Y}$ for any \tilde{N}_{X} whose distribution has full support.

Causal strength? \rightsquigarrow your next paper :)

Summary Part I:

- What if interested in iid prediction, i.e. observational data? Don't worry (too much) about causality!

Summary Part I:

- What if interested in iid prediction, i.e. observational data? Don't worry (too much) about causality!
- But often, we are interested in a system's behaviour under intervention.

Summary Part I:

- What if interested in iid prediction, i.e. observational data? Don't worry (too much) about causality!
- But often, we are interested in a system's behaviour under intervention.
- SEMs entail graphs, obs. distr., interventions and counterfactuals.

$x_{1}:=f_{1}\left(X_{3}, N_{1}\right)$
$x_{2}:=f_{2}\left(X_{1}, x_{3}, N_{2}\right)$
$x_{3}:=f_{3}\left(N_{3}\right)$
- N_{i} jointly independent
$\bullet G_{0}$ has no cycles

Summary Part I:

- What if interested in iid prediction, i.e. observational data? Don't worry (too much) about causality!
- But often, we are interested in a system's behaviour under intervention.
- SEMs entail graphs, obs. distr., interventions and counterfactuals.

- graph + observational distribution \rightsquigarrow interventions (by adjusting)
- ... even possible if there are (some) hidden variables

Part II: Causal Discovery

Required:
Relation between distribution P and SEM.

Correlation (Dependence) does not imply causation

Correlation (Dependence) does not imply causation ... but:

Correlation (Dependence) does not imply causation ... but:

Reichenbach's common cause principle.

 Assume that $X \not \Perp Y$. Then- X "causes" Y,
- Y "causes" X,
- there is a hidden common "cause" or
- combination of the above.

Correlation (Dependence) does not imply causation ... but:

Reichenbach's common cause principle.

 Assume that $X \not \Perp Y$. Then- X "causes" Y,
- Y "causes" X,
- there is a hidden common "cause" or
- combination of the above.
- (In practice implicit conditioning also happens:

aka "selection bias").

Correlation (Dependence) does not imply causation ... but:

Reichenbach's common cause principle.

 Assume that $X \not \Perp Y$. Then- X "causes" Y,
- Y "causes" X,
- there is a hidden common "cause" or
- combination of the above.
- (In practice implicit conditioning also happens:

aka "selection bias"). Formalization of this idea...

Definition: graphs

$G=(V, E)$ with $E \subseteq V \times V$. The rest is as in real life!

- parents, children, descendants, ancestors, ...
- paths, directed paths
- immoralities (or v-structures)
- d-separation (see next)
- ...

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

$$
\begin{aligned}
& \circ \cdots \rightarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \leftarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \rightarrow \circ \leftarrow \cdots \circ \text { blocks a path. }
\end{aligned}
$$

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

$$
\begin{aligned}
& \circ \cdots \rightarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \leftarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \rightarrow \circ \leftarrow \cdots \circ \text { blocks a path. }
\end{aligned}
$$

X_{2} and X_{5} are d-sep. by $\left\{X_{1}, X_{4}\right\}$

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

$$
\begin{aligned}
& \circ \cdots \rightarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \leftarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \rightarrow \circ \leftarrow \cdots \circ \text { blocks a path. }
\end{aligned}
$$

X_{2} and X_{5} are d-sep. by $\left\{X_{1}, X_{4}\right\}$ X_{4} and X_{1} are d-sep. by $\left\{X_{2}, X_{3}\right\}$

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

$$
\begin{aligned}
& \circ \cdots \rightarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \leftarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \rightarrow \circ \leftarrow \cdots \circ \text { blocks a path. }
\end{aligned}
$$

X_{2} and X_{5} are d-sep. by $\left\{X_{1}, X_{4}\right\}$ X_{4} and X_{1} are d-sep. by $\left\{X_{2}, X_{3}\right\}$ X_{2} and X_{4} are d-sep. by $\}$

Definition: d-separation

X_{i} and X_{j} are d-separated by \mathcal{S} if all paths between X_{i} and X_{j} are blocked by \mathcal{S}.

Check, whether all paths blocked!!

$$
\begin{aligned}
& \circ \cdots \rightarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \leftarrow \circ \rightarrow \cdots \circ \text { blocks a path. } \\
& \circ \cdots \rightarrow \circ \leftarrow \cdots \circ \text { blocks a path. }
\end{aligned}
$$

X_{2} and X_{5} are d-sep. by $\left\{X_{1}, X_{4}\right\}$
X_{4} and X_{1} are d-sep. by $\left\{X_{2}, X_{3}\right\}$
X_{2} and X_{4} are d-sep. by $\}$
X_{4} and X_{1} are NOT d-sep. by $\left\{X_{3}, X_{5}\right\}$

Definition

P is Markov w.r.t. G if
X_{i} and X_{j} are d-separated by \mathcal{S} in $G \quad \Rightarrow \quad X_{i} \Perp X_{j} \mid \mathcal{S}$

Definition

P is Markov w.r.t. G if

$$
X_{i} \text { and } X_{j} \text { are } d \text {-separated by } \mathcal{S} \text { in } G \quad \Rightarrow \quad X_{i} \Perp X_{j} \mid \mathcal{S}
$$

Proposition

Let the distribution P be Markov wrt a causal graph G. Then, Reichenbach's common cause principle is satisfied.

Proof: dependent variables must be d-connected.

Definition

P is Markov w.r.t. G if
X_{i} and X_{j} are d-separated by \mathcal{S} in $G \quad \Rightarrow \quad X_{i} \Perp X_{j} \mid \mathcal{S}$

Definition

P is Markov w.r.t. G if

$$
X_{i} \text { and } X_{j} \text { are } d \text {-separated by } \mathcal{S} \text { in } G \quad \Rightarrow \quad X_{i} \Perp X_{j} \mid \mathcal{S}
$$

Definition

P is faithful w.r.t. G if
X_{i} and X_{j} are d-separated by \mathcal{S} in $G \Leftarrow \quad X_{i} \Perp X_{j} \mid \mathcal{S}$

Idea 1: independence-based methods

Idea 1: independence-based methods

Method: IC (Pearl 2009); PC, FCI (Spirtes et al., 2000)

(1) Find all (cond.) independences from the data.
(2) Select the DAG(s) that corresponds to these independences.

Idea 1: independence-based methods

Method: IC (Pearl 2009); PC, FCI (Spirtes et al., 2000)

(1) Find all (cond.) independences from the data.
(2) Select the DAG(s) that corresponds to these independences.

Example: myopia

Present refraction

- High hyperopia - Hyperopia
\square Myopia
- High myopia

We have

- night light \mathbb{H} child myopia
- night light \Perp child myopia | parent myopia
- no other independences

Quinn et al.: Myopia and ambient lighting at night, Nature 1999
Zadnik et al.: Vision: Myopia and ambient night-time light., Nature 2000
Gwiazda et al.: Vision: Myopia and ambient night-time light., Nature 2000

and therefore ...

Example: myopia

Present refraction

- High hyperopia \square Hyperopia
\square Myopia
- High myopia

We have

- night light \mathbb{H} child myopia
- night light \Perp child myopia | parent myopia
- no other independences

Quinn et al.: Myopia and ambient lighting at night, Nature 1999
Zadnik et al.: Vision: Myopia and ambient night-time light., Nature 2000
Gwiazda et al.: Vision: Myopia and ambient night-time light., Nature 2000

Idea 1: independence-based methods

Method: IC (Pearl 2009); PC, FCI (Spirtes et al., 2000)

(1) Find all (cond.) independences from the data.
(2) Select the DAG(s) that corresponds to these independences.

Idea 1: independence-based methods

Method: IC (Pearl 2009); PC, FCl (Spirtes et al., 2000)
(1) Find all (cond.) independences from the data. Be smart.
(2) Select the DAG(s) that corresponds to these independences.

What do we do with two variables?

Idea 2: restricted structural equation models

Mooij, JP, Janzing, Zscheischler, Schölkopf: Disting. cause from effect using obs. data: methods and benchm., submitted

Idea 2: restricted structural equation models

Assume $P\left(X_{1}, \ldots, X_{4}\right)$ has been entailed by

$$
\begin{aligned}
& X_{1}=f_{1}\left(X_{3}, N_{1}\right) \\
& X_{2}=N_{2} \\
& X_{3}=f_{3}\left(X_{2}, N_{3}\right) \\
& X_{4}=f_{4}\left(X_{2}, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

Structural equation model.
Can the DAG be recovered from $P\left(X_{1}, \ldots, X_{4}\right)$?

Idea 2: restricted structural equation models

Assume $P\left(X_{1}, \ldots, X_{4}\right)$ has been entailed by

$$
\begin{aligned}
& X_{1}=f_{1}\left(X_{3}, N_{1}\right) \\
& X_{2}=N_{2} \\
& X_{3}=f_{3}\left(X_{2}, N_{3}\right) \\
& X_{4}=f_{4}\left(X_{2}, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

Structural equation model.
Can the DAG be recovered from $P\left(X_{1}, \ldots, X_{4}\right)$? No.

Idea 2: restricted structural equation models

Assume $P\left(X_{1}, \ldots, X_{4}\right)$ has been entailed by

$$
\begin{aligned}
& X_{1}=f_{1}\left(X_{3}\right)+N_{1} \\
& X_{2}=N_{2} \\
& X_{3}=f_{3}\left(X_{2}\right)+N_{3} \\
& X_{4}=f_{4}\left(X_{2}, X_{3}\right)+N_{4}
\end{aligned}
$$

- $N_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ jointly independent
- G_{0} has no cycles

Additive noise model with Gaussian noise.
Can the DAG be recovered from $P\left(X_{1}, \ldots, X_{4}\right)$? Yes iff f_{i} nonlinear.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014

Idea 2: restricted structural equation models

Consider a distribution entailed by

Idea 2: restricted structural equation models

Consider a distribution entailed by

Then, if f is nonlinear, there is no

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

Idea 2: restricted structural equation models

Consider a distribution corresponding to

with

$$
\begin{aligned}
X & \sim \mathcal{N}\left(1,0.5^{2}\right) \\
N_{Y} & \sim \mathcal{N}\left(0,0.4^{2}\right)
\end{aligned}
$$

Idea 2: restricted structural equation models

Real Data: cause-effect pairs

Example: chocolate

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Example: chocolate

No (not enough) data for chocolate

Example: chocolate

No (not enough) data for chocolate

... but we have data for coffee!

Example: chocolate

> Correlation: 0.698 p-value: $<2.2 \cdot 10^{-16}$

Example: chocolate

Correlation: 0.698 p-value: $<2.2 \cdot 10^{-16}$

Coffee \rightarrow Nobel Prize: Dependent residuals (p-value of $5.1 \cdot 10^{-78}$). Nobel Prize \rightarrow Coffee: Dependent residuals (p-value of $3.1 \cdot 10^{-12}$).
\Rightarrow Model class too small? Causally insufficient?

Example: chocolate

Correlation: 0.698 p-value: $<2.2 \cdot 10^{-16}$

Coffee \rightarrow Nobel Prize: Dependent residuals (p-value of $5.1 \cdot 10^{-78}$). Nobel Prize \rightarrow Coffee: Dependent residuals (p-value of $3.1 \cdot 10^{-12}$).
\Rightarrow Model class too small? Causally insufficient?
Question: When is a p-value too small?

Idea 2: restricted structural equation models

Slightly surprising:
identifiability for two variables \rightsquigarrow identifiability for d variables

Peters et al.: Identifiability of Causal Graphs using Functional Models, UAI 2011

Idea 2: restricted structural equation models

Slightly surprising:
identifiability for two variables \rightsquigarrow identifiability for d variables

Peters et al.: Identifiability of Causal Graphs using Functional Models, UAI 2011
Let $P\left(X_{1}, \ldots, X_{p}\right)$ be entailed by an ...

		conditions	identif.
structural equation model:	$X_{i}=f_{i}\left(X_{\mathbf{P A}_{i}}, N_{i}\right)$	-	\boldsymbol{x}
additive noise model:	$X_{i}=f_{i}\left(X_{\mathbf{P A}_{i}}\right)+N_{i}$	nonlin. fct.	\checkmark
causal additive model:	$X_{i}=\sum_{k \in \mathbf{P A}_{i}} f_{i k}\left(X_{k}\right)+N_{i}$	nonlin. fct.	\checkmark
linear Gaussian model:	$X_{i}=\sum_{k \in \mathbf{P A}_{i}} \beta_{i k} X_{k}+N_{i}$	linear fct.	\boldsymbol{x}

(results hold for Gaussian noise)

Idea 2: restricted structural equation models

Choose the direction that corresponds to the closest subspace...

Idea 2: restricted structural equation models

Consider model classes
$\mathcal{S}_{G}:=\{Q: Q$ entailed by a causal additive model (CAM) with DAG $G\}$
Define

$$
\hat{G}_{n}:=\underset{\operatorname{DAG} G}{\operatorname{argmin}} \inf _{Q \in \mathcal{S}_{G}} \operatorname{KL}\left(\hat{P}_{n} \| Q\right)
$$

Idea 2: restricted structural equation models

Consider model classes
$\mathcal{S}_{G}:=\{Q: Q$ entailed by a causal additive model (CAM) with DAG $G\}$
Define

$$
\begin{aligned}
& \hat{G}_{n}:=\underset{\operatorname{DAG} G}{\operatorname{argmin}} \inf _{Q \in \mathcal{S}_{G}} \operatorname{KL}\left(\hat{P}_{n} \| Q\right) \\
& \left.\stackrel{\text { max. }}{\text { likelihood }} \underset{\text { DAG } G}{\operatorname{argmin}} \sum_{i=1}^{p} \log \text { vâr(residuals } \mathbf{P A}_{i}^{G} \rightarrow X_{i}\right)
\end{aligned}
$$

Idea 2: restricted structural equation models

Consider model classes
$\mathcal{S}_{G}:=\{Q: Q$ entailed by a causal additive model (CAM) with DAG $G\}$
Define

$$
\begin{aligned}
\hat{G}_{n} & :=\underset{\text { DAG } G}{\operatorname{argmin}} \inf _{Q \in \mathcal{S}_{G}} \operatorname{KL}\left(\hat{P}_{n} \| Q\right) \\
& \stackrel{\text { max. }}{=} \underset{\text { likelihood }}{\operatorname{argmin}} \sum_{i=1}^{p} \log \operatorname{vâr}\left(\text { residuals }_{\mathbf{P A}_{i}^{G} \rightarrow X_{i}}\right)
\end{aligned}
$$

Wait, there is no penalization on the number of edges!

Idea 2: restricted structural equation models

Consider model classes
$\mathcal{S}_{G}:=\{Q: Q$ entailed by a causal additive model (CAM) with DAG $G\}$
Define

$$
\begin{aligned}
\hat{G}_{n} & :=\underset{\mathrm{DAG} G}{\operatorname{argmin}} \inf _{Q \in \mathcal{S}_{G}} \operatorname{KL}\left(\hat{P}_{n} \| Q\right) \\
& \stackrel{\text { max. }}{\overline{\text { mikelihood }}} \underset{\mathrm{DAG} G}{\operatorname{argmin}} \sum_{i=1}^{p} \log \operatorname{vâr}\left(\text { residuals }_{\mathbf{P A}_{i}^{G} \rightarrow X_{i}}\right)
\end{aligned}
$$

Wait, there is no penalization on the number of edges! Wait again, there are too many DAGs!

Idea 2: restricted structural equation models

p || number of DAGs with p nodes

1	1

3
25
543
29281
3781503
1138779265
783702329343
1213442454842881
4175098976430598143
31603459396418917607425
521939651343829405020504063
18676600744432035186664816926721
1439428141044398334941790719839535103
237725265553410354992180218286376719253505
83756670773733320287699303047996412235223138303
62707921196923889899446452602494921906963551482675201
99421195322159515895228914592354524516555026878588305014783
332771901227107591736177573311261125883583076258421902583546773505
2344880451051088988152559855229099188899081192234291298795803236068491263
34698768283588750028759328430181088222313944540438601719027559113446586077675521
1075822921725761493652956179327624326573727662809185218104090000500559527511693495107583
69743329837281492647141549700245804876504274990515985894109106401549811985510951501377122074625
https://oeis.org/A003024/b003024.txt

Idea 2: restricted structural equation models

E.g. greedy search!

-	0.2	0.1	0.1	0.1	0.3
0.4	-	0.1	0.1	0.1	0.1
0.1	0.6	-	-	-	0.4
0.1	0.1	-	-	0.1	0.1
0.1	0.1	-	0.1	-	-
0.3	0.1	-	0.1	-	-

Greedy Addition (e.g. Chickering 2002). Include the edge that leads to the largest increase of the log-likelihood.

Bühlmann, JP, Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014

Idea 3: invariant causal prediction

Problem:

- Find the causal parents of a target variable Y from $\hat{P}^{n}, \hat{Q}_{1}^{n}, \hat{Q}_{2}^{n}, \ldots$
- Confidence statements?

pooled data $(n=1000)$

infer parents of Y from pooled data?

linear model

```
> linmod <- lm( Y ~ X)
> summary(linmod)
```

Call:
lm(formula $=Y Y \sim X X)$

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	0.000322	0.025858	0.012	0.99
X1	-0.444534	0.034306	-12.958	$<2 \mathrm{e}-16 * * *$
X2	-0.402398	0.016471	-24.430	$<2 \mathrm{e}-16 * * *$
X3	0.603502	0.025642	23.536	$<2 \mathrm{e}-16 * * *$

ICP (R-package InvariantCausalPrediction)

> ExpInd

$$
\text { [1]111111111111111111111111111111111111 . . } 22222222222222 \ldots
$$

> icp <- ICP(X,Y,ExpInd)

LOWER BOUND UPPER BOUND MAXIMIN EFFECT P-VALUE

Key idea:
$P\left(Y \mid \mathbf{P A}_{Y}\right)$ remains invariant if the struct. equ. for Y does not change.

$$
\begin{aligned}
X_{1} & :=f_{1}\left(X_{3}, N_{1}\right) \\
Y & :=f_{2}\left(X_{1}, N_{2}\right) \\
X_{3} & :=f_{3}\left(N_{3}\right) \\
X_{4} & :=f_{4}\left(Y, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

IMPORTANT: modularity, autonomy
Haavelmo 1944, Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, Barenboim et al. 2013, Hauser et al. 2013, ...

Key idea:
$P\left(Y \mid \mathbf{P A}_{Y}\right)$ remains invariant if the struct. equ. for Y does not change.

$$
\begin{aligned}
X_{1} & :=\tilde{f}_{1}\left(\tilde{N}_{1}\right) \\
Y & :=f_{2}\left(X_{1}, N_{2}\right) \\
X_{3} & :=f_{3}\left(N_{3}\right) \\
X_{4} & :=f_{4}\left(Y, X_{3}, N_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

IMPORTANT: modularity, autonomy
Haavelmo 1944, Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, Barenboim et al. 2013, Hauser et al. 2013, ...

Key idea:
$P\left(Y \mid \mathbf{P A}_{Y}\right)$ remains invariant if the struct. equ. for Y does not change.

$$
\begin{aligned}
X_{1} & :=f_{1}\left(X_{3}, N_{1}\right) \\
Y & :=f_{2}\left(X_{1}, N_{2}\right) \\
X_{3} & :=f_{3}\left(N_{3}\right) \\
X_{4} & :=\tilde{f}_{4}\left(Y, X_{3}, \tilde{N}_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

IMPORTANT: modularity, autonomy
Haavelmo 1944, Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, Barenboim et al. 2013, Hauser et al. 2013, ...

Key idea:
$P\left(Y \mid \mathbf{P A}_{Y}\right)$ remains invariant if the struct. equ. for Y does not change.

$$
\begin{aligned}
X_{1} & :=\tilde{f}_{1}\left(\tilde{N}_{1}\right) \\
Y & :=f_{2}\left(X_{1}, N_{2}\right) \\
X_{3} & :=\tilde{f}_{3}\left(X_{1}, X_{4}, \tilde{N}_{3}\right) \\
X_{4} & :=\tilde{f}_{4}\left(Y, \tilde{N}_{4}\right)
\end{aligned}
$$

- N_{i} jointly independent
- G_{0} has no cycles

IMPORTANT: modularity, autonomy
Haavelmo 1944, Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, Barenboim et al. 2013, Hauser et al. 2013, ...

Assumption

Let S^{*} be the indices of parents (Y).
for all $e \in \mathcal{E}: \quad X^{e}$ has an arbitrary distribution and $Y^{e} \mid X_{S^{*}}^{e}=x \quad$ invariant.

Assumption

Let S^{*} be the indices of parents (Y). There exists γ^{*} with support S^{*} that satisfies
for all $e \in \mathcal{E}: \quad X^{e}$ has an arbitrary distribution and
$Y^{\prime} \mid X_{S^{*}}-X$ invariant.

$$
Y^{e}=X^{e} \gamma^{*}+\varepsilon^{e}, \quad \varepsilon^{e} \sim F_{\varepsilon} \text { and } \varepsilon^{e} \Perp X_{S^{*}}^{e} .
$$

Assumption

Let S^{*} be the indices of parents (Y). There exists γ^{*} with support S^{*} that satisfies
for all $e \in \mathcal{E}: \quad X^{e}$ has an arbitrary distribution and

$$
Y^{e}=X^{e} \gamma^{*}+\varepsilon^{e}, \quad \varepsilon^{e} \sim F_{\varepsilon} \text { and } \varepsilon^{e} \Perp X_{S^{*}}^{e} .
$$

We say:
" S^{*} satisfies invariant prediction." or " $H_{0, S^{*}}(\mathcal{E})$ is true."

Assumption

Let S^{*} be the indices of parents (Y). There exists γ^{*} with support S^{*} that satisfies
for all $e \in \mathcal{E}: \quad X^{e}$ has an arbitrary distribution and

$$
Y^{e}=X^{e} \gamma^{*}+\varepsilon^{e}, \quad \varepsilon^{e} \sim F_{\varepsilon} \text { and } \varepsilon^{e} \Perp X_{S^{*}}^{e} .
$$

We say:
" S^{*} satisfies invariant prediction." or " $H_{0, S^{*}}(\mathcal{E})$ is true."
Goal: Find S^{*}.
Given: Data from different environments $e \in \mathcal{E}$.

Assumption

Let S^{*} be the indices of parents (Y). There exists γ^{*} with support S^{*} that satisfies
for all $e \in \mathcal{E}: \quad X^{e}$ has an arbitrary distribution and

$$
Y^{e}=X^{e} \gamma^{*}+\varepsilon^{e}, \quad \varepsilon^{e} \sim F_{\varepsilon} \text { and } \varepsilon^{e} \Perp X_{S^{*}}^{e} .
$$

We say:
" S^{*} satisfies invariant prediction." or " $H_{0, S^{*}}(\mathcal{E})$ is true."
Goal: Find S^{*}.
Given: Data from different environments $e \in \mathcal{E}$. Idea: Check $H_{0, S}(\mathcal{E})$ for several candidates S.

$$
H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { not rejected } \\
\text { rejected }
\end{array}\right.
$$

$$
H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { not rejected } \\
\text { rejected }
\end{array}\right.
$$

$$
\hat{S}(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { not rej. }} S
$$

$$
\begin{aligned}
& H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { not rejected } \\
\text { rejected }
\end{array}\right. \\
& \hat{S}(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { not rej. }} S
\end{aligned}
$$

set	$\{3,5\}$	$\{3,7\}$	$S^{*}=\{1,3,6\}$	$\{2\}$	$\{3,8\}$	\cdots
inv. pred.	\checkmark	\boldsymbol{X}	\checkmark	\boldsymbol{X}	\checkmark	\cdots
	$\hat{S}(\mathcal{E})=\{3\}$					

$$
\begin{aligned}
& H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { not rejected } \\
\text { rejected }
\end{array}\right. \\
& \hat{S}(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { not rej. }} S
\end{aligned}
$$

set	$\{3,5\}$	$\{3,7\}$	$S^{*}=\{1,3,6\}$	$\{2\}$	$\{3,8\}$	\cdots
inv. pred.	\checkmark	\boldsymbol{X}	\boldsymbol{J}	\boldsymbol{X}	\boldsymbol{J}	\cdots
	$\hat{S}(\mathcal{E})=\{3\}$					

$$
P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

infinite data P

$$
\begin{array}{cc}
\text { infinite data } P & \text { finite data } \hat{P}_{n} \\
H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { correct } \\
\text { false }
\end{array}\right. & H_{0, S}(\mathcal{E})=\left\{\begin{array}{l}
\text { not rejected } \\
\text { rejected }
\end{array}\right. \\
S(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { is true }} S & \hat{S}(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { not rej. }} S
\end{array}
$$

set	$\{3,5\}$	$\{3,7\}$	$S^{*}=\{1,3,6\}$	\{2\}	$\{3,8\}$	
inv. pred.	\checkmark	x	\checkmark	x	\checkmark	\cdots
$S(\mathcal{E})=\{3\}$						

$$
S(\mathcal{E}) \subseteq S^{*}
$$

$$
P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

Theorem (PBM 2016)

- No mistakes:

$$
S(\mathcal{E}) \subseteq S^{*} \quad \text { and } \quad P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

Theorem (PBM 2016)

- No mistakes:

$$
S(\mathcal{E}) \subseteq S^{*} \quad \text { and } \quad P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

- Seeing more environments helps:

$$
S\left(\mathcal{E}_{1}\right) \subseteq S\left(\mathcal{E}_{2}\right) \subseteq S^{*} \quad \text { if } \quad \mathcal{E}_{1} \subseteq \mathcal{E}_{2}
$$

Theorem (PBM 2016)

- No mistakes:

$$
S(\mathcal{E}) \subseteq S^{*} \quad \text { and } \quad P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

- Seeing more environments helps:

$$
S\left(\mathcal{E}_{1}\right) \subseteq S\left(\mathcal{E}_{2}\right) \subseteq S^{*} \quad \text { if } \quad \mathcal{E}_{1} \subseteq \mathcal{E}_{2}
$$

- Sufficient conditions for $S(\mathcal{E})=S^{*}$ exist.

Theorem (PBM 2016)

- No mistakes:

$$
S(\mathcal{E}) \subseteq S^{*} \quad \text { and } \quad P\left(\hat{S}(\mathcal{E}) \subseteq S^{*}\right) \geq 1-\alpha
$$

- Seeing more environments helps:

$$
S\left(\mathcal{E}_{1}\right) \subseteq S\left(\mathcal{E}_{2}\right) \subseteq S^{*} \quad \text { if } \quad \mathcal{E}_{1} \subseteq \mathcal{E}_{2}
$$

- Sufficient conditions for $S(\mathcal{E})=S^{*}$ exist.

Identifiability improves if we have more and stronger interventions, at better places, more heterogeneity in the data.

JP, P. Bühlmann, N. Meinshausen: Causal inference using invariant prediction: conf. interv., JRSS-B 2016.

> Y <- X[,2] + X[,4] + noise
> ICP(X,Y,ExpInd)

$>Y<-X[, 2]+X[, 4]+$ noise
> ICP(X,Y,ExpInd)
accepted set of variables: 2,4
accepted set of variables: 1,2,4
accepted set of variables: 2,3,4
accepted set of variables: 1,2,3,4

	LOWER BOUND	UPPER BOUND	MAXIMIN EFFECT	P-VALUE
X1	-0.03	0.01	0.00	0.48
X2	0.98	1.01	0.98	$<1 \mathrm{e}-09 \quad * * *$
X3	-0.07	0.00	0.00	0.48
X4	0.95	1.01	0.95	$2.6 \mathrm{e}-05 \quad * * *$

> Y <- $\mathrm{X}[, 2]^{\wedge} 2+\mathrm{X}[, 4]+$ noise
> ICP(X,Y,ExpInd)

> Y <- X[,2]~2 + X[,4] + noise
> ICP(X,Y,ExpInd)
empty set
(all models rejected)

Model violation: nonlinear models

\rightsquigarrow usually leads to loss of power, not coverage

$$
\begin{aligned}
& >Y<-X[, 1]+E+\text { noise } \\
& >\operatorname{ICP}(X, Y, \text { ExpInd })
\end{aligned}
$$

$>Y<-X[, 1]+E+$ noise
$>\operatorname{ICP}(X, Y$, ExpInd $)$
empty set
(all models rejected)

Model violation: intervention on Y

\rightsquigarrow usually leads to loss of power, not coverage

$$
\begin{aligned}
& >Y \text { <- X[,2] + X[,4] + noise } \\
& >\operatorname{ICP}(X[, 1: 3], Y, \text { ExpInd })
\end{aligned}
$$


```
> Y <- X[,2] + X[,4] + noise
> ICP(X[,1:3],Y,ExpInd)
accepted set of variables: 1
accepted set of variables: 1,2
accepted set of variables: 1,3
accepted set of variables: 1,2,3
\begin{tabular}{lcccc} 
& LOWER BOUND & UPPER BOUND & MAXIMIN EFFECT & P-VALUE \\
X1 & -0.87 & 1.05 & 0.00 & \(<1 \mathrm{e}-09 * * *\) \\
X2 & 0.00 & 1.86 & 0.00 & 1.00 \\
X3 & -1.61 & 0.00 & 0.00 & 0.73
\end{tabular}
```


Model violation: hidden variables

\rightsquigarrow coverage still holds if we consider ancestors instead of parents

Theorem (PBM 2016)

Assume that the joint distribution over $\left(Y, X_{1}, \ldots, X_{p}, H_{1}, \ldots, H_{q}, E\right)$ is faithful w.r.t. the augmented graph. Then

$$
S(\mathcal{E}):=\bigcap_{S: H_{0, S}(\mathcal{E}) \text { is true }} S \subseteq \mathbf{A N}(Y) \cap\left\{X_{1}, \ldots, X_{p}\right\} .
$$

Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014)

- $p=6170$ genes
- $n_{\text {obs }}=160$ wild-types
- $n_{\text {int }}=1479$ gene deletions (targets known)

- true hits: $\approx 0.1 \%$ of pairs

Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014)

- $p=6170$ genes
- $n_{\text {obs }}=160$ wild-types
- $n_{\text {int }}=1479$ gene deletions (targets known)
observational training data

- true hits: $\approx 0.1 \%$ of pairs
- our method: $\mathcal{E}=\{$ obs, int $\}$

Summary Part II:

- Idea 1: independence-based methods (single environment)

- Idea 2: additive noise (single environment)

$$
\begin{aligned}
& X_{1}=f_{1}\left(X_{3}\right)+N_{1} \\
& X_{2}=N_{2} \\
& X_{3}=f_{3}\left(X_{2}\right)+N_{3} \\
& X_{4}=f_{4}\left(X_{2}, X_{3}\right)+N_{4}
\end{aligned}
$$

- Idea 3: invariant prediction (the more heterogeneity the better!)

Open Questions

- Causal Basics: What is a good definition of causal strength?
- Restricted SEMs: do we still have identifiability of causal structures if there are hidden variables?
- Real data: can we solve practically relevant problems?
- Causality and Machine Learning: do causal ideas help for "classical" tasks in machine learning?

Open Questions

- Causal Basics: What is a good definition of causal strength?
- Restricted SEMs: do we still have identifiability of causal structures if there are hidden variables?
- Real data: can we solve practically relevant problems?
- Causality and Machine Learning: do causal ideas help for "classical" tasks in machine learning?

General References

- Pearl: Causality.
- Spirtes, Glymour, Scheines: Causation, Prediction and Search.
- Peters: Causality (Script - see homepage)

Dankeschön!!

Part III: Applications to Machine Learning

Idea 1: semi-supervised learning

Consider a Markov factorization w.r.t. causal DAG:

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{p a(i)}\right)
$$

Idea 1: semi-supervised learning

Consider a Markov factorization w.r.t. causal DAG:

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{p a(i)}\right)
$$

Modularity suggests:

$$
p\left(x_{1} \mid x_{p a(1)}\right), \ldots, p\left(x_{d} \mid x_{p a(d)}\right) \text { are "independent" }
$$

Idea 1: semi-supervised learning

Consider a Markov factorization w.r.t. causal DAG:

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{p a(i)}\right)
$$

Modularity suggests:

$$
p\left(x_{1} \mid x_{p a(1)}\right), \ldots, p\left(x_{d} \mid x_{p a(d)}\right) \text { are "independent" }
$$

Special case:

$$
p(\text { cause }), p(\text { effect } \mid \text { cause }) \text { are "independent" }
$$

Idea 1: semi-supervised learning

Consider a Markov factorization w.r.t. causal DAG:

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{p a(i)}\right)
$$

Modularity suggests:

$$
p\left(x_{1} \mid x_{p a(1)}\right), \ldots, p\left(x_{d} \mid x_{p a(d)}\right) \text { are "independent" }
$$

Special case:

$$
p(\text { cause }), p(e f f e c t \mid \text { cause }) \text { are "independent" }
$$

But then: Semi-supervised Learning does not work from cause to effect.

Idea 1: semi-supervised learning

Schölkopf et al.: On causal and anticausal learning, ICML 2012

Idea 2: half-sibling regression

Idea 2: half-sibling regression

Idea 2: half-sibling regression

Idea 2: half-sibling regression

unobserved
observed

Idea 2: half-sibling regression

Idea 2: half-sibling regression

Proposed idea:
Remove everything from Y explained by X.

Idea 2: half-sibling regression

Proposed idea:
Remove everything from Y explained by X. Or: $\hat{Q}:=Y-\mathbf{E}[Y \mid X]$.

Idea 2: half-sibling regression

Assume $Y=f(N)+Q$.

Proposed idea:
Remove everything from Y explained by X.
Or: $\hat{Q}:=Y-\mathbf{E}[Y \mid X]$.

Proposition

Convergence against "correct" signal Q (up to reparameterization) if

- perfect reconstruction: $\exists \psi$ such that $f(N)=\psi(X)$

Idea 2: half-sibling regression

observed

Assume $Y=f(N)+Q$.

Proposed idea:
Remove everything from Y explained by X.
Or: $\hat{Q}:=Y-\mathbf{E}[Y \mid X]$.

Proposition

Convergence against "correct" signal Q (up to reparameterization) if

- perfect reconstruction: $\exists \psi$ such that $f(N)=\psi(X)$
- low noise: $X=g(N)+s \cdot R$ and $s \rightarrow 0$

Idea 2: half-sibling regression

unobserved

observed

Assume $Y=f(N)+Q$.

Proposed idea:
Remove everything from Y explained by X.
Or: $\hat{Q}:=Y-\mathbf{E}[Y \mid X]$.

Proposition

Convergence against "correct" signal Q (up to reparameterization) if

- perfect reconstruction: $\exists \psi$ such that $f(N)=\psi(X)$
- low noise: $\quad X=g(N)+s \cdot R$ and $s \rightarrow 0$
- many X 's: $\quad X_{i}=g_{i}(N)+R_{i}, i=1, \ldots, \infty$

Idea 2: half-sibling regression

Idea 2: half-sibling regression

Idea 2: half-sibling regression

Idea 3: reinforcement learning

Recall the kidney stones:

$$
p(r, t, s)=p(r \mid t, s) \cdot \quad p(t \mid s) \quad \cdot p(s)
$$

Idea 3: Blackjack

Recall the kidney stones:

$$
T=f^{*}\left(S, N_{T}^{*}\right) \quad R=g\left(S, T, N_{R}\right)
$$

$$
\begin{array}{ccc}
p(r, t, s)=p(r \mid t, s) \cdot & p(t \mid s) & \cdot p(s) \\
p_{3}^{*}(r, t, s)=p(r \mid t, s) \cdot & \underbrace{p^{*}(t \mid s)}_{p^{*}(t \mid s)=?} & \cdot p(s)
\end{array}
$$

Question: What would happen if...?
What is $\sup _{p^{*}} \mathbf{E}_{p^{*}} R$?

Idea 3: Blackjack

(some) Rules:

- Dealing: player two cards, dealer one card (all face up).
- Goal: more points in hand. Face cards: 10, ace either 1 or 11 points.
- Player's moves: hit (take card, but try ≤ 21), stand, double down, split (in case of pair).
- Dealer's moves: deterministic, does not stand before ≥ 17 points.
- Blackjack: ace and face card $\rightarrow 1.5$ bet.

Idea 3: Blackjack

https://de.wikipedia.org/wiki/Black_Jack.JPG

Idea 3: Blackjack

When can we learn?
Objects of Interest:

- sample from $p=p(X, Y, Z)$ (games),
- function of interest $\ell=\ell(X, Y, Z)$ (money) and
- p^{*} replacing $p(y \mid x) \rightarrow p^{*}(y \mid x)$ (strategy $=$ decisions \mid game state).

Idea 3: Blackjack

When can we learn?
Objects of Interest:

- sample from $p=p(X, Y, Z)$ (games),
- function of interest $\ell=\ell(X, Y, Z)$ (money) and
- p^{*} replacing $p(y \mid x) \rightarrow p^{*}(y \mid x)$ (strategy $=$ decisions \mid game state).

Questions:

- What is $\mathbf{E}_{p^{*}} \ell$?

Idea 3: Blackjack

When can we learn?
Objects of Interest:

- sample from $p=p(X, Y, Z)$ (games),
- function of interest $\ell=\ell(X, Y, Z)$ (money) and
- p^{*} replacing $p(y \mid x) \rightarrow p^{*}(y \mid x)$ (strategy $=$ decisions \mid game state).

Questions:

- What is $\mathbf{E}_{p^{*}} \ell$?

Needed:

- Values of X_{i}, Y_{i} and $\ell\left(X_{i}, Y_{i}, Z_{i}\right)$ (under p)

X_{i}	Y_{i}	Z_{i}	$\ell\left(X_{i}, Y_{i}, Z_{i}\right)$
-1.4	2.0	$?$	2.1
-0.5	0.7	$?$	2.5
-0.8	1.5	$?$	2.6
\vdots	\vdots	\vdots	\vdots

X_{i}	Y_{i}	Z_{i}	$\ell\left(X_{i}, Y_{i}, Z_{i}\right)$
OK, M9	hit	?	-1
¢ A, ¢J	stand	?	1.5
¢10, 98	stand	?	-1

Idea 3: Blackjack

Computation: Means

Assume $p(y \mid x) \rightarrow p^{*}(y \mid x)$.

$$
\begin{aligned}
\eta:=\mathbf{E}_{p^{*}} \ell & =\int \ell(x, y, z) p^{*}(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(x, y, z)}{p(x, y, z)} p(x, y, z) d x d y d z
\end{aligned}
$$

Idea 3: Blackjack

Computation: Means

Assume $p(y \mid x) \rightarrow p^{*}(y \mid x)$.

$$
\begin{aligned}
\eta:=\mathbf{E}_{p^{*}} \ell & =\int \ell(x, y, z) p^{*}(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(x, y, z)}{p(x, y, z)} p(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(y \mid x)}{p(y \mid x)} p(x, y, z) d x d y d z
\end{aligned}
$$

Idea 3: Blackjack

Computation: Means

Assume $p(y \mid x) \rightarrow p^{*}(y \mid x)$.

$$
\begin{aligned}
\eta:=\mathbf{E}_{p^{*}} \ell & =\int \ell(x, y, z) p^{*}(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(x, y, z)}{p(x, y, z)} p(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(y \mid x)}{p(y \mid x)} p(x, y, z) d x d y d z
\end{aligned}
$$

Estimate η by

$$
\hat{\eta}=\frac{1}{N} \sum_{i=1}^{N} \ell\left(X_{i}, Y_{i}, Z_{i}\right) \underbrace{\frac{p^{*}\left(Y_{i} \mid X_{i}\right)}{p\left(Y_{i} \mid X_{i}\right)}}_{w_{i}}=\frac{1}{N} \sum_{i=1}^{N} M_{i}, \quad \mathbf{E}_{p} \hat{\eta}=\eta
$$

Idea 3: Blackjack

Computation: Means

Assume $p(y \mid x) \rightarrow p^{*}(y \mid x)$.

$$
\begin{aligned}
\eta:=\mathbf{E}_{p^{*}} \ell & =\int \ell(x, y, z) p^{*}(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(x, y, z)}{p(x, y, z)} p(x, y, z) d x d y d z \\
& =\int \ell(x, y, z) \frac{p^{*}(y \mid x)}{p(y \mid x)} p(x, y, z) d x d y d z
\end{aligned}
$$

Estimate η by

$$
\hat{\eta}=\frac{1}{N} \sum_{i=1}^{N} \ell\left(X_{i}, Y_{i}, Z_{i}\right) \underbrace{\frac{p^{*}\left(Y_{i} \mid X_{i}\right)}{p\left(Y_{i} \mid X_{i}\right)}}_{w_{i}}=\frac{1}{N} \sum_{i=1}^{N} M_{i}, \quad \mathbf{E}_{p} \hat{\eta}=\eta
$$

Confidence intervals available!

Idea 3: Blackjack

$$
p(y \mid x) \rightarrow p^{*}(y \mid x)
$$

Which p^{*} is best?

Idea 3: Blackjack

$$
p(y \mid x) \rightarrow p^{*}(y \mid x)
$$

Which p^{*} is best? Parameterize and estimate

$$
\left.\nabla_{\theta} \mathbf{E}_{p_{\theta}}\right|_{\theta=\tilde{\theta}}
$$

Idea 3: Blackjack

$$
p(y \mid x) \rightarrow p^{*}(y \mid x)
$$

Which p^{*} is best? Parameterize and estimate

$$
\left.\nabla_{\theta} \mathbf{E}_{p_{\theta}}\right|_{\theta=\tilde{\theta}}
$$

Goal: Optimize $\mathbf{E}_{p_{\theta}} \ell$
Idea: Use gradient $\nabla_{\theta} \mathbf{E}_{p_{\theta}} \ell$ and optimize step-by-step.
Issues: confidence intervals, step size,

Idea 3: Blackjack

How to exploit causal structure:

Idea 3: Blackjack

How to exploit causal structure:

Idea 3: Blackjack

How to exploit causal structure:

Idea 3: Blackjack

Idea 3: Blackjack

What can we do with 100,000 samples?

	Online	Offline
reached strategy	$\mathbf{E}_{p^{*}} \ell \approx-5.1 C t$	$\mathbf{E}_{p^{*}} \ell \approx-5.8 C t$
irrelevant games	33,653	61,048
costs	$\$ 29,300$	$\$ 51,500$
speed	slow: probabilities	even slower: gradients

Idea 3: advertisement

Idea 3: advertisement

Idea 3: advertisement

Idea 3: advertisement

Old:

Idea 3: advertisement

Using discrete variable (ads shown in mainline):

Average clicks per page

Idea 4: domain adaptation

method	training data from	test domain
transfer learning (TL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D+1$
multi-task learning (MTL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D$

Idea 4: domain adaptation

method	training data from	test domain
transfer learning (TL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D+1$
multi-task learning (MTL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D$

Invariant prediction for training:

$$
Y^{e}\left|\mathbf{X}_{S}^{e} \stackrel{d}{=} Y^{e^{\prime}}\right| \mathbf{X}_{S}^{e^{\prime}} \quad \text { for all } e \neq e^{\prime} \in\{1, \ldots, D\}
$$

Invariant prediction in test domain T :

$$
Y^{e}\left|\mathbf{X}_{S}^{e} \stackrel{d}{=} Y^{T}\right| \mathbf{X}_{S}^{T} \quad \text { for all } e \in\{1, \ldots, D\}
$$

Idea 4: domain adaptation

method	training data from	test domain
transfer learning (TL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D+1$
multi-task learning (MTL)	$\left(\mathbf{X}^{1}, Y^{1}\right), \ldots,\left(\mathbf{X}^{D}, Y^{D}\right)$	$T:=D$

Invariant prediction for training:

$$
Y^{e}\left|\mathbf{X}_{S}^{e} \stackrel{d}{=} Y^{e^{\prime}}\right| \mathbf{X}_{S}^{e^{\prime}} \quad \text { for all } e \neq e^{\prime} \in\{1, \ldots, D\}
$$

Invariant prediction in test domain T :

$$
Y^{e}\left|\mathbf{X}_{S}^{e} \stackrel{d}{=} Y^{T}\right| \mathbf{X}_{S}^{T} \quad \text { for all } e \in\{1, \ldots, D\}
$$

Assume for now S is known.

Idea 4: domain adaptation

Transfer learning (data in training but not in test domain):

$$
f_{S}: \begin{array}{ccc}
\mathcal{X} & \rightarrow & \mathcal{Y} \tag{1}\\
\mathbf{x} & \mapsto & \mathbf{E}\left[Y^{1} \mid \mathbf{X}_{S}^{1}=\mathbf{x}\right]
\end{array} .
$$

\rightsquigarrow optimality in adversarial settings:

Idea 4: domain adaptation

Transfer learning (data in training but not in test domain):

$$
f_{S}: \begin{array}{ccc}
\mathcal{X} & \rightarrow & \mathcal{Y} \tag{1}\\
\mathbf{x} & \mapsto & \mathbf{E}\left[Y^{1} \mid \mathbf{X}_{S}^{1}=\mathbf{x}\right]
\end{array}
$$

\rightsquigarrow optimality in adversarial settings:

Theorem

Consider D tasks $\left(\mathbf{X}^{1}, Y^{1}\right) \sim P^{1}, \ldots,\left(\mathbf{X}^{D}, Y^{D}\right) \sim P^{D}$ that satisfy invariant prediction in training. The estimator (1) satisfies

$$
f_{S} \in \underset{f \in C^{0}}{\operatorname{argmin}} \sup _{P^{T} \in \mathcal{P}} \mathbf{E}_{(\mathbf{X}, Y) \sim P^{T}}(Y-f(\mathbf{X}))^{2},
$$

where \mathcal{P} contains all distributions over (\mathbf{X}, Y) that are absolutely continuous with respect to Lebesgue measure and that satisfy $Y\left|\mathbf{X} \stackrel{d}{=} Y^{1}\right| \mathbf{X}^{1}$.

Idea 4: domain adaptation

Multi-task Learning - linear (data in training and test domain):
learn part of model in training domains

Idea 4: domain adaptation

Multi-task Learning - linear (data in training and test domain):
learn part of model in training domains

Theorem

Assume

$$
\begin{aligned}
Y^{e} & =\alpha_{S}^{t} \mathbf{X}_{S}^{e}+\epsilon \quad \text { for } e \in\{1, \ldots, D\} \quad \text { and } \\
\mathbf{X}_{N}^{T} & =\alpha_{N}^{T} Y^{T}+\epsilon_{N}^{T}
\end{aligned}
$$

where ϵ and ϵ_{N}^{T} are jointly independent and ϵ is independent of \mathbf{X}_{S}. Then,

$$
\beta_{N}^{T}=\mathbb{E}\left(\epsilon^{2}\right) M^{-1} \alpha_{N}, \quad \beta_{S}^{T}=\alpha_{S}\left(1-\left(\alpha_{N}^{T}\right)^{t} \beta_{N}^{T}\right)-\Sigma_{X, S}^{-1} \Sigma_{X, N} \beta_{N}^{T}
$$

where $M=\mathbb{E}\left(\epsilon^{2}\right) \alpha_{S} \alpha_{S}^{t}+\Sigma_{N}-\Sigma_{X, N} \Sigma_{X, S}^{-1} \Sigma_{X, N}$ is LSE on the test domain.

Idea 4: domain adaptation

What if S is unknown?

Idea 4: domain adaptation

What if S is unknown?
How to learn a good predictor from data

$$
\beta^{\text {inv }}=\underset{\beta}{\operatorname{argmin}} \underbrace{\sum_{e=1}^{D}\left\|R_{\beta}^{e}\right\|^{2}}_{\text {data fit }}+\lambda \cdot \underbrace{\ell\left(R_{\beta}^{1}, \ldots, R_{\beta}^{D}\right)}_{\text {invariance }}
$$

with

- residuals $R_{\beta}^{e}:=Y^{e}-\beta^{t} \mathbf{X}^{e}$ and
- $\ell\left(R_{\beta}^{1}, \ldots, R_{\beta}^{D}\right)$ penalizing different distributions of $R_{\beta}^{1}, \ldots, R_{\beta}^{D}$.

Summary Part III:

- Idea 1: semi-supervised learning from cause to effect does not work
- Idea 2: half-sibling regression
- Idea 3: reformulate reinforcement learning, use causal structure
- Idea 4: invariant models for domain adaptation

Summary Part III:

- Idea 1: semi-supervised learning from cause to effect does not work
- Idea 2: half-sibling regression
- Idea 3: reformulate reinforcement learning, use causal structure
- Idea 4: invariant models for domain adaptation

More details: (about all parts)
http://people.tuebingen.mpg.de/jpeters/scriptChapter1-4.pdf

Summary Part III:

- Idea 1: semi-supervised learning from cause to effect does not work
- Idea 2: half-sibling regression
- Idea 3: reformulate reinforcement learning, use causal structure
- Idea 4: invariant models for domain adaptation

More details: (about all parts)
http://people.tuebingen.mpg.de/jpeters/scriptChapter1-4.pdf
Dankeschön!

