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Why do we need a QoE model?

Better

$9%

, Adapting video bitrates
quicker

Quality
Video

[~

4

|

Content ¢
Providers } . m
Higher

Engagement

The QoE model

> Picking the best server

> Comparing CDNs




Traditional Video Quality Metrics

Subjective Scores
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Internet Video is a new ball game
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Commonly used Quality Metrics
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Which metric should we use?

Subjective S S T6 * /TOd ay: N
(e.g., n Opinion 15 e ., % . .
Score) 1 . s Qualitative

Engagement 1 * e Single-metric
3 N 7

(e.g., fraction of video viewed) |

T T R T R
Objective-Scores
(e.g., Pe gnal to Noise Ratio)

Quality metrics
Buffering Ratio, Average bitrate?



Unified and Quantitative QoE Model
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Complex Engagement-to-metric Relationships
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Complex Metric Interdependencies
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Confounding Factors

[ Type of Video ]<: ve
VOD

Confounding Factors
can affect:
1) Engagement

CDF ( % of users)
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Live and Video
on Demand
(VOD) sessions
have different
viewing
patterns.
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Confounding Factors

[ Type of Video K ve
VOD

Confounding Factors
can affect:

1) Engagement
2) Quality Metrics

Live and Video on
Demand (VOD)
sessions

had different join
time distribution.

CDF ( % of users)

Join Time
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Confounding Factors

Confounding Factors

can affect:

1) Engagement

2) Quality Metrics

3) Quality Metric =
Engagement
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Confounding Factors

Device Type of Video { Popularity J
Location Connectivity Time of day
Day of week
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Need systematic approach to
identify and incorporate confounding factors
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Summary of Challenges

. Capture complex engagement-to-metric
relationships and metric-to-metric
dependencies.

2. ldentify confounding factors
3. Incorporate confounding factors
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Challenge 1: Capture complex relationships
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Cast as a Learning Problem

Engagement Quality Metrics
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MACHINE LEARNING
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QoE Model

Decision Trees performed the best.
Accuracy of 40% for predicting within a 10% bucket.




Challenge 2: Identify the confounding factors
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Test Potential Factors

Confounding
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Test Potential Factors

Confounding Test 1: Relative Information Gain
Factors

/TN

Quality Metrics Engagement
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Test Potential Factors

Confounding

/

Factors

Quality Metrics Engagement

Test 1: Relative Information Gain
Test 2: Decision Tree Structure
Test 3: Tolerance Level
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ldentifying Key Confounding Factors

Factor Relative Decision Tree | Tolerance
Information | Structure Level
Gain
Type of video v v v
Popularity X X X
Location X X X
Device X v v
Connectivity X X V4
Time of day X X v/
Day of week X X X




ldentifying Key Confounding Factors

Factor Relative Decision Tree | Tolerance
Information | Structure Level
Gain
Type of video v v v
Popularity X X X
Location X X X
Device X v v
Connectivity X X V4
Time of day X X v
Day of week X X X
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Challenge 3: Incorporate the confounding factors
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Refine the Model

Adding as a feature
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Quality
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Confounding
Factors 1

e.g., Live, Mobile

Confounding
Factors 2

Splitting the data

Confounding
Factors 3

e.g., VOD, Mobile e.g.,VOD, TV
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Comparing Candidate Solutions
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Final Model: Collection of decision trees
Final Accuracy- 70% (c.f. 40%) for 10% buckets




Summary of Our Approach

1. Capture complex engagement-to-metric
relationships and metric-to-metric
dependencies

- Use Machine Learning

2. ldentify confounding factors
- Tests

3. Incorporate confounding factors
- Split
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Evaluation: Benefit of the QoE Model
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Preliminary results show that using QoE model to select
bitrate leads to 20% improvement in engagement
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Conclusions

Internet Video needs a unified and quantitative QoE model

What makes this hard?
— Complex relationships

— Confounding factors (e.g., type of video, device)

Developing a model
— ML + refinements => Collection of decision trees

Preliminary evaluation shows that using the QoE model can
lead to 20% improvement in engagement

What’s missing?
— Coverage over confounding factors
— Evolution of the metric with time



