Selecting a useful subset from all the features

Selecting a useful subset from all the features Why Feature Selection?

• Some algorithms scale (computationally) poorly with increased dimension

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size

Selecting a useful subset from all the features Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- Note: Feature Selection is different from Feature Extraction
 - The latter transforms original features to get a small set of new features
 - More on feature extraction when we cover Dimensionality Reduction

10 / 14

Methods agnostic to the learning algorithm

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be computationally expensive

Uses heuristics but is much faster than wrapper methods

• Uses heuristics but is much faster than wrapper methods

Uses heuristics but is much faster than wrapper methods

• Correlation Critera: Rank features in order of their correlation with the labels

$$R(X_d, Y) = \frac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Uses heuristics but is much faster than wrapper methods

• Correlation Critera: Rank features in order of their correlation with the labels

$$R(X_d, Y) = \frac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)}$$

• Uses heuristics but is much faster than wrapper methods

 Correlation Critera: Rank features in order of their correlation with the labels

$$R(X_d, Y) = \frac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)}$$

• High mutual information mean high relevance of that feature

• Uses heuristics but is much faster than wrapper methods

• Correlation Critera: Rank features in order of their correlation with the labels

$$R(X_d, Y) = \frac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)}$$

- High mutual information mean high relevance of that feature
- Note: These probabilities can be easily estimated from the data

Two types: Forward Search and Backward Search

- Two types: Forward Search and Backward Search
 - Forward Search

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature

13 / 14

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - Backward Search

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - Backward Search
 - Start with all the features

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - Backward Search
 - Start with all the features
 - Greedily remove the least relevant feature

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - Backward Search
 - Start with all the features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features

- Two types: Forward Search and Backward Search
 - Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - Backward Search
 - Start with all the features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features
 - Inclusion/Removal criteria uses cross-validation

- Forward Search
 - $\bullet \ \, \mathsf{Let} \,\, \mathcal{F} = \{\}$

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
 - Estimate model's error on feature set $\mathcal{F} \bigcup f$ (using cross-validation)

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
 - Estimate model's error on feature set $\mathcal{F} \bigcup f$ (using cross-validation)
- Add f with lowest error to \mathcal{F}

Backward Search

 $\bullet \ \, \mathsf{Let} \,\, \mathcal{F} = \{\mathsf{all} \,\, \mathsf{features}\}$

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
 - Estimate model's error on feature set $\mathcal{F} \bigcup f$ (using cross-validation)
- Add f with lowest error to \mathcal{F}

Backward Search

- Let $\mathcal{F} = \{\text{all features}\}$
- While not reduced to desired number of features
- For each feature $f \in \mathcal{F}$:

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature f:
 - Estimate model's error on feature set $\mathcal{F} \bigcup f$ (using cross-validation)
- Add f with lowest error to \mathcal{F}

Backward Search

- Let $\mathcal{F} = \{\text{all features}\}$
- While not reduced to desired number of features
- For each feature $f \in \mathcal{F}$:
 - Estimate model's error on feature set $\mathcal{F} \setminus f$ (using cross-validation)

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature f:
 - Estimate model's error on feature set $\mathcal{F} \bigcup f$ (using cross-validation)
- Add f with lowest error to \mathcal{F}

Backward Search

- Let $\mathcal{F} = \{\text{all features}\}$
- While not reduced to desired number of features
- For each feature $f \in \mathcal{F}$:
 - Estimate model's error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
- Remove f with lowest error from \mathcal{F}