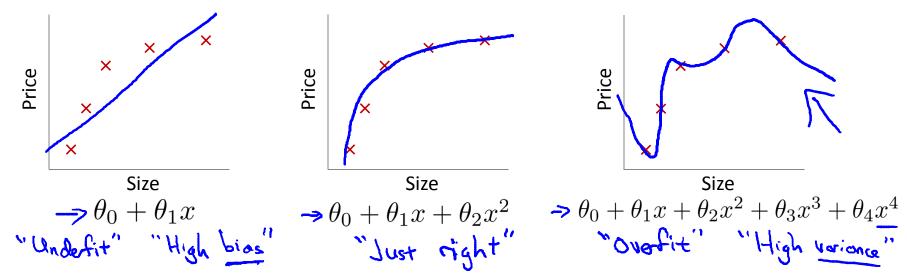


Regularization

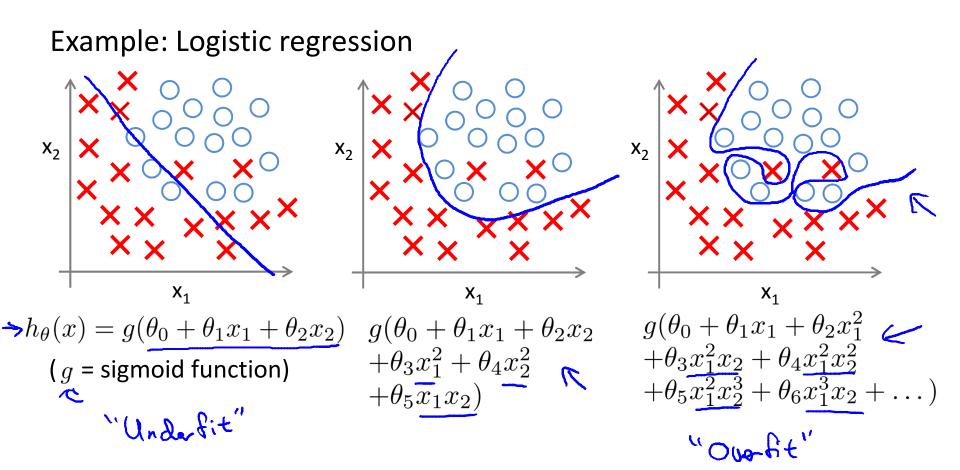
The problem of overfitting

Machine Learning

Example: Linear regression (housing prices)



Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(\overline{J(\theta)} = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).



Addressing overfitting:

- $x_1 = size of house$ $x_2 = no. of bedrooms$

 - $x_3 =$ no. of floors
 - $x_4 = age of house$
 - $x_5 =$ average income in neighborhood
 - $x_6 =$ kitchen size

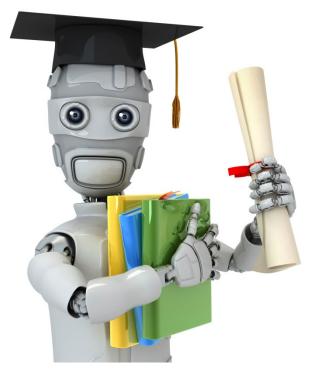
 x_{100}

Price	
	Size

Addressing overfitting:

Options:

- 1. Reduce number of features.
- \rightarrow Manually select which features to keep.
- ——— Model selection algorithm (later in course).
- 2. Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters θ_{j}
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

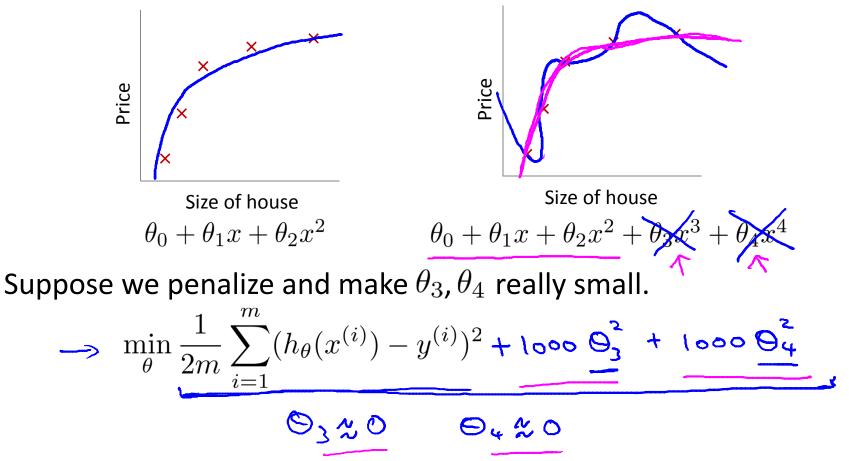


Regularization

Cost function

Machine Learning

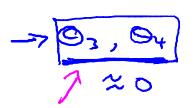
Intuition



Regularization.

Small values for parameters $\theta_0, \theta_1, \ldots, \theta_n \in$

- "Simpler" hypothesis <--
- Less prone to overfitting <--



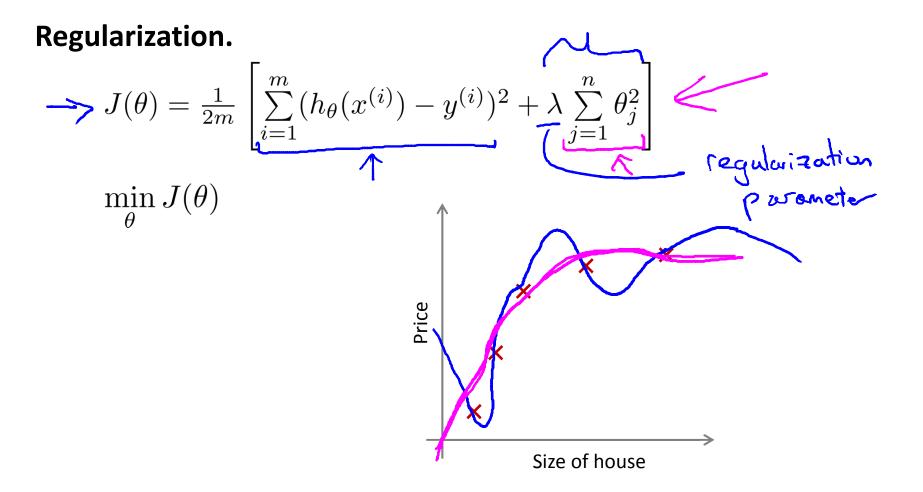
J.

Housing:

– Features:
$$\underline{x}_1, \underline{x}_2, \dots, x_{100}$$

- Parameters:
$$\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \underbrace{\stackrel{\circ}{\geq} \mathfrak{O}_{j}}_{\mathcal{O}_{1}, \mathfrak{O}_{2}, \mathfrak{O}_{3}, \mathfrak{O}_{4}} \right]$$



In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

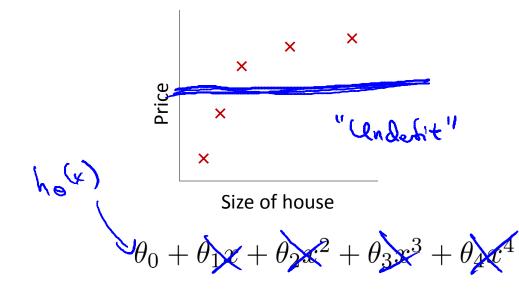
What if $\lambda\,$ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?



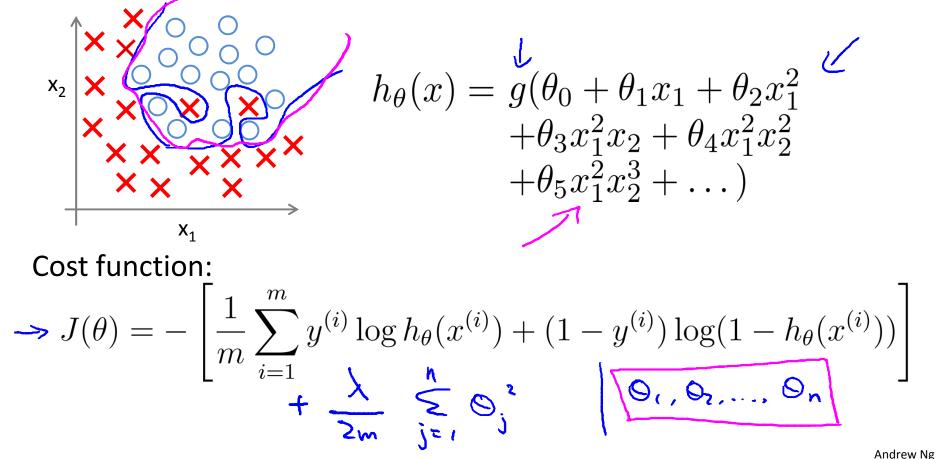
$$9_{1}, 9_{2}, 0_{3}, 9_{4}$$

 $0, 20, 0_{2}, 20$
 $0_{3}, 20, 0_{4}, 20$
 $h_{0}(x) = 0_{0}$

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + (\lambda) \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\substack{\theta \\ \uparrow}} J(\theta)$$

Regularized logistic regression.



Tree Induction:

- Post-pruning
 - takes a fully-grown decision tree and discards unreliable parts
- Pre-pruning
 - stops growing a branch when information becomes unreliable

Linear Models:

- Feature Selection
- Regularization
 - Optimize some combination of fit and simplicity

Regularization

Regularized linear model:

```
\underset{W}{\operatorname{argmax}}[\operatorname{fit}(\boldsymbol{x}, \boldsymbol{w}) - \lambda * \operatorname{penalty}(\boldsymbol{w})]
```

- "L2-norm"
 - The sum of the squares of the weights
 - L2-norm + standard least-squares linear regression = ridge regression
- "L1-norm"
 - The sum of the *absolute values* of the weights
 - L1-norm + standard least-squares linear regression = lasso
 - Automatic feature selection

