How Much Can We Micro-Cache Web Pages?

Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall
University of Washington

ABSTRACT

Browser caches are widely used to improve the performance
of Web page loads. Unfortunately, current object-based
caching is too coarse-grained to minimize the costs associ-
ated with small, localized updates to a Web object. In this
paper, we evaluate the benefits if caching were performed
at a finer granularity and at different levels (i.e., computed
layout and compiled JavaScript). By analyzing Web pages
gathered over two years, we find that both layout and code
are highly cacheable, suggesting that our proposal can rad-
ically reduce time to first paint. We also find that mobile
pages are similar to their desktop counterparts in terms of
the amount and composition of updates.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems— Design studies

Keywords
Caching, Micro-Caching, Web applications, Web pages

1. INTRODUCTION

Over the years, Web pages have become more complex,
making Web page loads notoriously slow even though the
underlying network has significantly improved. The situa-
tion is worse for the mobile scenario, partly due to the lower
compute power available on these devices, and partly due
to network inefficiencies. Reports have shown that mobile
Web applications® are losing the market share to their native
counterparts [8, 9].

A significant bottleneck of page load times comes from
Web page structures, which do little to minimize updates
and maximize caching of unmodified content. For example,
reloading a page with minor updates requires fetching the
entire HTML object, which often triggers a DNS lookup and
a TCP connection setup, taking up one third of the page
load time [19]. In contrast, a Web page’s native counterpart

In this paper, we use Web pages and Web applications
interchangeably since their underlying mechanisms are the
same.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

IMC’14, November 5-7, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663739.

249

can render right away, interacting with the network for more
resources only when necessary. The result is that the native
counterpart offers much faster time to first paint [17] (also
user-perceived page load time) than the Web page.

We argue that by restructuring Web pages the perfor-
mance gap between the Web and native applications can be
largely eliminated. The first step is to minimize the impact
of page updates by employing micro-caching. Different from
current object-based caching, micro-caching caches any por-
tion of an object at a much finer granularity, which can be
an HTML element, a few lines of JavaScript, or a few CSS
rules. Implementing micro-caching is possible given that
JavaScript now can control almost every aspect of a page
and also has access to browser storage.

The second step is to augment browsers with the ability to
distinguish between layout, code, and data. Doing so lets us
further cache the computed layout and compiled code, sub-
stantially reducing computation that is mostly redundant.
Note that caching layout, code, and data contributes differ-
ently to improving page load times. Caching layout helps
the most because loading HTML is always on the critical
path of loading a page, which blocks all subsequent object
loads [19]. Caching code also helps since loading and evalu-
ating JavaScript are often on the critical path. But, caching
data helps little because only a small portion of data fetches
are on the critical path. Therefore, our focus is on caching
layout and code.

The idea of micro-caching is not entirely new. Delta en-
coding was proposed over a decade ago, and it advocates
that servers transparently compress pages and send differ-
ences between versions of a page [3]. Edge Side Includes
(ESI) assembles Web pages at the edge to make use of edge
caching [4]. We find the idea of micro-caching worth revisit-
ing given that Web pages have become more dynamic than
before. Different from treating every bit equally (as in both
delta encoding and ESI), our proposal requires applications
to make updates explicit and to make distinctions regarding
layout, code, and data. As layout and code are likely on the
critical path of a page load, caching them separately is key
to improving page load times.

As a first step towards micro-caching, this paper stud-
ies its effectiveness — how much can we micro-cache Web
pages? To this end, we collect snapshots of hundred Web
pages over two years, and perform diff-like analysis that
identifies updates from one version of a page to another.
To infer whether they are from layout, code, or data, we
analyze the context of the updates.

While Web pages are traditionally treated as black boxes
by measurement studies, we embrace the opposite approach
that lets us uncover the redundant bits in Web traffic, and
that treats layout, code, and data differently so as to mit-

igate the bottlenecks of loading modern Web pages. Our

main contributions are as follows.

e We propose micro-caching that distinguishes portions of
a page corresponding to layout, code, and data. We make
the case that micro-caching can radically reduce page load
times.

e For content-scarce pages, we find that less than 20% (10%)
of the HTML page is changed when revisited after a month
(day), with updates mostly to code and data, and little
to layout. This means that such pages are highly micro-
cacheable, especially for layout.

e For content-rich pages, the amount of updates vary across
Web pages. In the best (worst) case, 20% (75%) of the
HTML page is changed over a month. Most changes are
made to data (e.g., links to images, titles) while little is
made to layout and code, indicating that layout and code
are highly micro-cacheable.

e Mobile pages are similar to desktop counterparts in terms
of the amount and composition of updates.

e About half of the object fetches are dynamic and thus the
idea of micro-caching is worth revisiting. Unlike CSS and
images, most HTML is dynamic. The large amount of
dynamic images is also surprising.

2. RELATED WORK

As a key approach to improving page loads, caching has
received lots of attention. One related work is delta encod-
ing that advocates compressing HTTP data transparently
in the form of differences [3]. Another related work, Edge
Side Includes (ESI), assembles Web pages at the edge to ex-
ploit edge caching [4]. Unlike delta encoding and ESI that
treats every bit equally, we isolate layout and code from
data, and cache their evaluated versions separately inside
browsers, so as to mitigate the bottlenecks in loading pages,
and to remove all the network interactions that block time
to first paint in the usual case. Other work focuses solely
on object-based caching and treats each object as a black
box [14, 21, 16]. We propose micro-caching and are the first
to quantitatively and qualitatively study changes in pages
at a fine granularity.

There is also a large body of work on measuring other
aspects of Web performance. Thm and Pai [6] presented a
longitudinal study of Web traffic, Ager et al. [1] studied
Web performance with respect to CDNs, Huang et al. [5]
measured the page load times with a slower cellular network,
and Wang et al. [18] studied the use of the SPDY protocol
to improve page load times. These studies are invaluable for
improving our understanding of Web performance.

3. MICRO-CACHING

The case for micro-caching. Web applications are slower
than native applications, because Web applications require
more steps to launch. Launching a native application re-
quires only executing the code as it has been downloaded
beforehand, asking for more data or computation from the
server only when necessary (see Figure 1(a)). However,
launching a Web application incurs a more complex pro-
cedure. It starts with the client asking for the application
code from the server, followed by the server running server-
side code to generate client-side code and sending it to the
client, and finishes with the client running the client-side
code, performing layout, and painting (see Figure 1(b)). As

250

Client Server
more data/comp. (4)
gl 208 data/result (5)
— ata/resu
o o \ done ®) layout) IS | Ej
~ L ———— || Lo
L%t data | code
aé;éé:ilf‘?) update app (10)
(9~ h dates?
’ update mngr. .'::??:Lj'?:?:?'ij:(?_l:_t
yes (7)
(a) Native app
Client Server
User S
5 o red. (1) [~ browser) | update app (2) a0p
&
~/ done (6) — app (4)
K data Dl . ‘
[emmm—————— | — i }
! layout, 1\) |._8en ip&(%)”‘
! render(5) | ;/
””””””” (b) Web app
User Client Server
req. (1) / \more data/comp. (4)
@.‘ browser Ej
al
~ d 3 — data/result (5
one (3) Z D o ((6))
*********** P update
L,r,e?fj‘fr,(,zl,,‘(\ / incrementally Ej
\ / update app (7)

(c) Web app with visibility

—» usage flow —— > update flow
Figure 1: Workflows of native and mobile apps.
(solid: data flows; dotted: control flows)

a consequence, Web applications incur much higher time to
first paint.

Why do Web applications need more steps to launch?
This is because the client side lacks visibility into updates
and the model-view-controller (MVC) [10] abstraction of
Web applications. The lack of visibility causes three inef-
ficiencies. First, a Web application has to fetch the execu-
tion code upon launch even if it hasn’t changed, while na-
tive applications can explicitly opt in for updates and avoid
reloading code. Second, a Web application has to compute
the layout from scratch during rendering, while the layout
of native applications can be cached. Third, running a Web
application always involves JavaScript compilation that hap-
pens just in time, while native applications are pre-compiled.
Worse for mobile devices, contacting the network sometimes
requires a few seconds due to radio interactions, and compu-
tation on mobile devices is slower due to the lack of compute
power [5, 20]. The result is that Web applications are losing
the mobile market to native applications [8, 9].

We argue that, to eliminate these inefficiencies, the client
should be provided with enough information — explicit up-
dates and explicit distinctions between layout, code, and
data (the MVC abstraction) — both of which are readily
available in native applications. The client can then cache
not only raw objects but also compiled JavaScript and com-
puted layout, and thus minimize network interactions and
computation. We envision the following (as illustrated in
Figure 1(c)): both compiled code and computed layout of
Web applications are always cached in browsers, incremen-
tally evolving themselves upon updates. When the URL of
a Web application is requested, the cached layout is imme-
diately rendered, and the cached code makes the application

Input Pre-processing Analysis Output
hash each diff-based
line analysis % updates
Web T l
pages []
. context updates by
pretty print analysis type

Figure 2: Analysis pipeline.

fully functional including checking the necessity of network
interactions, e.g., getting more user data or computation
from servers.

This approach removes the entire network interactions
that block page loads and portions of computation for the
usual case. Therefore, we expect page load times (and time
to first paint) to be substantially reduced since our previous
study shows that the network time consumes most of the
page load time [19].

This approach does not sacrifice any of the existing ad-
vantages of Web applications, improves latency, energy con-
sumption, and data usage at the same time, and requires
minimal changes to browsers that cache computed layout?
and compiled code appropriately. Unfortunately, there is no
way to provide this visibility automatically without rewrit-
ing Web pages because most logics of micro-caching are im-
plemented at the Web page level (e.g., handling versions
using HTMLS5 localStorage). As websites routinely rewrite
Web pages, mostly for embracing more efficient architectures
(e.g., Groupon and mobile LinkedIn migrated all their pages
to node.js [11, 12]), we believe that page rewriting is a viable
solution if the benefits are indeed substantial.

Definition of micro-caching. We define micro-caching
as caching any portion of an object. Compared to current
object-based caching that caches the entire object, micro-
caching operates at a much finer granularity. Enabling micro-
caching is necessary to provide explicit updates and explic-
itly distinguish layout, code, and data.

Effectiveness of micro-caching. As a first step towards
micro-caching, we study how much we can micro-cache Web
pages? We answer this by analyzing the amount of updates
from layout, code, and data respectively. This requires us
to (i) identify the difference between two versions of a Web
page, and (ii) infer whether the difference belongs to data,
layout, or code.

4. METHODOLOGY

Figure 2 shows the pipeline of our analysis that we elab-
orate below.

4.1 Diff-based analysis

We want to study the difference (or similarity) between
two versions of a page. A naive approach is to run a diff
command that identifies the differences at the granularity
of lines. As the definition of a line in Web objects is frag-
ile, we pre-process the pages by pretty printing them using
the js-beautify library [7]. We use the classic dynamic-
programming algorithm that matches two versions of a page
to maximize the number of matched lines. A matrix D; ;

2Modern browsers are able to cache computed layout, but
use a different policy to control the lifetime of this cache.

251

1 <html> html
2 <head> is
3 <style>
4 css

body {
5 background-color: black; layout
6 ¥ code
7 </st¥1e> data
8 <script>
9 varian=\y{ css selector
10 udjoerty
11 dob: “01/01/1991", css property

}i .
12 js embeds data
13 </head>
14 <body onload=“$(‘#r9D7’).html(u);">
15 <div width=*100px” id=“r9D7”
16 title=“your username”></div> html embeds code
17 <script>
18 document.write (“<div>pw</div>"); html embeds data
19 </script> .
20 </body> js embeds layout
21 </html>

Figure 3: Example of inferring context of an HTML
document.

is used to denote the number of matched lines between the
first 4 lines of the first page and the first j lines of the second
page. If the i-th line of the first page and the j-th line of the
second page are matched, D;; = D;_1 ;1 + 1; otherwise,
Dl‘,j = mam{Di_Lj,Di,j_l}. We start with Di70 = 0 and
Dy,; = 0, and increase the indice until we reach the last lines
of both pages. This algorithm incurs a O(n?) time complex-
ity where n is the number of lines of a page. As some lines
can be unexpectedly long and slow down the algorithm, we
accelerate this step by calculating an md5 hash of each line
and matching the hash values. Our algorithm outputs the
number of unmatched lines, bytes, and unmatched content.
We use similarity, defined as one minus the fraction of dif-
ference in bytes using the above algorithm, to characterize
the amount of updates eliminated by micro-caching. Sim-
ilarity provides a lower bound on estimated savings since
unmatched lines of two pages are not entirely different.

4.2 Context analysis

We first infer whether a line is one of HTML markup, CSS,
and JavaScript, and then infer whether a string belongs to
layout, code, or data.

Inferring HTML/CSS/JS. Inferring HTML is straight-
forward; we infer a line as HTML if it is quoted by <> (pretty
printing helps here). However, differentiating between CSS
and JavaScript is non-trivial; for example, a CSS property is
similar to a property declaration of an object in JavaScript
(e.g., Line 5 and 10 in Figure 3). We notice the slight differ-
ence that CSS property (JavaScript object property) ends
with a semi-colon (comma), and use it to distinguish be-
tween CSS and JavaScript. When we are unable to distin-
guish by looking at the line itself, we search backwards and
forwards until hitting a line that allows for inference.

Inferring layout/code/data. Before this inference, we
further identify the modified and added content at the gran-
ularity of strings. The diff-based analysis gives pairs of un-
matched chunks (a few lines) between two pages, indicating
that a chunk on the first page is modified into another chunk
on the second page. For example, insertions (removals) in-
cur an empty chunk on the first (second) page. Here, we first
break up a chunk into strings that are separated by either
spaces or the newline character (pretty printing also helps

diff
js-beautify
md5
<>

Page Content | Country | Category
google.com scarce UsS Search
baidu.com scarce China Search
wikipedia.org | scarce - Information
amazon.com | rich US E-Commerce
taobao.com rich China E-Commerce
youtube.com | rich US Video
yahoo.co.jp rich Japan News

Table 1: Seven pages for extensive analysis.

here). For each pair of unmatched chunks, we apply the diff-
based analysis above to pinpoint the unmatched strings.

Inferring from CSS is trivial since all of CSS maps to lay-
out, but inferring from HTML and JavaScript are not triv-
ial. For HTML, attributes can be layout when they are
like CSS properties (e.g., width), can be code when they
start with on (e.g., onload), and can be data when they
are one of value, name, and so forth. JavaScript is code by
default, but can embed data (e.g., username), and can em-
bed code that is quoted by document.write() or eval().
To infer from HTML, we pre-classify all known attributes
into the appropriate layout, code, or data categories. We
are unable to classify self-defined attributes. To infer from
JavaScript, we identify strings that are quoted by single or
double quotes as data. We do not encounter code that starts
with document .write or eval, and therefore we do not have
to handle that case®. Figure 3 illustrates the context infer-
ence of an HTML document.

4.3 Datasets

We collect our datasets using a measurement node at the
University of Washington, starting from April 2012. Our
datasets span two years. We extensively take snapshots of
top twenty Alexa [2] pages every hour, which is more fre-
quent than page updates. We also take snapshots of top
one hundred Web pages every day. To study mobile pages,
we collect a month-long dataset of top twenty mobile pages
every hour. To take a snapshot of a page, we use both Phan-
tomJS [13] to collect HT'TP headers and Web page metadata
in the HAR format and wget to collect the content of Web
objects.

5. RESULTS

We study the benefits of micro-caching and shed light on
existing caching schemes.

5.1 Benefits of micro-caching

Filtering Web pages. The set of measured pages are ei-
ther content-rich pages that provide personalized or up-to-
date content (e.g., news, video, e-commerce), or content-
scarce pages that provide a single service (e.g., search). In
our study, we exclude pages that require logins to provide
content (e.g., social network) since these pages without lo-
gins are not representative of their real usage. We also ex-
clude pages that are similar to a chosen page (e.g., google.
de is similar to google.com). By excluding such pages, we
focus on seven of the top twenty pages for intensive analysis.
These pages (shown in Table 1) contain both content-rich

3eval is considered a bad practice, but was found on half of
the top 10,000 pages [15]. We do not find it on our set of
pages, likely because the very top pages are optimized.

252

1

: o

s 07

E 06

% 08
04
03

-‘;ﬁ

k|

E

()

é\

k|

E

n

(c) taobao.com

Figure 5: Similarity over time that reflects how web-
sites do updates. Each curve represents similarity
between a fixed version and versions after.

and content-scarce pages and span three countries and five
categories. We believe that intensively studying a small set
of top pages is valuable, because they are often the most
dynamic and are thus hardest to be micro-cached.

Estimating benefits. A direct way of estimating benefits
of micro-caching would be comparing the page load times
before and after micro-caching is applied. However, such
comparison is both inaccurate and unfair. It is hard to ac-
curately estimate the page load time benefits without im-
plementing micro-caching since page load times depend on
a large number of factors. This includes network parameters,
compute power of the browser device, and the dependency
model of page load activities. A slight modification to the
Web page can result in very different page load times. To
enable micro-caching, we propose to modify the entire Web
pages so that pages are loaded directly from the browser
cache most of the time and are updated asynchronously only
when necessary. Comparing page load times of the modified
page and the original page would be unfair.

Here, we qualitatively estimate the benefits. Our previous
study informs that the network time consumes most of the
page load times [19]. For example, contacting remote servers
often triggers DNS lookup, TCP connection setup, and SSL
handshakes when HTTPS is used; the cascades of latencies
make time to first paint slow. Our proposal removes the
entire network interactions and portions of computation that
block page loads for the usual case. Thus, we expect page
load times to be largely reduced.

Instead of quantifying the benefits of page load times, we
focus on studying the impact from Web page updates. The

width
on
onload
value
name
document.write()
eval()
document.write
eval
wget
google.de
google.de
google.com
eval

08 F |7
06 - HH T

Similarity

7 S I L el I 0 N A
o2k LT

! hourly ——31

daily ——
weekly
monthly
yearly

1
W/k/bedia Of’aidU.Co m
g

1 1
900g/ Com}'aho 0. c()./;ol‘aoba

amaZO

Yoy
0. com n. com t Ubg, com

Figure 4: Similarity between two versions of pages by varying access interval. For a fixed interval, we vary

the time of accessing the first version and obtain a list of similarities.

10-percentile, median, 90-percentile, and maximum.

4000 e 60000 T
| layout ayou

3500 - “code 50000 | code .y
3000 data 8 data

g 2500 | |y 40000 | :

B 2000 foooos 1 5 30000 1

1233"‘ 1 20000 [1

500 |-t | 10000 []

0 L 0 lz Eall wman|

5645 655 Sou% 5645 5655 5545

baidu aooale vahoo taobao amazon voutube

Figure 6: Updated bytes broken down by layout,
code, and data. wikipedia.org is excluded as little is
updated.

less and less often a Web page is updated, the less and less
often an asynchronous network fetch needs to be issued, and
the more the page can be micro-cached.

5.1.1 Longitudinal study
We report on the two-year desktop dataset.

How much is updated. We first look at the amount of
updates when visiting a page after a given interval. Here we
use similarity that indicates an upper bound on the amount
of updates. Figure 4 shows the results. For content-scarce
pages (left three), less than 20% (10%) of the HTML page
is changed when revisited after a month (day), meaning
that such pages are highly micro-cacheable. Content-rich
pages (right four) have high variance for micro-cacheability:
youtube. com updates significantly every hour, while yahoo.
co.jp updates less than 20% even over a month.

How often pages are updated. We further look at how
often pages are updated by obtaining similarity over time
in Figure 5. Here, we focus on major updates that require
reloading a large portion of the page. Updates are indicated
by sharp drops in Figure 5 — the more a page is updated, the
sharper the drop is. We find that google.com updates every
few weeks. wikipedia.org updates less often; we see one
major update at the end of May 2012 and one at the end of
November 2013. Unlike content-scarce pages, taobao.com
updates incrementally between two major updates. These
incremental updates are mostly data, but little layout or
code. We also plot the graphs for other pages, which we
do not show here due to space limits. They together show
that major updates are rare and the amount of updates in
layout and code between two major updates are moderate,

253

The candle sticks show minimum,

hourly ——
daily ——

- weekly

£ monthly

=

E

w i i

0 I S SR S T
Wikj 900/ Yaho, afT]aZ .VOutu
Pedig; OFZ‘V ©.Com 0-Co, o O”-Combe~com

Figure 7: Similarity between two versions of mobile
pages by varying access frequency.

suggesting that micro-caching is practical to mitigate page
load bottlenecks.

What is updated. We break down the updated bytes
into layout, code, and data. Figure 6 shows that most up-
dates are made to data; baidu.com and yahoo.com update
only data. Updates to data are mostly through HTML at-
tributes (e.g., href, title) and inner HTML content, while
some updates to data are made through JavaScript. Con-
versely, little update is made to layout; only half of the pages
update layout, by a lesser amount. Also, little update is
made to code. These results together suggest that layout
and code are highly micro-cacheable for both content-scarce
and content-rich pages.

To be informative, we manually go through some of the
updated content. For example in google.com, we find that
many updates are random strings/numbers that are gener-
ated by servers. Except for security considerations, random
string/number generation can be moved to the client side
so as to minimize updates. We also find that some pages
change CSS that has no visible impact. This CSS is likely
being loaded speculatively that will be used when users per-
form an action. This kind of CSS can be loaded in the back-
ground without impairing the cacheability of layout. Some
other CSS shows significant visual impact. Because we can
cache the previous layout, incremental layout incurs minimal
computation.

5.1.2 Mobile pages

We report on the month-long mobile dataset. We exclude
two pages that provide different functionalities than their
desktop counterparts. Figure 7 shows the mobile counter-
parts of Figure 4. Clearly, the amount of updates in mobile
Web pages are similar to their desktop counterparts. The
variance is smaller here because the time of measurements

wikipedia.org
youtube.com
yahoo.co.jp
yahoo.co.jp
google.com
wikipedia.org
taobao.com
baidu.com
yahoo.com
href
title
google.com

5000 ot T 140000
4000 + code . 120000
data 100000

¢ 3000 F 18
% % 80000
2000 F 8 60000
40000

1 | I oo .

000 ittt 20000
0 L 0

‘ |
5555 555 5655

wikipedia gooale yahoo

Figure 8: Updated bytes of mobile pages broken
down by layout, code, and data.

youtube

amazon

1e+08 T T \
Dynamic

2 1e+07 Static]
2 Appeared once e
£ les06F g g E
8 to0000F Wt NI B 3
8 i i
5 10000 @ E- W E
* t I

1000 @l 4

100

HTML JS CSS Image Other
Figure 9: Breakdown the number of static, dynamic,
and once objects by mime type.

is shorter. Figure 8 shows the mobile counterpart of Fig-
ure 6. They are alike except for some random spikes in Fig-
ure 8. We manually look through updates in mobile pages
and desktop pages and find that updates in code are similar,
indicating that they are likely to share the same code base.
However, the format of updated data is different, possibly
because of delivering content on a smaller screen.

5.1.3 Practices that undermine micro-caching

We summarize common practices suggested by our mea-
surements that undermine the effectiveness of micro-caching.
e JavaScript obfuscation. Websites often obfuscate client-
side JavaScript to reduce readability which, however, also
reduces micro-cacheability. We find variables in two ver-
sions of google. com performing the same logic while using
different names.

CSS reordering. The order of CSS rules does not matter
most of the time and we find some websites reorder their
CSS rules. Using consistent ordering would help micro-
caching.

CSS abbreviation. We find equivalent CSS rules in dif-
ferent versions of a page. For example, body, a{rule} is
unfolded to body{rule} a{rule}, and border-top, border—
bottom, border-left, and border-right are condensed
into border. Using the same level of abbreviation consis-
tently would help micro-caching.

Object sharding. In the HTTP/1.1 era, websites shard
JavaScript and CSS objects to exploit concurrent TCP
connections. Because sharded objects use random URLs
as their keys, they hurt caching.

5.2 Dynamics of Web objects

Our measurements also let us analyze the dynamics at the
granularity of a Web object. Static objects can be cached
infinitely given enough disk space, while dynamic objects
need to evict their cache before updates. Studying the dy-
namics at the granularity of a Web object sheds light on
implementing expiration of object-based caching. Here, we
consider all pages we collected.

254

1 i_i
08 F | f : b
w06 htm| ——— ||
a | is
O 0.4 [css .
o2k image 4
o ‘ other
0 I T T
0.1 1 10 100 1000
hours

Figure 10: Frequencies at which dynamic objects are
updated (breakdown by mime type).
1

amazon.com
°? baidu.com
u 06 google.com
S taobao.com
. wikipedia.org
02 yaho0.co.jp =======:
48 youtube.com =======+
0 &= i ‘
100 1000
hours

Figure 11: Lifetimes of static objects (breakdowns
by popular domain).

We find that about half of the object fetches are dy-
namic, meaning that the idea of micro-caching is worth re-
visiting. Figure 9 shows the amount of static and dynamic
objects respectively broken down by MIME type. HTML
and JavaScript are more dynamic while CSS and images are
more static. Images are expected to be identified by a unique
URL, but we are surprised to learn that a significant amount
of images are dynamic.

Figure 10 shows the frequencies at which dynamic objects
are updated. Most dynamic HTML, JavaScript, and images
are changing all the time (1 hour is the unit of measure-
ments), likely being backed by server-side scripts. In con-
trast, less than 40% of CSS is changing all the time. For all
kinds of dynamic objects, over 75% of them change within
a day, meaning that cache expiration for dynamic objects
should be mostly set to just a few hours.

Figure 11 shows the lifetimes of static objects. The me-
dian lifetime of static objects is about two days. However,
there is high variance in lifetimes regarding different web-
sites. Over 75% of objects in wikipedia.org have a lifetime
of more than 1,000 hours, suggesting that most static ob-
jects in wikipedia.org should be cached. But half of the
static objects on most other pages have a lifetime of less
than a day, suggesting that caching these objects for more
than one day is likely to waste disk space.

6. CONCLUSION

This paper proposes to separately cache layout, code, and
data at a fine granularity inside browsers to mitigate the
bottleneck of loading modern Web pages. By analyzing
two years of measurements of Web pages, we find that lay-
out and code that block subsequent object loads are highly
cacheable.

Acknowledgements

We thank our shepherd, Andreas Haeberlen, and the anony-
mous reviewers for their feedback.

google.com
body,a{rule}
body{rule}
a{rule}
border-top
border-bottom
border-bottom
border-left
border-right
border
wikipedia.org
wikipedia.org

7.
[

=

REFERENCES
B. Ager, W. Muhlbauer, G. Smaragdakis, and

S. Uhlig. Web Content Cartography. In Proc. of the
SIGCOMM conference on Internet Measurement
Conference (IMC), 2011.

Alexa - The Web Information Company.
http://www.alexa.com/topsites/countries/US.
Delta encoding in HTTP. http://tools.ietf.org/
html/draft-mogul-http-delta-07.

ESI Language Specification 1.0.
http://wuw.w3.org/TR/esi-lang.

J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang,
and P. Bahl. Anatomizing application performance
differences on smartphones. In Proc. of the
international conference on Mobile systems,
applications, and services (Mobisys), 2010.

S. Ihm and V. S. Pai. Towards understanding modern
web traffic. In Proc. of the SIGCOMM conference on
Internet Measurement Conference (IMC), 2011.

JS Beautify. http://jsbeautifier.org/.

The mobile web is still losing out to native apps, by
more than 6 to 1.
http://venturebeat.com/2014/04/01/the-mobile-
web-is-still-losing-out-to-native-apps-six-
years-into-the-mobile-revolution/.

Apps Solidify Leadership Six Years into the Mobile
Revolution. http://www.flurry.com/bid/109749/
Apps-Solidify-Leadership-Six-Years-into-the-
Mobile-Revolution#.U2bgha25z0Q.
Model-view-controller. http://en.wikipedia.org/
wiki/Model}E2%80%93viewE2%80%93controller.
Need for Speed: How Groupon Migrated to Node.js.
http:
//www.datacenterknowledge.com/archives/2013/
12/06/need-speed-groupon-migrated-node-js/.
Many high-profile companies — node.js.
http://nodejs.org/industry/.

255

(13]
(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

PhantomJS. http://phantomjs.org/.

F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber,
Z. M. Mao, S. Sen, and O. Spatscheck. Web Caching
on Smartphones: Ideal vs. Reality. In Proc. of the
ACM Mobisys, 2012.

G. Richards, C. Hammer, B. Burg, and J. Vitek. The
Eval that Men Do. In Proc. of the 25th European
Conference on Object-Oriented Programming
(ECOOP), 2011.

S. Sundaresan, N. Feamster, R. Teixeira, and

N. Magharei. Measuring and Mitigating Web
Performance Bottlenecks in Broadband Access
Networks. In Proc. of the ACM Sigcomm Internet
Measurement Conference (IMC), 2013.

Transaction Perspective: User Experience Metrics.
http://wuw.keynote.com/products/web_
performance/performance_measurement/user-
experience-metrics.html.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Accelerating the Mobile Web with
Selective Offloading. In Proc. of the USENIX
conference on Networked Systems Design and
Implementation (NSDI), 2014.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying page load
performance with WProf. In Proc. of the USENIX
conference on Networked Systems Design and
Implementation (NSDI), 2013.

X. S. Wang, H. Shen, and D. Wetherall. Accelerating
the Mobile Web with Selective Offloading. In Proc. of
the ACM Sigcomm Workshop on Mobile Cloud
Computing (MCC), 20185.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How
far can client-only solutions go for mobile browser
speed? In Proc. of the international conference on
World Wide Web (WWW), 2012.

http://www.alexa.com/topsites/countries/US
http://tools.ietf.org/html/draft-mogul-http-delta-07
http://tools.ietf.org/html/draft-mogul-http-delta-07
http://www.w3.org/TR/esi-lang
http://jsbeautifier.org/
http://venturebeat.com/2014/04/01/the-mobile-web-is-still-losing-out-to-native-apps-six-years-into-the-mobile-revolution/
http://venturebeat.com/2014/04/01/the-mobile-web-is-still-losing-out-to-native-apps-six-years-into-the-mobile-revolution/
http://venturebeat.com/2014/04/01/the-mobile-web-is-still-losing-out-to-native-apps-six-years-into-the-mobile-revolution/
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution#.U2bgha2SzOQ
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution#.U2bgha2SzOQ
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution#.U2bgha2SzOQ
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.datacenterknowledge.com/archives/2013/12/06/need-speed-groupon-migrated-node-js/
http://www.datacenterknowledge.com/archives/2013/12/06/need-speed-groupon-migrated-node-js/
http://www.datacenterknowledge.com/archives/2013/12/06/need-speed-groupon-migrated-node-js/
http://nodejs.org/industry/
http://phantomjs.org/
http://www.keynote.com/products/web_performance/performance_measurement/user-experience-metrics.html
http://www.keynote.com/products/web_performance/performance_measurement/user-experience-metrics.html
http://www.keynote.com/products/web_performance/performance_measurement/user-experience-metrics.html

	Introduction
	Related Work
	Micro-Caching
	Methodology
	Diff-based analysis
	Context analysis
	Datasets

	Results
	Benefits of micro-caching
	Longitudinal study
	Mobile pages
	Practices that undermine micro-caching

	Dynamics of Web objects

	Conclusion
	References

