
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 1

A Survey of Monte Carlo Tree Search Methods
Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse, Member, IEEE,

Simon Lucas, Senior Member, IEEE, Peter I. Cowling, Member, IEEE, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis and Simon Colton

Abstract—Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the
generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer
Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a
snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm’s derivation, impart some
structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and
non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for
future work.

Index Terms—Monte Carlo Tree Search (MCTS), Upper Confidence Bounds (UCB), Upper Confidence Bounds for Trees (UCT),
Bandit-based methods, Artificial Intelligence (AI), Game search, Computer Go.

F

1 INTRODUCTION

MONTE Carlo Tree Search (MCTS) is a method for
finding optimal decisions in a given domain by

taking random samples in the decision space and build-
ing a search tree according to the results. It has already
had a profound impact on Artificial Intelligence (AI)
approaches for domains that can be represented as trees
of sequential decisions, particularly games and planning
problems.

In the five years since MCTS was first described, it
has become the focus of much AI research. Spurred
on by some prolific achievements in the challenging
task of computer Go, researchers are now in the pro-
cess of attaining a better understanding of when and
why MCTS succeeds and fails, and of extending and
refining the basic algorithm. These developments are
greatly increasing the range of games and other decision
applications for which MCTS is a tool of choice, and
pushing its performance to ever higher levels. MCTS has
many attractions: it is a statistical anytime algorithm for
which more computing power generally leads to better
performance. It can be used with little or no domain
knowledge, and has succeeded on difficult problems
where other techniques have failed. Here we survey the
range of published work on MCTS, to provide the reader

• C. Browne, S. Tavener and S. Colton are with the Department of Com-
puting, Imperial College London, UK.
E-mail: camb,sct110,sgc@doc.ic.ac.uk

• S. Lucas, P. Rohlfshagen, D. Perez and S. Samothrakis are with the School
of Computer Science and Electronic Engineering, University of Essex, UK.
E-mail: sml,prohlf,dperez,ssamot@essex.ac.uk

• E. Powley, D. Whitehouse and P.I. Cowling are with the School of
Computing, Informatics and Media, University of Bradford, UK.
E-mail: e.powley,d.whitehouse1,p.i.cowling@bradford.ac.uk

Manuscript received October 22, 2011; revised January 12, 2012; accepted
January 30, 2012. Digital Object Identifier 10.1109/TCIAIG.2012.2186810

Fig. 1. The basic MCTS process [17].

with the tools to solve new problems using MCTS and
to investigate this powerful approach to searching trees
and directed graphs.

1.1 Overview
The basic MCTS process is conceptually very simple, as
shown in Figure 1 (from [17]). A tree1 is built in an
incremental and asymmetric manner. For each iteration
of the algorithm, a tree policy is used to find the most ur-
gent node of the current tree. The tree policy attempts to
balance considerations of exploration (look in areas that
have not been well sampled yet) and exploitation (look
in areas which appear to be promising). A simulation2

is then run from the selected node and the search tree
updated according to the result. This involves the addi-
tion of a child node corresponding to the action taken
from the selected node, and an update of the statistics
of its ancestors. Moves are made during this simulation

1. Typically a game tree.
2. A random or statistically biased sequence of actions applied to

the given state until a terminal condition is reached.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 2

according to some default policy, which in the simplest
case is to make uniform random moves. A great benefit
of MCTS is that the values of intermediate states do
not have to be evaluated, as for depth-limited minimax
search, which greatly reduces the amount of domain
knowledge required. Only the value of the terminal state
at the end of each simulation is required.

While the basic algorithm (3.1) has proved effective
for a wide range of problems, the full benefit of MCTS
is typically not realised until this basic algorithm is
adapted to suit the domain at hand. The thrust of a good
deal of MCTS research is to determine those variations
and enhancements best suited to each given situation,
and to understand how enhancements from one domain
may be used more widely.

1.2 Importance
Monte Carlo methods have a long history within nu-
merical algorithms and have also had significant success
in various AI game playing algorithms, particularly im-
perfect information games such as Scrabble and Bridge.
However, it is really the success in computer Go, through
the recursive application of Monte Carlo methods during
the tree-building process, which has been responsible
for much of the interest in MCTS. This is because Go
is one of the few classic games for which human players
are so far ahead of computer players. MCTS has had
a dramatic effect on narrowing this gap, and is now
competitive with the very best human players on small
boards, though MCTS falls far short of their level on the
standard 19⇥19 board. Go is a hard game for computers
to play: it has a high branching factor, a deep tree, and
lacks any known reliable heuristic value function for
non-terminal board positions.

Over the last few years, MCTS has also achieved great
success with many specific games, general games, and
complex real-world planning, optimisation and control
problems, and looks set to become an important part of
the AI researcher’s toolkit. It can provide an agent with
some decision making capacity with very little domain-
specific knowledge, and its selective sampling approach
may provide insights into how other algorithms could
be hybridised and potentially improved. Over the next
decade we expect to see MCTS become a greater focus
for increasing numbers of researchers, and to see it
adopted as part of the solution to a great many problems
in a variety of domains.

1.3 Aim
This paper is a comprehensive survey of known MCTS
research at the time of writing (October 2011). This
includes the underlying mathematics behind MCTS, the
algorithm itself, its variations and enhancements, and
its performance in a variety of domains. We attempt to
convey the depth and breadth of MCTS research and
its exciting potential for future development, and bring
together common themes that have emerged.

This paper supplements the previous major survey in
the field [170] by looking beyond MCTS for computer
Go to the full range of domains to which it has now
been applied. Hence we aim to improve the reader’s
understanding of how MCTS can be applied to new
research questions and problem domains.

1.4 Structure

The remainder of this paper is organised as follows.
In Section 2, we present central concepts of AI and
games, introducing notation and terminology that set
the stage for MCTS. In Section 3, the MCTS algorithm
and its key components are described in detail. Sec-
tion 4 summarises the main variations that have been
proposed. Section 5 considers enhancements to the tree
policy, used to navigate and construct the search tree.
Section 6 considers other enhancements, particularly to
simulation and backpropagation steps. Section 7 surveys
the key applications to which MCTS has been applied,
both in games and in other domains. In Section 8, we
summarise the paper to give a snapshot of the state of
the art in MCTS research, the strengths and weaknesses
of the approach, and open questions for future research.
The paper concludes with two tables that summarise the
many variations and enhancements of MCTS and the
domains to which they have been applied.

The References section contains a list of known MCTS-
related publications, including book chapters, journal
papers, conference and workshop proceedings, technical
reports and theses. We do not guarantee that all cited
works have been peer-reviewed or professionally recog-
nised, but have erred on the side of inclusion so that the
coverage of material is as comprehensive as possible. We
identify almost 250 publications from the last five years
of MCTS research.3

We present a brief Table of Contents due to the
breadth of material covered:

1 Introduction
Overview; Importance; Aim; Structure

2 Background
2.1 Decision Theory: MDPs; POMDPs
2.2 Game Theory: Combinatorial Games; AI in Games
2.3 Monte Carlo Methods
2.4 Bandit-Based Methods: Regret; UCB

3 Monte Carlo Tree Search
3.1 Algorithm
3.2 Development
3.3 UCT: Algorithm; Convergence to Minimax
3.4 Characteristics: Aheuristic; Anytime; Asymmetric
3.5 Comparison with Other Algorithms
3.6 Terminology

3. One paper per week indicates the high level of research interest.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 3

4 Variations
4.1 Flat UCB
4.2 Bandit Algorithm for Smooth Trees
4.3 Learning in MCTS: TDL; TDMC(�); BAAL
4.4 Single-Player MCTS: FUSE
4.5 Multi-player MCTS: Coalition Reduction
4.6 Multi-agent MCTS: Ensemble UCT
4.7 Real-time MCTS
4.8 Nondeterministic MCTS: Determinization; HOP;

Sparse UCT; ISUCT; Multiple MCTS; UCT+; MC↵� ;
MCCFR; Modelling; Simultaneous Moves

4.9 Recursive Approaches: Reflexive MC; Nested MC;
NRPA; Meta-MCTS; HGSTS

4.10 Sample-Based Planners: FSSS; TAG; RRTs;
UNLEO; UCTSAT; ⇢UCT; MRW; MHSP

5 Tree Policy Enhancements
5.1 Bandit-Based: UCB1-Tuned; Bayesian UCT; EXP3;

HOOT; Other
5.2 Selection: FPU; Decisive Moves; Move Groups;

Transpositions; Progressive Bias; Opening Books;
MCPG; Search Seeding; Parameter Tuning;
History Heuristic; Progressive History

5.3 AMAF: Permutation; ↵-AMAF Some-First; Cutoff;
RAVE; Killer RAVE; RAVE-max; PoolRAVE

5.4 Game-Theoretic: MCTS-Solver; MC-PNS;
Score Bounded MCTS

5.5 Pruning: Absolute; Relative; Domain Knowledge
5.6 Expansion

6 Other Enhancements
6.1 Simulation: Rule-Based; Contextual; Fill the Board;

Learning; MAST; PAST; FAST; History Heuristics;
Evaluation; Balancing; Last Good Reply; Patterns

6.2 Backpropagation: Weighting; Score Bonus; Decay;
Transposition Table Updates

6.3 Parallelisation: Leaf; Root; Tree; UCT-Treesplit;
Threading and Synchronisation

6.4 Considerations: Consistency; Parameterisation;
Comparing Enhancements

7 Applications
7.1 Go: Evaluation; Agents; Approaches; Domain

Knowledge; Variants; Future Work
7.2 Connection Games
7.3 Other Combinatorial Games
7.4 Single-Player Games
7.5 General Game Playing
7.6 Real-time Games
7.7 Nondeterministic Games
7.8 Non-Game: Optimisation; Satisfaction;

Scheduling; Planning; PCG

8 Summary
Impact; Strengths; Weaknesses; Research Directions

9 Conclusion

2 BACKGROUND

This section outlines the background theory that led
to the development of MCTS techniques. This includes
decision theory, game theory, and Monte Carlo and
bandit-based methods. We emphasise the importance of
game theory, as this is the domain to which MCTS is
most applied.

2.1 Decision Theory
Decision theory combines probability theory with utility
theory to provide a formal and complete framework for
decisions made under uncertainty [178, Ch.13].4 Prob-
lems whose utility is defined by sequences of decisions
were pursued in operations research and the study of
Markov decision processes.

2.1.1 Markov Decision Processes (MDPs)
A Markov decision process (MDP) models sequential de-
cision problems in fully observable environments using
four components [178, Ch.17]:

• S: A set of states, with s0 being the initial state.
• A: A set of actions.
• T (s, a, s0): A transition model that determines the

probability of reaching state s0 if action a is applied
to state s.

• R(s): A reward function.
Overall decisions are modelled as sequences of (state,
action) pairs, in which each next state s0 is decided by
a probability distribution which depends on the current
state s and the chosen action a. A policy is a mapping
from states to actions, specifying which action will be
chosen from each state in S. The aim is to find the policy
⇡ that yields the highest expected reward.

2.1.2 Partially Observable Markov Decision Processes
If each state is not fully observable, then a Partially
Observable Markov Decision Process (POMDP) model must
be used instead. This is a more complex formulation and
requires the addition of:

• O(s, o): An observation model that specifies the
probability of perceiving observation o in state s.

The many MDP and POMDP approaches are beyond the
scope of this review, but in all cases the optimal policy ⇡
is deterministic, in that each state is mapped to a single
action rather than a probability distribution over actions.

2.2 Game Theory
Game theory extends decision theory to situations in
which multiple agents interact. A game can be defined
as a set of established rules that allows the interaction
of one5 or more players to produce specified outcomes.

4. We cite Russell and Norvig [178] as a standard AI reference, to
reduce the number of non-MCTS references.

5. Single-player games constitute solitaire puzzles.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 4

A game may be described by the following compo-
nents:

• S: The set of states, where s0 is the initial state.
• ST ✓ S: The set of terminal states.
• n 2 N: The number of players.
• A: The set of actions.
• f : S ⇥A! S: The state transition function.
• R : S ! Rk: The utility function.
• ⇢ : S ! (0, 1, . . . , n): Player about to act in each

state.
Each game starts in state s0 and progresses over time

t = 1, 2, . . . until some terminal state is reached. Each
player ki takes an action (i.e. makes a move) that leads,
via f , to the next state st+1. Each player receives a
reward (defined by the utility function R) that assigns
a value to their performance. These values may be
arbitrary (e.g. positive values for numbers of points
accumulated or monetary gains, negative values for costs
incurred) but in many games it is typical to assign non-
terminal states a reward of 0 and terminal states a value
of +1, 0 or �1 (or +1, +

1
2 and 0) for a win, draw or

loss, respectively. These are the game-theoretic values of
a terminal state.

Each player’s strategy (policy) determines the probabil-
ity of selecting action a given state s. The combination of
players’ strategies forms a Nash equilibrium if no player
can benefit by unilaterally switching strategies [178,
Ch.17]. Such an equilibrium always exists, but comput-
ing it for real games is generally intractable.

2.2.1 Combinatorial Games
Games are classified by the following properties:

• Zero-sum: Whether the reward to all players sums
to zero (in the two-player case, whether players are
in strict competition with each other).

• Information: Whether the state of the game is fully
or partially observable to the players.

• Determinism: Whether chance factors play a part
(also known as completeness, i.e. uncertainty over
rewards).

• Sequential: Whether actions are applied sequentially
or simultaneously.

• Discrete: Whether actions are discrete or applied in
real-time.

Games with two players that are zero-sum, perfect
information, deterministic, discrete and sequential are
described as combinatorial games. These include games
such as Go, Chess and Tic Tac Toe, as well as many
others. Solitaire puzzles may also be described as com-
binatorial games played between the puzzle designer
and the puzzle solver, although games with more than
two players are not considered combinatorial due to the
social aspect of coalitions that may arise during play.
Combinatorial games make excellent test beds for AI
experiments as they are controlled environments defined
by simple rules, but which typically exhibit deep and
complex play that can present significant research chal-
lenges, as amply demonstrated by Go.

2.2.2 AI in Real Games
Real-world games typically involve a delayed reward
structure in which only those rewards achieved in the
terminal states of the game accurately describe how well
each player is performing. Games are therefore typically
modelled as trees of decisions as follows:

• Minimax attempts to minimise the opponent’s max-
imum reward at each state, and is the tradi-
tional search approach for two-player combinatorial
games. The search is typically stopped prematurely
and a value function used to estimate the outcome of
the game, and the ↵-� heuristic is typically used to
prune the tree. The max

n algorithm is the analogue
of minimax for non-zero-sum games and/or games
with more than two players.

• Expectimax generalises minimax to stochastic games
in which the transitions from state to state are prob-
abilistic. The value of a chance node is the sum of its
children weighted by their probabilities, otherwise
the search is identical to max

n. Pruning strategies
are harder due to the effect of chance nodes.

• Miximax is similar to single-player expectimax and
is used primarily in games of imperfect information.
It uses a predefined opponent strategy to treat op-
ponent decision nodes as chance nodes.

2.3 Monte Carlo Methods
Monte Carlo methods have their roots in statistical
physics where they have been used to obtain approxima-
tions to intractable integrals, and have since been used
in a wide array of domains including games research.

Abramson [1] demonstrated that this sampling might
be useful to approximate the game-theoretic value of
a move. Adopting the notation used by Gelly and Sil-
ver [94], the Q-value of an action is simply the expected
reward of that action:

Q(s, a) =
1

N(s, a)

N(s)X

i=1

Ii(s, a)zi

where N(s, a) is the number of times action a has been
selected from state s, N(s) is the number of times a game
has been played out through state s, zi is the result of
the ith simulation played out from s, and Ii(s, a) is 1 if
action a was selected from state s on the ith play-out
from state s or 0 otherwise.

Monte Carlo approaches in which the actions of a
given state are uniformly sampled are described as flat
Monte Carlo. The power of flat Monte Carlo is demon-
strated by Ginsberg [97] and Sheppard [199], who use
such approaches to achieve world champion level play
in Bridge and Scrabble respectively. However it is simple
to construct degenerate cases in which flat Monte Carlo
fails, as it does not allow for an opponent model [29].

Althöfer describes the laziness of flat Monte Carlo in
non-tight situations [5]. He also describes unexpected
basin behaviour that can occur [6], which might be used

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 5

to help find the optimal UCT search parameters for a
given problem.

It is possible to improve the reliability of game-
theoretic estimates by biasing action selection based on
past experience. Using the estimates gathered so far, it
is sensible to bias move selection towards those moves
that have a higher intermediate reward.

2.4 Bandit-Based Methods
Bandit problems are a well-known class of sequential de-
cision problems, in which one needs to choose amongst
K actions (e.g. the K arms of a multi-armed bandit slot
machine) in order to maximise the cumulative reward
by consistently taking the optimal action. The choice of
action is difficult as the underlying reward distributions
are unknown, and potential rewards must be estimated
based on past observations. This leads to the exploitation-
exploration dilemma: one needs to balance the exploitation
of the action currently believed to be optimal with the
exploration of other actions that currently appear sub-
optimal but may turn out to be superior in the long run.

A K-armed bandit is defined by random variables
Xi,n for 1 i K and n � 1, where i indicates the arm
of the bandit [13], [119], [120]. Successive plays of bandit
i yield Xi,1, Xi,2, . . . which are independently and iden-
tically distributed according to an unknown law with
unknown expectation µi. The K-armed bandit problem
may be approached using a policy that determines which
bandit to play, based on past rewards.

2.4.1 Regret
The policy should aim to minimise the player’s regret,
which is defined after n plays as:

RN = µ?n� µj

KX

j=1

E[Tj(n)]

where µ? is the best possible expected reward and
E[Tj(n)] denotes the expected number of plays for arm
j in the first n trials. In other words, the regret is
the expected loss due to not playing the best bandit.
It is important to highlight the necessity of attaching
non-zero probabilities to all arms at all times, in order
to ensure that the optimal arm is not missed due to
temporarily promising rewards from a sub-optimal arm.
It is thus important to place an upper confidence bound
on the rewards observed so far that ensures this.

In a seminal paper, Lai and Robbins [124] showed
there exists no policy with a regret that grows slower
than O(lnn) for a large class of reward distribu-
tions. A policy is subsequently deemed to resolve the
exploration-exploitation problem if the growth of regret
is within a constant factor of this rate. The policies pro-
posed by Lai and Robbins made use of upper confidence
indices, which allow the policy to estimate the expected
reward of a specific bandit once its index is computed.
However, these indices were difficult to compute and

Agrawal [2] introduced policies where the index could
be expressed as a simple function of the total reward
obtained so far by the bandit. Auer et al. [13] subse-
quently proposed a variant of Agrawal’s index-based
policy that has a finite-time regret logarithmically bound
for arbitrary reward distributions with bounded support.
One of these variants, UCB1, is introduced next.

2.4.2 Upper Confidence Bounds (UCB)
For bandit problems, it is useful to know the upper con-
fidence bound (UCB) that any given arm will be optimal.
The simplest UCB policy proposed by Auer et al. [13] is
called UCB1, which has an expected logarithmic growth
of regret uniformly over n (not just asymptotically)
without any prior knowledge regarding the reward dis-
tributions (which have to have their support in [0, 1]).
The policy dictates to play arm j that maximises:

UCB1 = Xj +

s
2 lnn

nj

where Xj is the average reward from arm j, nj is the
number of times arm j was played and n is the overall
number of plays so far. The reward term Xj encourages
the exploitation of higher-reward choices, while the right
hand term

q
2 lnn
nj

encourages the exploration of less-
visited choices. The exploration term is related to the
size of the one-sided confidence interval for the average
reward within which the true expected reward falls with
overwhelming probability [13, p 237].

3 MONTE CARLO TREE SEARCH
This section introduces the family of algorithms known
as Monte Carlo Tree Search (MCTS). MCTS rests on two
fundamental concepts: that the true value of an action
may be approximated using random simulation; and that
these values may be used efficiently to adjust the policy
towards a best-first strategy. The algorithm progressively
builds a partial game tree, guided by the results of previ-
ous exploration of that tree. The tree is used to estimate
the values of moves, with these estimates (particularly
those for the most promising moves) becoming more
accurate as the tree is built.

3.1 Algorithm
The basic algorithm involves iteratively building a search
tree until some predefined computational budget – typi-
cally a time, memory or iteration constraint – is reached,
at which point the search is halted and the best-
performing root action returned. Each node in the search
tree represents a state of the domain, and directed links
to child nodes represent actions leading to subsequent
states.

Four steps are applied per search iteration [52]:
1) Selection: Starting at the root node, a child selection

policy is recursively applied to descend through

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0
while within computational budget do

vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 7

backpropagated up the sequence of nodes selected for
this iteration to update the node statistics; each node’s
visit count is incremented and its average reward or
Q value updated according to �. The reward value �

may be a discrete (win/draw/loss) result or continuous
reward value for simpler domains, or a vector of reward
values relative to each agent p for more complex multi-
agent domains.

As soon as the search is interrupted or the computa-
tion budget is reached, the search terminates and an ac-
tion a of the root node t0 is selected by some mechanism.
Schadd [188] describes four criteria for selecting the
winning action, based on the work of Chaslot et al [60]:

1) Max child: Select the root child with the highest
reward.

2) Robust child: Select the most visited root child.
3) Max-Robust child: Select the root child with both the

highest visit count and the highest reward. If none
exist, then continue searching until an acceptable
visit count is achieved [70].

4) Secure child: Select the child which maximises a
lower confidence bound.

3.2 Development
Monte Carlo methods have been used extensively in
games with randomness and partial observability [70]
but they may be applied equally to deterministic games
of perfect information. Following a large number of
simulated games, starting at the current state and played
until the end of the game, the initial move with the
highest win-rate is selected to advance the game. In the
majority of cases, actions were sampled uniformly at
random (or with some game-specific heuristic bias) with
no game-theoretic guarantees [119]. In other words, even
if the iterative process is executed for an extended period
of time, the move selected in the end may not be optimal
[120].

Despite the lack of game-theoretic guarantees, the ac-
curacy of the Monte Carlo simulations may often be im-
proved by selecting actions according to the cumulative
reward of the game episodes they were part of. This may
be achieved by keeping track of the states visited in a
tree. In 2006 Coulom [70] proposed a novel approach that
combined Monte Carlo evaluations with tree search. His
proposed algorithm iteratively runs random simulations
from the current state to the end of the game: nodes
close to the root are added to an incrementally growing
tree, revealing structural information from the random
sampling episodes. In particular, nodes in the tree are
selected according to the estimated probability that they
are better than the current best move.

The breakthrough for MCTS also came in 2006 and
is primarily due to the selectivity mechanism proposed
by Kocsis and Szepesvári, whose aim was to design a
Monte Carlo search algorithm that had a small error
probability if stopped prematurely and that converged to
the game-theoretic optimum given sufficient time [120].

This may be achieved by reducing the estimation error
of the nodes’ values as quickly as possible. In order
to do so, the algorithm must balance exploitation of
the currently most promising action with exploration of
alternatives which may later turn out to be superior.
This exploitation-exploration dilemma can be captured
by multi-armed bandit problems (2.4), and UCB1 [13] is
an obvious choice for node selection. 8

Table 1 summarises the milestones that led to the
conception and popularisation of MCTS. It is interesting
to note that the development of MCTS is the coming
together of numerous different results in related fields
of research in AI.

3.3 Upper Confidence Bounds for Trees (UCT)
This section describes the most popular algorithm in the
MCTS family, the Upper Confidence Bound for Trees (UCT)
algorithm. We provide a detailed description of the
algorithm, and briefly outline the proof of convergence.

3.3.1 The UCT algorithm
The goal of MCTS is to approximate the (true) game-
theoretic value of the actions that may be taken from
the current state (3.1). This is achieved by iteratively
building a partial search tree, as illustrated in Figure 2.
How the tree is built depends on how nodes in the tree
are selected. The success of MCTS, especially in Go, is
primarily due to this tree policy. In particular, Kocsis
and Szepesvári [119], [120] proposed the use of UCB1
(2.4.2) as tree policy. In treating the choice of child node
as a multi-armed bandit problem, the value of a child
node is the expected reward approximated by the Monte
Carlo simulations, and hence these rewards correspond
to random variables with unknown distributions.

UCB1 has some promising properties: it is very simple
and efficient and guaranteed to be within a constant
factor of the best possible bound on the growth of
regret. It is thus a promising candidate to address the
exploration-exploitation dilemma in MCTS: every time a
node (action) is to be selected within the existing tree, the
choice may be modelled as an independent multi-armed
bandit problem. A child node j is selected to maximise:

UCT = Xj + 2Cp

s
2 lnn

nj

where n is the number of times the current (parent) node
has been visited, nj the number of times child j has
been visited and Cp > 0 is a constant. If more than one
child node has the same maximal value, the tie is usually
broken randomly [120]. The values of Xi,t and thus of
Xj are understood to be within [0, 1] (this holds true
for both the UCB1 and the UCT proofs). It is generally
understood that nj = 0 yields a UCT value of1, so that

8. Coulom [70] points out that the Boltzmann distribution often used
in n-armed bandit problems is not suitable as a selection mechanism,
as the underlying reward distributions in the tree are non-stationary.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 8

1990 Abramson demonstrates that Monte Carlo simulations can be used to evaluate value of state [1].
1993 Brügmann [31] applies Monte Carlo methods to the field of computer Go.
1998 Ginsberg’s GIB program competes with expert Bridge players.
1998 MAVEN defeats the world scrabble champion [199].
2002 Auer et al. [13] propose UCB1 for multi-armed bandit, laying the theoretical foundation for UCT.
2006 Coulom [70] describes Monte Carlo evaluations for tree-based search, coining the term Monte Carlo tree search.
2006 Kocsis and Szepesvari [119] associate UCB with tree-based search to give the UCT algorithm.
2006 Gelly et al. [96] apply UCT to computer Go with remarkable success, with their program MOGO.
2006 Chaslot et al. describe MCTS as a broader framework for game AI [52] and general domains [54].
2007 CADIAPLAYER becomes world champion General Game Player [83].
2008 MOGO achieves dan (master) level at 9⇥ 9 Go [128].
2009 FUEGO beats top human professional at 9⇥ 9 Go [81].
2009 MOHEX becomes world champion Hex player [7].

TABLE 1
Timeline of events leading to the widespread popularity of MCTS.

previously unvisited children are assigned the largest
possible value, to ensure that all children of a node are
considered at least once before any child is expanded
further. This results in a powerful form of iterated local
search.

There is an essential balance between the first (ex-
ploitation) and second (exploration) terms of the UCB
equation. As each node is visited, the denominator of the
exploration term increases, which decreases its contribu-
tion. On the other hand, if another child of the parent
node is visited, the numerator increases and hence the
exploration values of unvisited siblings increase. The
exploration term ensures that each child has a non-
zero probability of selection, which is essential given
the random nature of the playouts. This also imparts an
inherent restart property to the algorithm, as even low-
reward children are guaranteed to be chosen eventually
(given sufficient time), and hence different lines of play
explored.

The constant in the exploration term Cp can be ad-
justed to lower or increase the amount of exploration
performed. The value Cp = 1/

p
2 was shown by Kocsis

and Szepesvári [120] to satisfy the Hoeffding ineqality
with rewards in the range [0, 1]. With rewards outside
this range, a different value of Cp may be needed and
also certain enhancements9 work better with a different
value for Cp (7.1.3).

The rest of the algorithm proceeds as described in
Section 3.1: if the node selected by UCB descent has
children that are not yet part of the tree, one of those is
chosen randomly and added to the tree. The default pol-
icy is then used until a terminal state has been reached.
In the simplest case, this default policy is uniformly
random. The value � of the terminal state sT is then
backpropagated to all nodes visited during this iteration,
from the newly added node to the root.

Each node holds two values, the number N(v) of times
it has been visited and a value Q(v) that corresponds
to the total reward of all playouts that passed through
this state (so that Q(v)/N(v) is an approximation of
the node’s game-theoretic value). Every time a node is

9. Such as RAVE (5.3.5).

part of a playout from the root, its values are updated.
Once some computational budget has been reached, the
algorithm terminates and returns the best move found,
corresponding to the child of the root with the highest
visit count.

Algorithm 2 shows the UCT algorithm in pseudocode.
This code is a summary of UCT descriptions from several
sources, notably [94], but adapted to remove the two-
player, zero-sum and turn order constraints typically
found in the existing literature.

Each node v has four pieces of data associated with
it: the associated state s(v), the incoming action a(v), the
total simulation reward Q(v) (a vector of real values),
and the visit count N(v) (a nonnegative integer). Instead
of storing s(v) for each node, it is often more efficient in
terms of memory usage to recalculate it as TREEPOLICY
descends the tree. The term �(v, p) denotes the compo-
nent of the reward vector � associated with the current
player p at node v.

The return value of the overall search in this case is
a(BESTCHILD(v0, 0)) which will give the action a that
leads to the child with the highest reward,10 since the
exploration parameter c is set to 0 for this final call on
the root node v0. The algorithm could instead return
the action that leads to the most visited child; these
two options will usually – but not always! – describe
the same action. This potential discrepancy is addressed
in the Go program ERICA by continuing the search if
the most visited root action is not also the one with
the highest reward. This improved ERICA’s winning rate
against GNU GO from 47% to 55% [107].

Algorithm 3 shows an alternative and more efficient
backup method for two-player, zero-sum games with al-
ternating moves, that is typically found in the literature.
This is analogous to the negamax variant of minimax
search, in which scalar reward values are negated at each
level in the tree to obtain the other player’s reward. Note
that while � is treated as a vector of rewards with an
entry for each agent in Algorithm 2,11 it is a single scalar
value representing the reward to the agent running the

10. The max child in Schadd’s [188] terminology.
11. �(v, p) denotes the reward for p the player to move at node v.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 9

Algorithm 2 The UCT algorithm.
function UCTSEARCH(s0)

create root node v0 with state s0
while within computational budget do

vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0, 0))

function TREEPOLICY(v)
while v is nonterminal do

if v not fully expanded then

return EXPAND(v)
else

v BESTCHILD(v, Cp)

return v

function EXPAND(v)
choose a 2 untried actions from A(s(v))
add a new child v0 to v

with s(v0) = f(s(v), a)
and a(v0) = a

return v0

function BESTCHILD(v, c)

return argmax

v02children of v

Q(v0)

N(v0)
+ c

s
2 lnN(v)

N(v0)

function DEFAULTPOLICY(s)
while s is non-terminal do

choose a 2 A(s) uniformly at random
s f(s, a)

return reward for state s

function BACKUP(v,�)
while v is not null do

N(v) N(v) + 1

Q(v) Q(v) +�(v, p)
v parent of v

Algorithm 3 UCT backup for two players.
function BACKUPNEGAMAX(v,�)

while v is not null do

N(v) N(v) + 1

Q(v) Q(v) +�

� ��
v parent of v

search in Algorithm 3. Similarly, the node reward value
Q(v) may be treated as a vector of values for each player
Q(v, p) should circumstances dictate.

3.3.2 Convergence to Minimax
The key contributions of Kocsis and Szepesvári [119],
[120] were to show that the bound on the regret of UCB1
still holds in the case of non-stationary reward distribu-
tions, and to empirically demonstrate the workings of
MCTS with UCT on a variety of domains. Kocsis and
Szepesvári then show that the failure probability at the
root of the tree (i.e. the probability of selecting a subop-
timal action) converges to zero at a polynomial rate as
the number of games simulated grows to infinity. This
proof implies that, given enough time (and memory),
UCT allows MCTS to converge to the minimax tree and
is thus optimal.

3.4 Characteristics
This section describes some of the characteristics that
make MCTS a popular choice of algorithm for a variety
of domains, often with notable success.

3.4.1 Aheuristic
One of the most significant benefits of MCTS is the
lack of need for domain-specific knowledge, making it
readily applicable to any domain that may be modelled
using a tree. Although full-depth minimax is optimal in
the game-theoretic sense, the quality of play for depth-
limited minimax depends significantly on the heuristic
used to evaluate leaf nodes. In games such as Chess,
where reliable heuristics have emerged after decades
of research, minimax performs admirably well. In cases
such as Go, however, where branching factors are orders
of magnitude larger and useful heuristics are much
more difficult to formulate, the performance of minimax
degrades significantly.

Although MCTS can be applied in its absence, sig-
nificant improvements in performance may often be
achieved using domain-specific knowledge. All top-
performing MCTS-based Go programs now use game-
specific information, often in the form of patterns (6.1.9).
Such knowledge need not be complete as long as it is
able to bias move selection in a favourable fashion.

There are trade-offs to consider when biasing move
selection using domain-specific knowledge: one of the
advantages of uniform random move selection is speed,
allowing one to perform many simulations in a given
time. Domain-specific knowledge usually drastically re-
duces the number of simulations possible, but may also
reduce the variance of simulation results. The degree
to which game-specific knowledge should be included,
with respect to performance versus generality as well as
speed trade-offs, is discussed in [77].

3.4.2 Anytime
MCTS backpropagates the outcome of each game im-
mediately (the tree is built using playouts as opposed
to stages [119]) which ensures all values are always up-
to-date following every iteration of the algorithm. This
allows the algorithm to return an action from the root at

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric
The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology
The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB
Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 11

4.2 Bandit Algorithm for Smooth Trees (BAST)

Coquelin and Munos [68] extend the flat UCB model
to suggest a Bandit Algorithm for Smooth Trees (BAST),
which uses assumptions on the smoothness of rewards to
identify and ignore branches that are suboptimal with
high confidence. They applied BAST to Lipschitz func-
tion approximation and showed that when allowed to
run for infinite time, the only branches that are expanded
indefinitely are the optimal branches. This is in contrast
to plain UCT, which expands all branches indefinitely.

4.3 Learning in MCTS

MCTS can be seen as a type of Reinforcement Learning
(RL) algorithm, so it is interesting to consider its rela-
tionship with temporal difference learning (arguably the
canonical RL algorithm).

4.3.1 Temporal Difference Learning (TDL)

Both temporal difference learning (TDL) and MCTS learn
to take actions based on the values of states, or of state-
action pairs. Under certain circumstances the algorithms
may even be equivalent [201], but TDL algorithms do not
usually build trees, and the equivalence only holds when
all the state values can be stored directly in a table. MCTS
estimates temporary state values in order to decide the
next move, whereas TDL learns the long-term value
of each state that then guides future behaviour. Silver
et al. [202] present an algorithm that combines MCTS
with TDL using the notion of permanent and transient
memories to distinguish the two types of state value
estimation. TDL can learn heuristic value functions to
inform the tree policy or the simulation (playout) policy.

4.3.2 Temporal Difference with Monte Carlo (TDMC(�))

Osaki et al. describe the Temporal Difference with Monte
Carlo (TDMC(�)) algorithm as “a new method of rein-
forcement learning using winning probability as substi-
tute rewards in non-terminal positions” [157] and report
superior performance over standard TD learning for the
board game Othello (7.3).

4.3.3 Bandit-Based Active Learner (BAAL)

Rolet et al. [175], [173], [174] propose the Bandit-based
Active Learner (BAAL) method to address the issue of
small training sets in applications where data is sparse.
The notion of active learning is formalised under bounded
resources as a finite horizon reinforcement learning prob-
lem with the goal of minimising the generalisation error.
Viewing active learning as a single-player game, the
optimal policy is approximated by a combination of
UCT and billiard algorithms [173]. Progressive widening
(5.5.1) is employed to limit the degree of exploration by
UCB1 to give promising empirical results.

4.4 Single-Player MCTS (SP-MCTS)
Schadd et al. [191], [189] introduce a variant of MCTS
for single-player games, called Single-Player Monte Carlo
Tree Search (SP-MCTS), which adds a third term to the
standard UCB formula that represents the “possible
deviation” of the node. This term can be written

r
�2

+

D

ni
,

where �2 is the variance of the node’s simulation results,
ni is the number of visits to the node, and D is a
constant. The D

ni
term can be seen as artificially inflating

the standard deviation for infrequently visited nodes, so
that the rewards for such nodes are considered to be
less certain. The other main difference between SP-MCTS
and plain UCT is the use of a heuristically guided default
policy for simulations.

Schadd et al. [191] point to the need for Meta-Search
(a higher-level search method that uses other search
processes to arrive at an answer) in some cases where
SP-MCTS on its own gets caught in local maxima. They
found that periodically restarting the search with a dif-
ferent random seed and storing the best solution over
all runs considerably increased the performance of their
SameGame player (7.4).

Björnsson and Finnsson [21] discuss the application of
standard UCT to single-player games. They point out
that averaging simulation results can hide a strong line
of play if its siblings are weak, instead favouring regions
where all lines of play are of medium strength. To
counter this, they suggest tracking maximum simulation
results at each node in addition to average results; the
averages are still used during search.

Another modification suggested by Björnsson and
Finnsson [21] is that when simulation finds a strong line
of play, it is stored in the tree in its entirety. This would
be detrimental in games of more than one player since
such a strong line would probably rely on the unrealistic
assumption that the opponent plays weak moves, but for
single-player games this is not an issue.

4.4.1 Feature UCT Selection (FUSE)
Gaudel and Sebag introduce Feature UCT Selection
(FUSE), an adaptation of UCT to the combinatorial op-
timisation problem of feature selection [89]. Here, the
problem of choosing a subset of the available features is
cast as a single-player game whose states are all possible
subsets of features and whose actions consist of choosing
a feature and adding it to the subset.

To deal with the large branching factor of this game,
FUSE uses UCB1-Tuned (5.1.1) and RAVE (5.3.5). FUSE
also uses a game-specific approximation of the reward
function, and adjusts the probability of choosing the
stopping feature during simulation according to the
depth in the tree. Gaudel and Sebag [89] apply FUSE
to three benchmark data sets from the NIPS 2003 FS
Challenge competition (7.8.4).

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 12

4.5 Multi-player MCTS
The central assumption of minimax search (2.2.2) is that
the searching player seeks to maximise their reward
while the opponent seeks to minimise it. In a two-player
zero-sum game, this is equivalent to saying that each
player seeks to maximise their own reward; however, in
games of more than two players, this equivalence does
not necessarily hold.

The simplest way to apply MCTS to multi-player
games is to adopt the max

n idea: each node stores a
vector of rewards, and the selection procedure seeks to
maximise the UCB value calculated using the appropri-
ate component of the reward vector. Sturtevant [207]
shows that this variant of UCT converges to an opti-
mal equilibrium strategy, although this strategy is not
precisely the max

n strategy as it may be mixed.
Cazenave [40] applies several variants of UCT to the

game of Multi-player Go (7.1.5) and considers the possi-
bility of players acting in coalitions. The search itself uses
the max

n approach described above, but a rule is added
to the simulations to avoid playing moves that adversely
affect fellow coalition members, and a different scoring
system is used that counts coalition members’ stones as
if they were the player’s own.

There are several ways in which such coalitions can
be handled. In Paranoid UCT, the player considers that
all other players are in coalition against him. In UCT
with Alliances, the coalitions are provided explicitly to
the algorithm. In Confident UCT, independent searches
are conducted for each possible coalition of the searching
player with one other player, and the move chosen
according to whichever of these coalitions appears most
favourable. Cazenave [40] finds that Confident UCT
performs worse than Paranoid UCT in general, but the
performance of the former is better when the algorithms
of the other players (i.e. whether they themselves use
Confident UCT) are taken into account. Nijssen and
Winands [155] describe the Multi-Player Monte-Carlo Tree
Search Solver (MP-MCTS-Solver) version of their MCTS
Solver enhancement (5.4.1).

4.5.1 Coalition Reduction
Winands and Nijssen describe the coalition reduction
method [156] for games such as Scotland Yard (7.7) in
which multiple cooperative opponents can be reduced to
a single effective opponent. Note that rewards for those
opponents who are not the root of the search must be
biased to stop them getting lazy [156].

4.6 Multi-agent MCTS
Marcolino and Matsubara [139] describe the simulation
phase of UCT as a single agent playing against itself, and
instead consider the effect of having multiple agents (i.e.
multiple simulation policies). Specifically, the different
agents in this case are obtained by assigning different
priorities to the heuristics used in Go program FUEGO’s
simulations [81]. If the right subset of agents is chosen

(or learned, as in [139]), using multiple agents improves
playing strength. Marcolino and Matsubara [139] argue
that the emergent properties of interactions between
different agent types lead to increased exploration of the
search space. However, finding the set of agents with
the correct properties (i.e. those that increase playing
strength) is computationally intensive.

4.6.1 Ensemble UCT
Fern and Lewis [82] investigate an Ensemble UCT ap-
proach, in which multiple instances of UCT are run
independently and their root statistics combined to yield
the final result. This approach is closely related to root
parallelisation (6.3.2) and also to determinization (4.8.1).

Chaslot et al. [59] provide some evidence that, for
Go, Ensemble UCT with n instances of m iterations
each outperforms plain UCT with mn iterations, i.e.
that Ensemble UCT outperforms plain UCT given the
same total number of iterations. However, Fern and
Lewis [82] are not able to reproduce this result on other
experimental domains.

4.7 Real-time MCTS
Traditional board games are turn-based, often allowing
each player considerable time for each move (e.g. several
minutes for Go). However, real-time games tend to
progress constantly even if the player attempts no move,
so it is vital for an agent to act quickly. The largest class
of real-time games are video games, which – in addition
to the real-time element – are usually also characterised
by uncertainty (4.8), massive branching factors, simulta-
neous moves (4.8.10) and open-endedness. Developing
strong artificial players for such games is thus particu-
larly challenging and so far has been limited in success.

Simulation-based (anytime) algorithms such as MCTS
are well suited to domains in which time per move is
strictly limited. Furthermore, the asymmetry of the trees
produced by MCTS may allow a better exploration of
the state space in the time available. Indeed, MCTS has
been applied to a diverse range of real-time games of
increasing complexity, ranging from Tron and Ms. Pac-
Man to a variety of real-time strategy games akin to
Starcraft. In order to make the complexity of real-time
video games tractable, approximations may be used to
increase the efficiency of the forward model.

4.8 Nondeterministic MCTS
Traditional game AI research also typically focusses on
deterministic games with perfect information, i.e. games
without chance events in which the state of the game
is fully observable to all players (2.2). We now consider
games with stochasticity (chance events) and/or imperfect
information (partial observability of states).

Opponent modelling (i.e. determining the opponent’s
policy) is much more important in games of imperfect
information than games of perfect information, as the
opponent’s policy generally depends on their hidden

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 13

information, hence guessing the former allows the latter
to be inferred. Section 4.8.9 discusses this in more detail.

4.8.1 Determinization
A stochastic game with imperfect information can be
transformed into a deterministic game with perfect in-
formation, by fixing the outcomes of all chance events
and making states fully observable. For example, a card
game can be played with all cards face up, and a game
with dice can be played with a predetermined sequence
of dice rolls known to all players. Determinization13 is
the process of sampling several such instances of the
deterministic game with perfect information, analysing
each with standard AI techniques, and combining those
analyses to obtain a decision for the full game.

Cazenave [36] applies depth-1 search with Monte
Carlo evaluation to the game of Phantom Go (7.1.5). At
the beginning of each iteration, the game is determinized
by randomly placing the opponent’s hidden stones. The
evaluation and search then continues as normal.

4.8.2 Hindsight optimisation (HOP)
Hindsight optimisation (HOP) provides a more formal ba-
sis to determinization for single-player stochastic games
of perfect information. The idea is to obtain an upper
bound on the expected reward for each move by as-
suming the ability to optimise one’s subsequent strategy
with “hindsight” knowledge of future chance outcomes.
This upper bound can easily be approximated by deter-
minization. The bound is not particularly tight, but is
sufficient for comparing moves.

Bjarnason et al. [20] apply a combination of HOP and
UCT to the single-player stochastic game of Klondike
solitaire (7.7). Specifically, UCT is used to solve the
determinized games sampled independently by HOP.

4.8.3 Sparse UCT
Sparse UCT is a generalisation of this HOP-UCT proce-
dure also described by Bjarnason et al. [20]. In Sparse
UCT, a node may have several children correspond-
ing to the same move, each child corresponding to a
different stochastic outcome of that move. Moves are
selected as normal by UCB, but the traversal to child
nodes is stochastic, as is the addition of child nodes
during expansion. Bjarnason et al. [20] also define an
ensemble version of Sparse UCT, whereby several search
trees are constructed independently and their results (the
expected rewards of actions from the root) are averaged,
which is similar to Ensemble UCT (4.6.1).

Borsboom et al. [23] suggest ways of combining UCT
with HOP-like ideas, namely early probabilistic guessing
and late random guessing. These construct a single UCT
tree, and determinize the game at different points in each
iteration (at the beginning of the selection and simulation
phases, respectively). Late random guessing significantly
outperforms early probabilistic guessing.

13. For consistency with the existing literature, we use the Ameri-
canised spelling “determinization”.

4.8.4 Information Set UCT (ISUCT)
Strategy fusion is a problem with determinization tech-
niques, which involves the incorrect assumption that
different moves can be chosen from different states in
the same information set. Long et al. [130] describe how
this can be measured using synthetic game trees.

To address the problem of strategy fusion in deter-
minized UCT, Whitehouse et al. [230] propose informa-
tion set UCT (ISUCT), a variant of MCTS that operates
directly on trees of information sets. All information
sets are from the point of view of the root player. Each
iteration samples a determinization (a state from the root
information set) and restricts selection, expansion and
simulation to those parts of the tree compatible with the
determinization. The UCB formula is modified to replace
the “parent visit” count with the number of parent visits
in which the child was compatible.

For the experimental domain in [230], ISUCT fails to
outperform determinized UCT overall. However, ISUCT
is shown to perform well in precisely those situations
where access to hidden information would have the
greatest effect on the outcome of the game.

4.8.5 Multiple MCTS
Auger [16] proposes a variant of MCTS for games of
imperfect information, called Multiple Monte Carlo Tree
Search (MMCTS), in which multiple trees are searched si-
multaneously. Specifically, there is a tree for each player,
and the search descends and updates all of these trees
simultaneously, using statistics in the tree for the relevant
player at each stage of selection. This more accurately
models the differences in information available to each
player than searching a single tree. MMCTS uses EXP3
(5.1.3) for selection.

Auger [16] circumvents the difficulty of computing
the correct belief distribution at non-initial points in the
game by using MMCTS in an offline manner. MMCTS is
run for a large number of simulations (e.g. 50 million) to
construct a partial game tree rooted at the initial state of
the game, and the player’s policy is read directly from
this pre-constructed tree during gameplay.

4.8.6 UCT+
Van den Broeck et al. [223] describe a variant of MCTS
for miximax trees (2.2.2) in which opponent decision
nodes are treated as chance nodes with probabilities
determined by an opponent model. The algorithm is
called UCT+, although it does not use UCB: instead,
actions are selected to maximise

Xj + c�Xj
,

where Xj is the average reward from action j, �Xj
is

the standard error on Xj , and c is a constant. During
backpropagation, each visited node’s Xj and �Xj

values
are updated according to their children; at opponent
nodes and chance nodes, the calculations are weighted
by the probabilities of the actions leading to each child.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 14

4.8.7 Monte Carlo ↵-� (MC↵�)
Monte Carlo ↵-� (MC↵�) combines MCTS with tra-
ditional tree search by replacing the default policy
with a shallow ↵-� search. For example, Winands and
Björnnsson [232] apply a selective two-ply ↵-� search in
lieu of a default policy for their program MC↵� , which
is currently the strongest known computer player for the
game Lines of Action (7.2). An obvious consideration in
choosing MC↵� for a domain is that a reliable heuristic
function must be known in order to drive the ↵-�
component of the search, which ties the implementation
closely with the domain.

4.8.8 Monte Carlo Counterfactual Regret (MCCFR)
Counterfactual regret (CFR) is an algorithm for computing
approximate Nash equilibria for games of imperfect
information. Specifically, at time t + 1 the policy plays
actions with probability proportional to their positive
counterfactual regret at time t, or with uniform prob-
ability if no actions have positive counterfactual regret.
A simple example of how CFR operates is given in [177].

CFR is impractical for large games, as it requires
traversal of the entire game tree. Lanctot et al. [125]
propose a modification called Monte Carlo counterfactual
regret (MCCFR). MCCFR works by sampling blocks of
terminal histories (paths through the game tree from root
to leaf), and computing immediate counterfactual regrets
over those blocks. MCCFR can be used to minimise,
with high probability, the overall regret in the same
way as CFR. CFR has also been used to create agents
capable of exploiting the non-Nash strategies used by
UCT agents [196].

4.8.9 Inference and Opponent Modelling
In a game of imperfect information, it is often possible
to infer hidden information from opponent actions, such
as learning opponent policies directly using Bayesian
inference and relational probability tree learning. The
opponent model has two parts – a prior model of
a general opponent, and a corrective function for the
specific opponent – which are learnt from samples of
previously played games. Ponsen et al. [159] integrate
this scheme with MCTS to infer probabilities for hidden
cards, which in turn are used to determinize the cards for
each MCTS iteration. When the MCTS selection phase
reaches an opponent decision node, it uses the mixed
policy induced by the opponent model instead of bandit-
based selection.

4.8.10 Simultaneous Moves
Simultaneous moves can be considered a special case
of hidden information: one player chooses a move but
conceals it, then the other player chooses a move and
both are revealed.

Shafiei et al. [196] describe a simple variant of UCT
for games with simultaneous moves. Shafiei et al. [196]
argue that this method will not converge to the Nash

equilibrium in general, and show that a UCT player can
thus be exploited.

Teytaud and Flory [216] use a similar technique to
Shafiei et al. [196], the main difference being that they
use the EXP3 algorithm (5.1.3) for selection at simultane-
ous move nodes (UCB is still used at other nodes). EXP3
is explicitly probabilistic, so the tree policy at simulta-
neous move nodes is mixed. Teytaud and Flory [216]
find that coupling EXP3 with UCT in this way performs
much better than simply using the UCB formula at
simultaneous move nodes, although performance of the
latter does improve if random exploration with fixed
probability is introduced.

Samothrakis et al. [184] apply UCT to the simultane-
ous move game Tron (7.6). However, they simply avoid
the simultaneous aspect by transforming the game into
one of alternating moves. The nature of the game is
such that this simplification is not usually detrimental,
although Den Teuling [74] identifies such a degenerate
situation and suggests a game-specific modification to
UCT to handle this.

4.9 Recursive Approaches
The following methods recursively apply a Monte Carlo
technique to grow the search tree. These have typically
had success with single-player puzzles and similar opti-
misation tasks.

4.9.1 Reflexive Monte Carlo Search
Reflexive Monte Carlo search [39] works by conducting
several recursive layers of Monte Carlo simulations, each
layer informed by the one below. At level 0, the simu-
lations simply use random moves (so a level 0 reflexive
Monte Carlo search is equivalent to a 1-ply search with
Monte Carlo evaluation). At level n > 0, the simulation
uses level n� 1 searches to select each move.

4.9.2 Nested Monte Carlo Search
A related algorithm to reflexive Monte Carlo search is
nested Monte Carlo search (NMCS) [42]. The key difference
is that nested Monte Carlo search memorises the best
sequence of moves found at each level of the search.

Memorising the best sequence so far and using this
knowledge to inform future iterations can improve the
performance of NMCS in many domains [45]. Cazenaze
et al. describe the application of NMCS to the bus
regulation problem (7.8.3) and find that NMCS with
memorisation clearly outperforms plain NMCS, which
in turn outperforms flat Monte Carlo and rule-based
approaches [45].

Cazenave and Jouandeau [49] describe parallelised
implementations of NMCS. Cazenave [43] also demon-
strates the successful application of NMCS methods
for the generation of expression trees to solve certain
mathematical problems (7.8.2). Rimmel et al. [168] apply
a version of nested Monte Carlo search to the Travelling
Salesman Problem (TSP) with time windows (7.8.1).

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 15

4.9.3 Nested Rollout Policy Adaptation (NRPA)

Nested Rollout Policy Adaptation (NRPA) is an extension
of nested Monte Carlo search in which a domain-specific
policy is associated with the action leading to each child
[176]. These are tuned adaptively starting from a uniform
random policy. NRPA has achieved superior results in
puzzle optimisation tasks, including beating the human
world record for Morpion Solitaire (7.4).

4.9.4 Meta-MCTS

Chaslot et al. [56] replace the default policy with a nested
MCTS program that plays a simulated sub-game in their
Meta-MCTS algorithm. They describe two versions of
Meta-MCTS: Quasi Best-First (which favours exploita-
tion) and Beta Distribution Sampling (which favours ex-
ploration). Both variants improved the playing strength
of the program MOGO for 9 ⇥ 9 Go when used for
generating opening books.

4.9.5 Heuristically Guided Swarm Tree Search

Edelkamp et al. [78] introduce the Heuristically Guided
Swarm Tree Search (HGSTS) algorithm. This algorithm
conducts an exhaustive breadth-first search to a certain
level in the game tree, adding a node to the UCT tree
for each game tree node at that level. These nodes are
inserted into a priority queue, prioritised in descending
order of UCB value. The algorithm repeatedly takes the
front k elements of the queue and executes an iteration
of UCT starting from each of them. Heuristics are used
to weight the move probabilities used during simulation.
Edelkamp et al. [78] describe a parallel implementation
of this algorithm (using a technique they term set-based
parallelisation), and also describe how the breadth-first
search portion of the algorithm can be implemented on
a GPU for a significant gain in speed.

4.10 Sample-Based Planners

Planners for many complex structured domains can be
learned with tractable sample complexity if near optimal
policies are known. These are generally similar to Single-
Player MCTS techniques, but tend to be applied to
domains other than games.

4.10.1 Forward Search Sparse Sampling (FSSS)

Walsh et al. [227] show how to replace known policies
with sample-based planners in concert with sample-
efficient learners in a method called Forward Search Sparse
Sampling (FSSS). They describe a negative case for UCT’s
runtime that can require exponential computation to
optimise, in support of their approach.

Asmuth and Littman [9] extend the FSSS technique
to Bayesian FSSS (BFS3), which approaches Bayes-
optimality as the program’s computational budget is
increased. They observe that “learning is planning” [10].

4.10.2 Threshold Ascent for Graphs (TAG)
Threshold Ascent for Graphs (TAG) is a method that ex-
tends the MCTS paradigm by maximizing an objective
function over the sinks of directed acyclic graphs [166]
[73]. The algorithm evaluates nodes through random
simulation and grows the subgraph in the most promis-
ing directions by considering local maximum k-armed
bandits. TAG has demonstrated superior performance
over standard optimisation methods for automatic per-
formance tuning using DFT and FFT linear transforms
in adaptive libraries.

4.10.3 RRTs
Rapidly-exploring Random Trees (RRTs), a special case of
Rapidly-exploring Dense Trees (RTDs), were first intro-
duced by Steven LaValle [126]. The basic idea of RRTs
is to drive the exploration towards unexplored portions
of the search space, incrementally pulling the search tree
towards them. The tree is built in a similar way to MCTS,
by repeating this process multiple times to explore the
search space. RRTs share many ideas with MCTS, such
as the use of state-action pairs, the tree structure, and the
exploration of the search space based on random actions,
often guided by heuristics.

4.10.4 UNLEO
Auger and Teytaud describe the UNLEO14 algorithm as
“a heuristic approximation of an optimal optimization
algorithm using Upper Confidence Trees” [15]. UNLEO
is based on the No Free Lunch (NFL) and Continuous Free
Lunch (CFL) theorems and was inspired by the known
optimality of Bayesian inference for supervised learning
when a prior distribution is available. Bayesian inference
is often very expensive, so Auger and Teytaud use UCT
to make the evaluation of complex objective functions
achievable.

4.10.5 UCTSAT
Previti et al. [160] introduce the UCTSAT class of algo-
rithms to investigate the application of UCT approaches
to the satisfiability of conjunctive normal form (CNF)
problems (7.8.2). They describe the following variations:

• UCTSATcp generates a random assignment of vari-
ables for each playout.

• UCTSATsbs assigns variables one-by-one with ran-
dom legal (satisfying) values.

• UCTSATh replaces playouts with a simple heuristic
based on the fraction of satisfied clauses.

4.10.6 ⇢UCT
Veness et al. [226] introduce ⇢UCT, a generalisation
of UCT that approximates a finite horizon expectimax
operation given an environment model ⇢. ⇢UCT builds
a sparse search tree composed of interleaved decision
and chance nodes to extend UCT to a wider class of

14. The derivation of this term is not given.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 16

problem domains. They describe the application of ⇢UCT
to create their MC-AIXA agent, which approximates
the AIXA15 model. MC-AIXA was found to approach
optimal performance for several problem domains (7.8).

4.10.7 Monte Carlo Random Walks (MRW)

Monte Carlo Random Walks (MRW) selectively build the
search tree using random walks [238]. Xie et al. describe
the Monte Carlo Random Walk-based Local Tree Search
(MRW-LTS) method which extends MCRW to concen-
trate on local search more than standard MCTS methods,
allowing good performance in some difficult planning
problems [238].

4.10.8 Mean-based Heuristic Search for Anytime Plan-
ning (MHSP)

Pellier et al. [158] propose an algorithm for planning
problems, called Mean-based Heuristic Search for Anytime
Planning (MHSP), based on MCTS. There are two key
differences between MHSP and a conventional MCTS
algorithm. First, MHSP entirely replaces the random sim-
ulations of MCTS with a heuristic evaluation function:
Pellier et al. [158] argue that random exploration of the
search space for a planning problem is inefficient, since
the probability of a given simulation actually finding a
solution is low. Second, MHSP’s selection process simply
uses average rewards with no exploration term, but
initialises the nodes with “optimistic” average values.
In contrast to many planning algorithms, MHSP can
operate in a truly anytime fashion: even before a solution
has been found, MHSP can yield a good partial plan.

5 TREE POLICY ENHANCEMENTS

This section describes modifications proposed for the
tree policy of the core MCTS algorithm, in order to
improve performance. Many approaches use ideas from
traditional AI search such as ↵-�, while some have no ex-
isting context and were developed specifically for MCTS.
These can generally be divided into two categories:

• Domain Independent: These are enhancements that
could be applied to any domain without prior
knowledge about it. These typically offer small im-
provements or are better suited to a particular type
of domain.

• Domain Dependent: These are enhancements specific
to particular domains. Such enhancements might
use prior knowledge about a domain or otherwise
exploit some unique aspect of it.

This section covers those enhancements specific to the
tree policy, i.e. the selection and expansion steps.

15. AIXI is a mathematical approach based on a Bayesian optimality
notion for general reinforcement learning agents.

5.1 Bandit-Based Enhancements
The bandit-based method used for node selection in the
tree policy is central to the MCTS method being used. A
wealth of different upper confidence bounds have been
proposed, often improving bounds or performance in
particular circumstances such as dynamic environments.

5.1.1 UCB1-Tuned
UCB1-Tuned is an enhancement suggested by Auer et
al. [13] to tune the bounds of UCB1 more finely. It
replaces the upper confidence bound

p
2 lnn/nj with:

s
lnn

nj
min{1

4

, Vj(nj)}

where:

Vj(s) = (1/2
sX

⌧=1

X2
j,⌧)�X

2
j,s +

r
2 ln t

s

which means that machine j, which has been played
s times during the first t plays, has a variance that
is at most the sample variance plus

p
2 ln t)/s [13]. It

should be noted that Auer et al. were unable to prove
a regret bound for UCB1-Tuned, but found it performed
better than UCB1 in their experiments. UCB1-Tuned has
subsequently been used in a variety of MCTS implemen-
tations, including Go [95], Othello [103] and the real-time
game Tron [184].

5.1.2 Bayesian UCT
Tesauro et al. [213] propose that the Bayesian framework
potentially allows much more accurate estimation of
node values and node uncertainties from limited num-
bers of simulation trials. Their Bayesian MCTS formalism
introduces two tree policies:

maximise Bi = µi +

r
2 lnN

ni

where µi replaces the average reward of the node with
the mean of an extremum (minimax) distribution Pi

(assuming independent random variables) and:

maximise Bi = µi +

r
2 lnN

ni
�i

where �i is the square root of the variance of Pi.
Tesauro et al. suggest that the first equation is a strict

improvement over UCT if the independence assumption
and leaf node priors are correct, while the second equa-
tion is motivated by the central limit theorem. They pro-
vide convergence proofs for both equations and carry out
an empirical analysis in an artificial scenario based on
an “idealized bandit-tree simulator”. The results indicate
that the second equation outperforms the first, and that
both outperform the standard UCT approach (although
UCT is considerably quicker). McInerney et al. [141] also
describe a Bayesian approach to bandit selection, and
argue that this, in principle, avoids the need to choose
between exploration and exploitation.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 17

5.1.3 EXP3
The Exploration-Exploitation with Exponential weights
(EXP3) algorithm, originally proposed by Auer et al. [14]
and further analysed by Audibert and Bubeck [11],
applies in the stochastic case (and hence also in the
adversarial case). The EXP3 policy operates as follows:

• Draw an arm It from the probability distribution pt.
• Compute the estimated gain for each arm.
• Update the cumulative gain.
Then one can compute the new probability distribu-

tion over the arms. EXP3 has been used in conjunction
with UCT to address games with partial observability
and simultaneous moves [216], [217].

5.1.4 Hierarchical Optimistic Optimisation for Trees
Bubeck et al. describe the Hierarchical Optimistic Optimi-
sation (HOO) algorithm, which is a a generalisation of
stochastic bandits [32], [33], [34]. HOO constitutes an
arm selection policy with improved regret bounds com-
pared to previous results for a large class of problems.

Mansley et al. [138] extend HOO into the playout
planning structure to give the Hierarchical Optimistic
Optimisation applied to Trees (HOOT) algorithm. The ap-
proach is similar to UCT, except that using HOO for
action selection allows the algorithm to overcome the
discrete action limitation of UCT.

5.1.5 Other Bandit Enhancements
There are a number of other enhancements to bandit-
based methods which have not necessarily been used in
an MCTS setting. These include UCB-V, PAC-UCB, Gaus-
sian UCB, Meta-Bandits, Hierarchical Bandits, UCB(↵),
and so on. See also the bandit-based active learner (4.3.3).

5.2 Selection Enhancements
Many enhancements alter the tree policy to change the
way MCTS explores the search tree. Generally, selection
assigns some numeric score to each action in order
to balance exploration with exploitation, for example
the use of UCB for node selection in UCT. In many
domains it has proved beneficial to influence the score
for each action using domain knowledge, to bias the
search towards/away from certain actions and make use
of other forms of reward estimate.

5.2.1 First Play Urgency
The MCTS algorithm specifies no way of determining the
order in which to visit unexplored nodes. In a typical
implementation, UCT visits each unvisited action once
in random order before revisiting any using the UCB1
formula. This means that exploitation will rarely occur
deeper in the tree for problems with large branching
factors.

First play urgency (FPU) is a modification to MCTS
proposed by Gelly et al. [95] to address this issue, by
assigning a fixed value to score unvisited nodes and
using the UCB1 formula to score visited nodes. By tuning
this fixed value, early exploitations are encouraged.

5.2.2 Decisive and Anti-Decisive Moves
Teytaud and Teytaud [215] demonstrate the benefit of
decisive and anti-decisive moves for the connection game
Havannah. Here, a decisive move is one that leads
immediately to a win, and an anti-decisive move is one
that prevents the opponent from making a decisive move
on their next turn. The selection and simulation policies
are replaced with the following policy: if either player
has a decisive move then play it; otherwise, revert to the
standard policy.

Teytaud and Teytaud [215] show that this modification
significantly increases playing strength, even when the
increased computational cost of checking for decisive
moves is taken into account. This approach is reminis-
cent of the pre-search handling of winning and losing
moves suggested earlier [28].

5.2.3 Move Groups
In some games, it may be the case that the branching
factor is large but many moves are similar. In particular,
MCTS may need a lot of simulation to differentiate
between moves that have a highly correlated expected
reward. One way of reducing the branching factor to
allow exploitation of correlated actions is to use move
groups. This creates an extra decision layer in which all
possible actions are collected into groups and UCB1 is
used to select which of these groups to pick a move
from. This idea was proposed in [63] and was shown
to be beneficial for the game Go. In addition, the use of
transpositions allows information to be shared between
these extra nodes where the state is unchanged.

5.2.4 Transpositions
MCTS naturally builds a search tree, but in many cases
the underlying games can be represented as directed
acyclic graphs (DAGs), since similar states can be reached
through different sequences of move. The search tree is
typically much larger than the DAG and two completely
different paths from the root of the tree to a terminal state
may traverse the same edge in the game’s DAG. Hence
extra information can be extracted from each simulation
by storing the statistics for each edge in the DAG and
looking these up during action selection. Whenever an
identical state/action pair appears in the MCTS tree, this
is referred to as a transposition. The use of transposition
statistics can be considered as an enhancement to both
the selection and backpropagation steps. Methods for
making use of transpositions with MCTS are explored
in [63] and further covered in Section 6.2.4.

Transposition tables will have greater benefit for some
games than others. Transposition tables were used in
conjunction with MCTS for the game Arimaa by Kozlek
[122], which led to a measurable improvement in per-
formance. Transpositions were also used in a General
Game Playing (GGP) context by Méhat et al. [144],
giving an equivalent or better playing strength in all
domains tested. Saffidine further explores the benefits of

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 18

transposition tables to GGP in his thesis [181]. Saffidine
et al. [182] also demonstrate the successful extension of
MCTS methods to DAGs for correctly handling transpo-
sitions for the simple LeftRight game (7.4).

5.2.5 Progressive Bias
Progressive bias describes a technique for adding domain
specific heuristic knowledge to MCTS [60]. When a node
has been visited only a few times and its statistics are
not reliable, then more accurate information can come
from a heuristic value Hi for a node with index i from
the current position. A new term is added to the MCTS
selection formula of the form:

f(ni) =
Hi

ni + 1

where the node with index i has been visited ni times. As
the number of visits to this node increases, the influence
of this number decreases.

One advantage of this idea is that many games already
have strong heuristic functions, which can be easily in-
jected into MCTS. Another modification used in [60] and
[232] was to wait until a node had been visited a fixed
number of times before calculating Hi. This is because
some heuristic functions can be slow to compute, so
storing the result and limiting the number of nodes that
use the heuristic function leads to an increase in the
speed of the modified MCTS algorithm.

5.2.6 Opening Books
Opening books16 have been used to improve playing
strength in artificial players for many games. It is possi-
ble to combine MCTS with an opening book, by employ-
ing the book until an unlisted position is reached. Alter-
natively, MCTS can be used for generating an opening
book, as it is largely domain independent. Strategies for
doing this were investigated by Chaslot et al. [56] using
their Meta-MCTS approach (4.9.4). Their self-generated
opening books improved the playing strength of their
program MOGO for 9⇥ 9 Go.

Audouard et al. [12] also used MCTS to generate an
opening book for Go, using MOGO to develop a revised
opening book from an initial handcrafted book. This
opening book improved the playing strength of the pro-
gram and was reported to be consistent with expert Go
knowledge in some cases. Kloetzer [115] demonstrates
the use of MCTS for generating opening books for the
game of Amazons (7.3).

5.2.7 Monte Carlo Paraphrase Generation (MCPG)
Monte Carlo Paraphrase Generation (MCPG) is similar to
plain UCT except that the maximum reachable score for
each state is used for selection rather than the (average)
score expectation for that state [62]. This modification
is so named by Chevelu et al. due to its application in
generating paraphrases of natural language statements
(7.8.5).

16. Databases of opening move sequences of known utility.

5.2.8 Search Seeding
In plain UCT, every node is initialised with zero win and
visits. Seeding or “warming up” the search tree involves
initialising the statistics at each node according to some
heuristic knowledge. This can potentially increase play-
ing strength since the heuristically generated statistics
may reduce the need for simulations through that node.
The function for initialising nodes can be generated
either automatically or manually. It could involve adding
virtual win and visits to the counts stored in the tree,
in which case the prior estimates would remain perma-
nently. Alternatively, some transient estimate could be
used which is blended into the regular value estimate as
the node is visited more often, as is the case with RAVE
(5.3.5) or Progressive Bias (5.2.5).

For example, Szita et al. seeded the search tree with
“virtual wins”, to significantly improve the playing
strength but required hand-tuning to set the appropriate
number of virtual wins for each action. Gelly and Silver
[92] investigated several different methods for generat-
ing prior data for Go and found that prior data generated
by a function approximation improved play the most.

5.2.9 Parameter Tuning
Many MCTS enhancements require the optimisation of
some parameter, for example the UCT exploration con-
stant Cp or the RAVE constant V (5.3.5). These values
may need adjustment depending on the domain and the
enhancements used. They are typically adjusted manu-
ally, although some approaches to automated parameter
tuning have been attempted.

The exploration constant Cp from the UCT formula is
one parameter that varies between domains. For high
performance programs for both Go [55] and Hex [8] it
has been observed that this constant should be zero (no
exploration) when history heuristics such as AMAF and
RAVE are used (5.3), while other authors use non-zero
values of Cp which vary between domains. There have
been some attempts to automatically tune this value
online such as those described by Kozelek [122].

Given a large set of enhancement parameters there
are several approaches to finding optimal values, or
improving hand-tuned values. Guillaume et al. used
the Cross-Entropy Method to fine tune parameters for
the Go playing program MANGO [58]. Cross Entropy
Methods were also used in combination with hand-
tuning by Chaslot et al. for their Go program MOGO
[55], and neural networks have been used to tune the
parameters of MOGO [57], using information about the
current search as input. Another approach called dynamic
exploration, proposed by Bourki et al. [25], tunes param-
eters based on patterns in their Go program MOGO.

5.2.10 History Heuristic
There have been numerous attempts to improve MCTS
using information about moves previously played. The
idea is closely related to the history heuristic [193], and is
described by Kozelek [122] as being used on two levels:

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 19

• Tree-tree level: Using history information to improve
action selection in the MCTS tree.

• Tree-playout level: Using history information to im-
prove the simulation policy (6.1).

One approach at the tree-tree level was a grandfather
heuristic approach suggested by Gelly and Silver [92].
History information was used to initialise the action
value estimates for new nodes, but was not as effective
as other initialisation methods. Kozelek [122] also used
a history-based approach at the tree-tree level for the
game Arimaa (7.3). A history bonus was given to the
bandit score calculated during action selection and the
score for an action was updated whenever it was selected
independent of depth, giving a significant improvement.

Finnsson [83] describes the benefits of the history
heuristic for seeding node values in his world champion
general game player CADIAPLAYER (7.5). See also the
use of the history heuristic for improving simulation
estimates (6.1.5).

5.2.11 Progressive History
Nijssen and Winands [155] propose the Progressive His-
tory enhancement, which combines Progressive Bias
(5.2.5) with the history heuristic by replacing the heuris-
tic value Hi in the progressive bias calculation for each
node i with that node’s history score, during node
selection. Progressive History was shown to perform
well for some multi-player board games (7.3), indicating
that it may be useful for multi-player games in general.

5.3 All Moves As First (AMAF)
All Moves As First (AMAF) is an enhancement closely
related to the history heuristic, first proposed in the
context of Monte Carlo Go. The basic idea is to update
statistics for all actions selected during a simulation as
if they were the first action applied. The first attempt
to combine AMAF with UCT was by Gelly et al. in
the context of Go [92], and AMAF heuristics have since
proved very successful for Go [94].

Figure 4 shows the AMAF heuristic in action on a
simple artificial 3⇥3 game (from [101]). In this situation,
UCT selects the actions C2, A1 for black and white
respectively, then the simulation plays black B1, white
A3 and black C3 leading to a win for black. When UCT
selected C2 as a move for black, UCT could have also
selected B1 and C3 as alternatives. Since these moves
were used during the simulation, these nodes have their
reward/visit count updated by the AMAF algorithm.
Similarly, UCT selected the move A1 for white, but could
have selected A3 which was used in the simulation, so
the AMAF algorithm updates the reward/visit for this
node too. Nodes that receive the extra AMAF update
during backpropagation are marked *.

The AMAF algorithm treats all moves played during
selection and simulation as if they were played on a
previous selection step. This means that the reward esti-
mate for an action a from a state s is updated whenever

a is encountered during a playout, even if a was not
the actual move chosen from s. Some implementations
keep track of the reward estimate generated this way,
as well as the usual reward estimate used in the UCT
algorithm, in which case the reward estimate generated
by the AMAF heuristic is referred to as the AMAF score.
Several AMAF variants are listed below.

5.3.1 Permutation AMAF
This algorithm is the same as AMAF but also up-
dates nodes that can be reached by permutations of
moves in the simulation that preserve the eventual state
reached [101]. For example, it may be possible to per-
mute the actions played by each player during a simula-
tion and reach an identical terminal position. Therefore
there may be other leaf nodes in the tree from which
the same terminal position could have been reached
by playing the same moves but in a different order.
Permutation AMAF would also update these nodes.

5.3.2 ↵-AMAF
The ↵-AMAF algorithm blends the standard (UCT) score
for each node with the AMAF score [101]. This requires
that a separate count of rewards and visits for each type
of update be maintained. It is called ↵-AMAF since the
total score for an action is:

↵A+ (1� ↵)U

where U is the UCT score and A is the AMAF score.

5.3.3 Some-First AMAF
This approach is the same as the standard AMAF algo-
rithm except that the history used to update nodes is
truncated after the first m random moves in the simu-
lation stage [101]. If m = 0 then only actions selected
in the tree are used to update nodes, similarly if m is
larger than the number of moves in the simulation, this
is equivalent to the AMAF algorithm.

5.3.4 Cutoff AMAF
In Cutoff AMAF, the AMAF algorithm is used to update
statistics for the first k simulations, after which only the
standard UCT algorithm is used [101]. The purpose of
Cutoff AMAF is to warm-up the tree with AMAF data,
then use the more accurate UCT data later in the search.

5.3.5 RAVE
Rapid Action Value Estimation (RAVE) is a popular
AMAF enhancement in computer Go programs such as
MOGO [92]. It is similar to ↵-AMAF, except that the
↵ value used at each node decreases with each visit.
Instead of supplying a fixed ↵ value, a fixed positive
integer V > 0 is supplied instead. Then the value of ↵
is calculated after n visits as [101]:

max

⇢
0,

V � v(n)

V

�

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 20

Fig. 4. The All Moves As First (AMAF) heuristic [101].

The parameter V represents the number of visits a node
will have before the RAVE values are not being used at
all. RAVE is a softer approach than Cutoff AMAF since
exploited areas of the tree will use the accurate statistics
more than unexploited areas of the tree.

5.3.6 Killer RAVE
Lorentz [133] describes the Killer RAVE17 variant in
which only the most important moves are used for the
RAVE updates for each iteration. This was found to be
more beneficial for the connection game Havannah (7.2)
than plain RAVE.

5.3.7 RAVE-max
RAVE-max is an extension intended to make the RAVE
heuristic more robust [218], [220]. The RAVE-max update
rule and its stochastic variant �-RAVE-max were found
to improve performance in degenerate cases for the Sum
of Switches game (7.3) but were less successful for Go.

5.3.8 PoolRAVE
Hoock et al. [104] describe the poolRAVE enhancement,
which modifies the MCTS simulation step as follows:

• Build a pool of the k best moves according to RAVE.
• Choose one move m from the pool.
• Play m with a probability p, else the default policy.
PoolRAVE has the advantages of being independent

of the domain and simple to implement if a RAVE
mechanism is already in place. It was found to yield im-
provements for Havannah and Go programs by Hoock
et al. [104] – especially when expert knowledge is small
or absent – but not to solve a problem particular to Go
known as semeai.

Helmbold and Parker-Wood [101] compare the main
AMAF variants and conclude that:

17. So named due to similarities with the “Killer Move” heuristic in
traditional game tree search.

• Random playouts provide more evidence about the
goodness of moves made earlier in the playout than
moves made later.

• AMAF updates are not just a way to quickly ini-
tialise counts, they are useful after every playout.

• Updates even more aggressive than AMAF can be
even more beneficial.

• Combined heuristics can be more powerful than
individual heuristics.

5.4 Game-Theoretic Enhancements
If the game-theoretic value of a state is known, this value
may be backed up the tree to improve reward estimates
for other non-terminal nodes. This section describes
enhancements based on this property.

Figure 5, from [235], shows the backup of proven
game-theoretic values during backpropagation. Wins,
draws and losses in simulations are assigned rewards
of +1, 0 and �1 respectively (as usual), but proven wins
and losses are assigned rewards of +1 and �1.

5.4.1 MCTS-Solver
Proof-number search (PNS) is a standard AI technique
for proving game-theoretic values, typically used for
endgame solvers, in which terminal states are considered
to be proven wins or losses and deductions chained
backwards from these [4]. A non-terminal state is a
proven win if at least one of its children is a proven win,
or a proven loss if all of its children are proven losses.
When exploring the game tree, proof-number search
prioritises those nodes whose values can be proven by
evaluating the fewest children.

Winands et al. [235], [234] propose a modification to
MCTS based on PNS in which game-theoretic values18

are proven and backpropagated up the tree. If the parent
node has been visited more than some threshold T times,
normal UCB selection applies and a forced loss node is

18. That is, known wins, draws or losses.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 21

Fig. 5. Backup of proven game-theoretic values [235].

never selected; otherwise, a child is selected according
to the simulation policy and a forced loss node may
be selected. Nijssen and Winands [155] also describe a
multi-player version of their MCTS-Solver (4.5).

5.4.2 Monte Carlo Proof-Number Search (MC-PNS)
Saito et al. [183] introduce Monte Carlo proof-number search
(MC-PNS), a variant of proof-number search in which
nodes that do not immediately prove a game-theoretic
value are evaluated by Monte Carlo simulation. Thus
MC-PNS uses Monte Carlo evaluations to guide the
proof-number search and expand the nodes of the tree
in a more efficient order. This allows game-theoretic
values to be proven twice as quickly in computer Go
experiments [183], with a quarter of the nodes.

5.4.3 Score Bounded MCTS
Cazenave and Saffidine [51] propose an MCTS enhance-
ment for the case of games with multiple outcomes, e.g.
a win or a draw, which result in a different score. Each
node has a pessimistic and optimistic bound on the score
of the node from the point of view of the maximizing
player. These bounds converge to the estimated score for
a node with more iterations, and a node is considered
solved if the two bounds become equal to the score of
the node. The two bounds on the score of a node are
backpropagated through the tree.

The optimistic and pessimistic bounds can be used
to prove nodes from the tree, and also to bias action
selection by adding the bounds to the score estimate for
a node, multiplied by some constant. MCTS with these
enhancements was demonstrated to reduce the number
of simulations required to solve seki situations in Go
(7.1) and was also shown to be beneficial for the game
Connect Four (Section 7.3).

5.5 Move Pruning
The pruning of suboptimal moves from the search tree
is a powerful technique when used with minimax, for

example the ↵-� algorithm yields significant benefits
for two-player zero-sum games. Move pruning can be
similarly beneficial for MCTS approaches, as eliminating
obviously poor choices allows the search to focus more
time on the better choices.

An advantage of pruning strategies is that many are
domain-independent, making them general improve-
ments for a range of problems. In the absence of a reliable
evaluation function, two types of move pruning have
been developed for use with MCTS:

• Soft pruning of moves that may later be searched and
selected, and

• Hard pruning of moves that will never be searched
or selected.

Soft pruning alleviates the risk that the best move may
have been prematurely pruned and removed from con-
sideration. However, some pruning techniques require
a reliable evaluation function for states, which is not
always available when using MCTS.

5.5.1 Progressive Unpruning/Widening
Progressive unpruning/widening is an example of a heuris-
tic soft pruning technique. Progressive unpruning was
proposed by Chaslot et al. [60] and the related idea of
progressive widening was proposed by Coulomb [71].
The advantage of this idea over hard pruning is that
it exploits heuristic knowledge to immediately reduce
the size of the tree, but that all moves will eventually
be considered (given enough time). This idea is similar
to First Play Urgency (5.2.1) in that it forces earlier
exploitation. Teytaud and Teytaud found that progres-
sive widening without heuristic move ordering had little
effect on playing strength for the game of Havannah
[214]. It was found to give a small improvement in
playing strength for the Go program MOGO [128].

Couëtoux et al. describe the extension of UCT to
continuous stochastic problems through the use of dou-
ble progressive widening [69], in which child nodes are

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 22

either revisited, added or sampled from previously seen
children, depending on the number of visits. Double
progressive widening worked well for toy problems for
which standard UCT failed, but less so for complex real-
world problems.

5.5.2 Absolute and Relative Pruning
Absolute pruning and relative pruning are two strategies
proposed by Huang [106] to preserve the correctness of
the UCB algorithm.

• Absolute pruning prunes all actions from a position
except the most visited one, once it becomes clear
that no other action could become more visited.

• Relative pruning uses an upper bound on the number
of visits an action has received, to detect when the
most visited choice will remain the most visited.

Relative pruning was found to increase the win rate
of the Go program LINGO against GNU GO 3.8 by
approximately 3% [106].

5.5.3 Pruning with Domain Knowledge
Given knowledge about a domain, it is possible to prune
actions known to lead to weaker positions. For example,
Huang [106] used the concept of territory in Go to
significantly increase the performance of the program
LINGO against GNU GO 3.8. Domain knowledge related
to predicting opponents’ strategies was used by Suoju et
al. for move pruning in the game Dead End for a 51.17%
improvement over plain UCT [99].

Arneson et al. use domain knowledge to prune infe-
rior cells from the search in their world champion Hex
program MOHEX [8]. This is computationally expensive
to do, so only nodes that had been visited a certain
number of times had such domain knowledge applied.
An added benefit of this approach is that the analysis
would sometimes solve the position to give its true
game-theoretic value.

5.6 Expansion Enhancements

No enhancements specific to the expansion step of the
tree policy were found in the literature. The particular
expansion algorithm used for a problem tends to be more
of an implementation choice – typically between single
node expansion and full node set expansion – depending
on the domain and computational budget.

6 OTHER ENHANCEMENTS

This section describes enhancements to aspects of the
core MCTS algorithm other than its tree policy. This in-
cludes modifications to the default policy (which are typ-
ically domain dependent and involve heuristic knowl-
edge of the problem being modelled) and other more
general modifications related to the backpropagation
step and parallelisation.

6.1 Simulation Enhancements
The default simulation policy for MCTS is to select
randomly amongst the available actions. This has the
advantage that it is simple, requires no domain knowl-
edge and repeated trials will most likely cover different
areas of the search space, but the games played are
not likely to be realistic compared to games played by
rational players. A popular class of enhancements makes
the simulations more realistic by incorporating domain
knowledge into the playouts. This knowledge may be
gathered either offline (e.g. from databases of expert
games) or online (e.g. through self-play and learning).
Drake and Uurtamo describe such biased playouts as
heavy playouts [77].

6.1.1 Rule-Based Simulation Policy
One approach to improving the simulation policy is
to hand-code a domain specific policy. Such rule-based
policies should be fast, so as not to unduly impede the
simulation process; Silver discusses a number of factors
which govern their effectiveness [203].

6.1.2 Contextual Monte Carlo Search
Contextual Monte Carlo Search [104], [167] is an approach
to improving simulations that is independent of the
domain. It works by combining simulations that reach
the same areas of the tree into tiles and using statistics
from previous simulations to guide the action selection
in future simulations. This approach was used to good
effect for the game Havannah (7.2), for which each tile
described a particular pairing of consecutive moves.

6.1.3 Fill the Board
Fill the Board is an enhancement described in [53], [55]
designed to increase simulation diversity for the game
of Go. At each step in the simulations, the Fill the Board
algorithm picks N random intersections; if any of those
intersections and their immediate neighbours are empty
then it plays there, else it plays a random legal move. The
simulation policy in this case can make use of patterns
(6.1.9) and this enhancement fills up board space quickly,
so these patterns can be applied earlier in the simulation.

A similar approach to board filling can be used to
good effect in games with complementary goals in which
exactly one player is guaranteed to win, however the
board is filled. Such games include the connection games
Hex and Y, as discussed in Sections 6.1.9 and 7.2.

6.1.4 Learning a Simulation Policy
Given a new domain, it is possible to learn a new
simulation policy using generic techniques. The
relationship between MCTS and TD learning was
mentioned in Section 4.3.1; other techniques that learn
to adjust the simulation policy by direct consideration
of the simulation statistics are listed below.

Move-Average Sampling Technique (MAST) is an

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 23

approach first described by Finnsson and Björnsson
[84] for the world champion general game playing
program CADIAPLAYER [83]. A table is maintained
for each action independent of state, in which the
average reward Q(a) for each action a is stored and
updated during the backpropagation step. Then, during
subsequent simulations, these values are used to bias
action selection towards more promising moves using a
Gibbs distribution. A related technique called Tree-Only
MAST (TO-MAST), in which only the actions selected
within the search are updated, was also proposed [86].

Predicate-Average Sampling Technique (PAST) is
similar to MAST and was proposed in [86]. Each
state is represented as a list of predicates that hold
true in that state. Then, instead of a table of average
values for actions, PAST maintains a table of average
values for predicate/action pairs Qp(p, a). During the
backpropagation process, these values are updated for
every action selected and every predicate that is true
in the state in which that action was selected. As with
MAST, simulations select moves according to a Gibbs
distribution, here depending on the maximum value
of Qp(p, a) over all predicates p for the current state.
MAST biases the simulations towards moves which are
good on average, whereas PAST biases the simulations
towards moves which are good in a certain context.

Feature-Average Sampling Technique (FAST) is technique
related to MAST and PAST and also proposed in [86].
This is designed for use with games specified with the
Game Description Language (GDL) used for the AAAI
General Game Playing competitions (7.5).

First, features of the game are extracted from the game
definition (in this case piece type and board format), then
the TD(�) method is used to learn the relative impor-
tance of features, and this is in turn used to calculate the
Q(a) values used for a simulation policy. It was found
that this technique leads to a big improvement over a
random simulation policy, as long as suitable features
can be recognised from the game description.

6.1.5 Using History Heuristics
The history heuristic (5.2.10) assumes that a move good
in one position may be good in another, to inform action
choices during the selection step. A similar approach
may also be applied during the simulation step, where
it is described as “using history information at the tree-
playout level” [122]. MAST (6.1.4) is an example of this
approach.

Bouzy [26] experimented with history heuristics for
Go. Two versions were tested:

1) an internal heuristic that alters moves made during
the playouts, and

2) an external heuristic that changes the moves selected
before the playout.

The external history heuristic led to a significant im-
provement in playing strength.

Drake and Uurtamo [77] investigated whether search
time is better spent improving the tree policy or the
simulation policy. Their scenario included using history
heuristics for Go and they concluded that it was more
efficient to improve the simulation policy.

6.1.6 Evaluation Function
It is possible to use an evaluation function to improve the
simulation policy. For example, Winands and Bj̈ornsson
[232] test several strategies for designing a simulation
policy using an evaluation function for the board game
Lines of Action (7.2). They found the most successful
strategy to be one that initially uses the evaluation
function to avoid bad moves, but later in the simulation
transitions to greedily selecting the best move.

6.1.7 Simulation Balancing
Silver describes the technique of simulation balancing
using gradient descent to bias the policy during simula-
tions [203]. While it has been observed that improving
the simulation policy does not necessarily lead to strong
play [92], Silver and Tesauro demonstrate techniques for
learning a simulation policy that works well with MCTS
to produce balanced19 if not strong play [203].

6.1.8 Last Good Reply (LGR)
Another approach to improving simulations is the Last
Good Reply (LGR) enhancement described by Drake [75].
Each move in a game is considered a reply to the
previous move, and deemed successful if the player who
makes the reply goes on to win. For each move, the
last successful reply is stored and used after subsequent
occurrences of that move. Since only one reply is stored
per move, later replies will overwrite previous ones.

During the simulations, each player will play the last
good reply stored if it is legal and otherwise use the
default policy. This is referred to as the LGR-1 policy;
Drake also defines a variant LGR-2 in [75] which stores
replies for the last two moves and uses LGR-1 if there is
no LGR-2 entry for the last two moves.

Baier and Drake [17] propose an extension to LGR-1
and LGR-2 called Last Good Reply with Forgetting (LGRF).
In this context, “forgetting” means removing a stored re-
ply if that reply leads to a loss during the last simulation.
Two corresponding enhancements, LGRF-1 and LGRF-2,
include forgetting. LGR enhancements were shown to be
an improvement over the default policy for 19⇥ 19 Go,
and storing a reply to the last two moves provided more
benefit when forgetting was used.

6.1.9 Patterns
In terms of board games such as Go, a pattern is a small
non-empty section of the board or a logical test upon it.
Patterns may also encode additional information such as
the player to move, and are typically incorporated into

19. Games in which errors by one player are on average cancelled
out by errors by the opponent on their next move [203].

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 24

Fig. 6. Patterns for a cut move in Go [96].

simulations by detecting pattern matches with the actual
board position and applying associated moves.

For example, Figure 6 from [96] shows a set of 3 ⇥ 3

patterns for detecting cut moves in Go. The first pattern
must be matched and the other two not matched for the
move to be recognised. Drake and Uurtamo [77] suggest
there may be more to gain from applying heuristics such
as patterns to the simulation policy rather than the tree
policy for Go.

The 3 ⇥ 3 patterns described by Wang and Gelly
[228] vary in complexity, and can be used to improve
the simulation policy to make simulated games more
realistic. Wang and Gelly matched patterns around the
last move played to improve the playing strength of
their Go program MOGO [228]. Gelly and Silver [92]
used a reinforcement learning approach to improve the
simulation policy, specifically a function approximator
QRLGO(s, a), which applied linear weights to a collection
of binary features.20 Several policies using this informa-
tion were tested and all offered an improvement over
a random policy, although a weaker handcrafted policy
was stronger when used with UCT.

Coulom [71] searched for useful patterns in Go by
computing Elo ratings for patterns, improving their Go
program CRAZY STONE. Hoock and Teytaud investigate
the use of Bandit-based Genetic Programming (BGP) to
automatically find good patterns that should be more
simulated and bad patterns that should be less simulated
for their program MOGO, achieving success with 9 ⇥ 9

Go but less so with 19⇥ 19 Go [105].
Figure 7 shows a bridge pattern that occurs in con-

nection games such as Hex, Y and Havannah (7.2). The
two black pieces are virtually connected as an intrusion
by white in either cell can be answered by black at
the other cell to restore the connection. Such intrusions
can be detected and completed during simulation to
significantly improve playing strength, as this mimics
moves that human players would typically perform.

6.2 Backpropagation Enhancements
Modifications to the backpropagation step typically in-
volve special node updates required by other enhance-
ment methods for forward planning, but some constitute
enhancements in their own right. We describe those not
explicitly covered in previous sections.

20. These features were all 1⇥ 1 to 3⇥ 3 patterns on a Go board.

a
b

b
a

Fig. 7. Bridge completion for connection games.

6.2.1 Weighting Simulation Results
Xie and Liu [237] observe that some simulations are
more important than others. In particular, simulations
performed later in the search tend to be more accurate
than those performed earlier, and shorter simulations
tend to be more accurate than longer ones. In light of
this, Xie and Liu propose the introduction of a weighting
factor when backpropagating simulation results [237].
Simulations are divided into segments and each assigned
a positive integer weight. A simulation with weight w is
backpropagated as if it were w simulations.

6.2.2 Score Bonus
In a normal implementation of UCT, the values back-
propagated are in the interval [0, 1], and if the scheme
only uses 0 for a loss and 1 for a win, then there is no
way to distinguish between strong wins and weak wins.
One way of introducing this is to backpropagate a value
in the interval [0, �] for a loss and [�, 1] for a win with
the strongest win scoring 1 and the weakest win scoring
�. This scheme was tested for Sums Of Switches (7.3) but
did not improve playing strength [219].

6.2.3 Decaying Reward
Decaying reward is a modification to the backpropaga-
tion process in which the reward value is multiplied by
some constant 0 < � 1 between each node in order
to weight early wins more heavily than later wins. This
was proposed alongside UCT in [119], [120].

6.2.4 Transposition Table Updates
Childs et al. [63] discuss a variety of strategies – la-
belled UCT1, UCT2 and UCT3 – for handling transposi-
tions (5.2.4), so that information can be shared between
different nodes corresponding to the same state. Each
variation showed improvements over its predecessors,
although the computational cost of UCT3 was large.

6.3 Parallelisation
The independent nature of each simulation in MCTS
means that the algorithm is a good target for paral-
lelisation. Parallelisation has the advantage that more
simulations can be performed in a given amount of time
and the wide availability of multi-core processors can
be exploited. However, parallelisation raises issues such
as the combination of results from different sources in a
single search tree, and the synchronisation of threads of

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 25

Fig. 8. Parallelisation approaches for MCTS [59].

different speeds over a network. This section describes
methods of parallelising MCTS and addressing such is-
sues. Figure 8 shows the main parallelisation approaches
for MCTS, as described by Chaslot et al. [59].

6.3.1 Leaf Parallelisation
Leaf parallelisation as defined in [59] involves performing
multiple simultaneous simulations every time the MCTS
tree policy reaches (or creates) a leaf node. The idea
is to collect better statistics at each leaf by achieving a
better initial estimate. Cazenave and Jouandeau call this
scheme at-the-leaves parallelisation [47].

One problem is that the simulations may take dif-
fering lengths of time, hence the algorithm is limited
to waiting for the longest simulation to finish. Kato
and Takeuchi [113] describe how leaf parallelisation can
be implemented in a client-server network architecture,
with a single client executing the MCTS search and
calling upon several servers to perform simulations.

6.3.2 Root Parallelisation
Root parallelisation [59] is sometimes called multi-tree
MCTS because multiple MCTS search trees are built
simultaneously (i.e. parallelised at the root). Usually the
information from the first layer in each tree is used to in-
form the move chosen by the algorithm. One advantage
of this approach is that each thread can run for a fixed
length of time and stop at any moment. Note that UCT
with root parallelisation is not algorithmically equivalent
to plain UCT, but is equivalent to Ensemble UCT (4.6.1).

Soejima et al. analyse the performance of root paral-
lelisation in detail [205]. They provide evidence that a
majority voting scheme gives better performance than
the conventional approach of playing the move with the
greatest total number of visits across all trees.

Cazenave and Jouandeau also describe root paralleli-
sation under the name single-run parallelisation [47] and
a related scheme called multiple-runs parallelisation in
which the statistics for moves from the root of each tree
are periodically shared between processes. Multiple-runs
parallelisation is similar to the slow root parallelisation of
Bourki et al. [24].

6.3.3 Tree Parallelisation

Tree parallelisation is a parallelisation process which in-
volves simultaneous MCTS simulation steps on the same
tree [59]. Care must be taken to protect the tree from
simultaneous access by different threads; each thread
must gain exclusive access to a subtree of the whole
search tree and the other threads must explore other
areas until the lock is released. One scheme proposed in
[59] makes use of a global lock (mutex) at the root node.
This would be a reasonable approach if the simulations
took much longer than traversing the tree, since one
thread can traverse or update the tree while others
perform simulations. Another scheme uses local locks
(mutexes) on each internal node, which are locked and
unlocked every time a thread visits a node.

One issue with tree parallelisation is that each thread is
likely to traverse the tree in mostly the same way as the
others. One suggested solution is to assign a temporary
“virtual loss” to a node when it is first encountered
during action selection [59]. This encourages different
threads to select different nodes whilst any nodes that
are clearly better than the others will still be preferred.
This virtual loss is then removed immediately prior to
the backpropagation step to restore the tree statistics.

Bourki et al. suggest a variation called slow tree par-
allelisation, in which statistics are synchronised between

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 26

trees periodically and only on parts of the tree21 [24].
This is better suited to implementation in a message-
passing setting, where communication between pro-
cesses is limited, e.g. when parallelising across clusters of
machines. Bourki et al. find that slow tree parallelisation
slightly outperforms slow root parallelisation, despite
the increased communication overheads of the former.
The idea of periodically synchronising statistics between
trees is also explored in [91].

6.3.4 UCT-Treesplit
Schaefers and Platzner [192] describe an approach they
call UCT-Treesplit for performing a single MCTS search
efficiently across multiple computer nodes. This allows
an equal distribution of both the work and memory
load among all computational nodes within distributed
memory. Graf et al. [98] demonstrate the application
of UCT-Treesplit in their Go program GOMORRA to
achieve high-level play. GOMORRA scales up to 16 nodes
before diminishing returns reduce the benefit of splitting
further, which they attribute to the high number of
simulations being computed in parallel.

6.3.5 Threading and Synchronisation
Cazenave and Jouandeau [48] describe a parallel Master-
Slave algorithm for MCTS, and demonstrate consistent
improvement with increasing parallelisation until 16
slaves are reached.22 The performance of their 9⇥ 9 Go
program increases from 40.5% with one slave to 70.5%
with 16 slaves against GNU GO 3.6.

Enzenberger and Müller [80] describe an approach
to multi-threaded MCTS that requires no locks, despite
each thread working on the same tree. The results
showed that this approach has much better scaling on
multiple threads than a locked approach.

Segal [195] investigates why the parallelisation of
MCTS across multiple machines has proven surprisingly
difficult. He finds that there is an upper bound on the
improvements from additional search in single-threaded
scaling for FUEGO, that parallel speedup depends criti-
cally on how much time is given to each player, and that
MCTS can scale nearly perfectly to at least 64 threads
when combined with virtual loss, but without virtual
loss scaling is limited to just eight threads.

6.4 Considerations for Using Enhancements
MCTS works well in some domains but not in others.
The many enhancements described in this section and
the previous one also have different levels of applicabil-
ity to different domains. This section describes efforts to
understand situations in which MCTS and its enhance-
ments may or may not work, and what conditions might
cause problems.

21. For example, only on nodes above a certain depth or with more
than a certain number of visits.

22. At which point their algorithm is 14 times faster than its sequen-
tial counterpart.

6.4.1 Consistency
Heavily modified MCTS algorithms may lead to incor-
rect or undesirable behaviour as computational power
increases. An example of this is a game played between
the Go program MOGO and a human professional,
in which MOGO incorrectly deduced that it was in a
winning position despite its opponent having a winning
killer move, because that move matched a number of
very bad patterns so was not searched once [19]. Mod-
ifying MCTS enhancements to be consistent can avoid
such problems without requiring that the entire search
tree eventually be visited.

6.4.2 Parameterisation of Game Trees
It has been observed that MCTS is successful for trick-
taking card games, but less so for poker-like card games.
Long et al. [130] define three measurable parameters of
game trees and show that these parameters support this
view. These parameters could also feasibly be used to
predict the success of MCTS on new games.

6.4.3 Comparing Enhancements
One issue with MCTS enhancements is how to measure
their performance consistently. Many enhancements lead
to an increase in computational cost which in turn results
in fewer simulations per second; there is often a trade-
off between using enhancements and performing more
simulations.

Suitable metrics for comparing approaches include:
• Win rate against particular opponents.
• Elo23 ratings against other opponents.
• Number of iterations per second.
• Amount of memory used by the algorithm.

Note that the metric chosen may depend on the reason
for using a particular enhancement.

7 APPLICATIONS

Chess has traditionally been the focus of most AI games
research and been described as the “drosophila of AI” as
it had – until recently – been the standard yardstick for
testing and comparing new algorithms [224]. The success
of IBM’s DEEP BLUE against grandmaster Gary Kasparov
has led to a paradigm shift away from computer Chess
and towards computer Go. As a domain in which com-
puters are not yet at the level of top human players, Go
has become the new benchmark for AI in games [123].

The most popular application of MCTS methods is to
games and of these the most popular application is to
Go; however, MCTS methods have broader use beyond
games. This section summarises the main applications
of MCTS methods in the literature, including computer
Go, other games, and non-game domains.

23. A method for calculating relative skill levels between players that
is widely used for Chess and Go, named after Arpad Elo.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 27

7.1 Go

Go is a traditional board game played on the intersec-
tions of a square grid, usually 19⇥19. Players alternately
place stones on the board; orthogonally adjacent stones
form groups, which are captured if they have no liberties
(orthogonally adjacent empty spaces). The game ends
when both players pass, and is won by the player who
controls the most board territory.

Compared with Chess, strong AI methods for Go are a
hard problem; computer Go programs using ↵-� search
reached the level of a strong beginner by around 1997,
but stagnated after that point until 2006, when the first
programs using MCTS were implemented. Since then,
progress has been rapid, with the program MOGO beat-
ing a professional player on a 9⇥ 9 board in 2008 [128]
and on a large board (with a large handicap) also in
2008. This success is also summarised in [129]. Today,
the top computer Go programs all use MCTS and play
at the strength of a good amateur player. Computer Go
tournaments are also dominated by MCTS players [127].

7.1.1 Evaluation
There are several obstacles to making strong AI players
for Go; games are long (around 200 moves) and have
a large branching factor (an average of 250 legal plays
per move), which poses a challenge for traditional AI
techniques that must expand every node. However, a
bigger obstacle for traditional search techniques is the
lack of a good static evaluation function for non-terminal
nodes [61]. Evaluation functions are problematic for
several reasons:

• A piece placed early in the game may have a strong
influence later in the game, even if it will eventually
be captured [76].

• It can be impossible to determine whether a group
will be captured without considering the rest of the
board.

• Most positions are dynamic, i.e. there are always
unsafe stones on the board [70].

MCTS programs avoid these issues by using random
simulations and naturally handling problems with de-
layed rewards.

7.1.2 Agents
It is indicative of the power of MCTS that over three
dozen of the leading Go programs now use the algo-
rithm. Of particular note are:

• MOGO [90] [55], the first Go player to use MCTS
and still an innovation in the field. It was the
first program to use RAVE (5.3) and sequence-like
patterns (6.1.9) and is currently the only top Go
program using the Fill the Board technique (6.1.3).

• CRAZY STONE [72] was the first Go program us-
ing MCTS to win a tournament, and the first to
beat a professional player with less than a 9 stone
handicap. CRAZY STONE uses AMAF with a learned

pattern library and other features to improve the
default policy and perform progressive widening.

• LEELA was the first commercial Go program to
embrace MCTS, though also one of the weaker ones.

• FUEGO [79] was the first program to beat a profes-
sional Go player in an even 9 ⇥ 9 game as white,
and uses RAVE.

At the 15th Computer Olympiad, ERICA won the
19 ⇥ 19 category using RAVE with progressive bias
(5.2.5), a learned 3 ⇥ 3 pattern library [107] and sophis-
ticated time management [108]. Commercial programs
MYGOFRIEND and MANY FACES OF GO won the 9 ⇥ 9

and 13⇥ 13 categories respectively; both use MCTS, but
no other details are available. The Fourth UEC Cup was
won by FUEGO, with MCTS players ZEN and ERICA in
second and third places; ZEN uses RAVE and a full-
board probabilistic model to guide playouts. Table 2
from [94] shows the relative Elo rankings of the main
9⇥ 9 Go programs, both MCTS and non-MCTS. FUEGO
GB PROTOTYPE24 produced excellent results against hu-
man experts for 9 ⇥ 9 Go [148]. While its performance
was less successful for 13⇥13, Müller observes that it still
performed at a level that would have been unthinkable
a few years ago.

7.1.3 Approaches
Most of the current Go programs use AMAF or RAVE
(5.3), allowing the reuse of simulation information. Ad-
ditionally, it has been observed by several authors that
when using AMAF or RAVE, the exploration constant
for the UCB formula should be set to zero. CRAZYSTONE
and ZEN go further in extracting information from play-
outs, using them to build up a probabilistic score for
each cell on the board. Drake [75] suggests using the
Last Good Reply heuristic (6.1.8) to inform simulations,
modified by Baier and Drake [17] to include the forget-
ting of bad moves. Most programs use parallelisation,
often with lock-free hashtables [80] and message-passing
parallelisation for efficient use of clusters (6.3). Silver
[201] uses temporal difference learning methods (4.3.1)
to extend the MCTS algorithm for superior results in 9⇥9
Go with MOGO.

Cazenave advocates the use of abstract game knowl-
edge as an alternative to pattern-based heuristics [38].
For example, his playing atari25 heuristic, which modifies
move urgency depending on whether the move threat-
ens atari on enemy groups or addresses atari for friendly
groups, was found to significantly improve play in his
program GOLOIS. Cazenave also encouraged his pro-
gram to spend more time on earlier and more important
moves by stopping the search when each game is clearly
decided.

Genetic Programming methods were used by
Cazenave to evolve heuristic functions to bias move

24. A variant of FUEGO that uses machine-learnt pattern knowledge
and an extra additive term in the UCT formula [148].

25. A group of stones under imminent threat of capture is in atari.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 28

Year Program Description Elo
2006 INDIGO Pattern database, Monte Carlo simulation 1400
2006 GNU GO Pattern database, ↵-� search 1800
2006 MANY FACES Pattern database, ↵-� search 1800
2006 NEUROGO TDL, neural network 1850
2007 RLGO TD search 2100
2007 MOGO MCTS with RAVE 2500
2007 CRAZY STONE MCTS with RAVE 2500
2008 FUEGO MCTS with RAVE 2700
2010 MANY FACES MCTS with RAVE 2700
2010 ZEN MCTS with RAVE 2700

TABLE 2
Approximate Elo rankings of 9⇥ 9 Go programs [94].

choice in the default policy for Go [37]. These heuristic
functions were in the form of symbolic expressions, and
outperformed UCT with RAVE.

Cazenave [44] also demonstrates how to incorporate
thermography calculations into UCT to improve playing
strength for 9 ⇥ 9 Go. Thermography, in the context
of combinatorial game theory, is the study of a game’s
“temperature” as indicated by the prevalence of either
warm (advantageous) moves or cool (disadvantageous)
moves. It appears more beneficial to approximate the
temperature separately on each game rather than glob-
ally over all games.

Huang et al. [110] demonstrate how the clever use
of time management policies can lead to significant
improvements in 19 ⇥ 19 Go for their program ERICA.
Examples of time management policies include the self-
explanatory Think Longer When Behind approach and
better use of the additional time that becomes available
as the opponent ponders their move.

7.1.4 Domain Knowledge
Patterns (6.1.9) are used extensively in Go programs in
both search and simulation; Chaslot et al. [55] provide
an excellent description of common patterns, tactical and
strategic rules. Chaslot et al. [60], Huang et al. [109],
Coulom [71] and others all describe methods of learning
patterns; Lee et al. [128] show that hand-tuning pattern
values is worthwhile. Aduard et al. [12] show that
opening books make a big improvement in play level;
progressive widening or progressive unpruning (5.5.1) is
used to manage the large branching factor, with patterns,
tactical, and strategic rules [55] used to determine the
move priorities.

Wang et al. [228] and Gelly et al. [96] note that
balanced playouts (equal strength for both players) are
important and that increasing simulation strength may
lead to weaker performance overall, so rules are chosen
empirically to improve performance and vary from im-
plementation to implementation. Wang and Gelly [228]
describe sequence-like 3 ⇥ 3 patterns which are now
used widely to direct playouts, low liberty rules used to
ensure sensible play when a group is in danger of being
captured, and approximate rules for handling nakade26

26. A nakade is a dead group that looks alive due to an internal space.

and semeai.27

7.1.5 Variants
MCTS has been applied to the following Go variants.

Random Go Helmstetter et al. [102] describe an
experiment where a strong human player played against
MOGO (MCTS player) from randomly generated, fair
positions. They conclude that randomly generated
positions are harder for the human to analyse; with
180 or more random stones on the board, the artificial
player becomes competitive with the human.

Phantom Go has imperfect information: each player
can see only his own stones. The standard rules of Go
apply, but each player reports their move to a referee,
who reports back: illegal (stone may not be placed),
legal (placement accepted), or a list of captured stones
if captures are made. Cazenave [36] applied flat Monte
Carlo with AMAF to Phantom Go. Cazenave’s program
GOLOIS was the strongest Phantom Go program at the
2007 Computer Olympiad [46]. Borsboom et al. [23]
found that Cazenave’s technique outperforms several
techniques based on UCT with determinization (4.8.1).

Blind Go follows the normal rules of Go, except
that the human player cannot see the Go board.
In contrast to Phantom Go, players have complete
knowledge of their opponent’s moves, the only source
of “imperfect information” being the human player’s
imperfect memory. Chou et al. [65], pitting blindfold
humans against the MCTS-based player MOGOTW on
small boards, found that performance drops greatly for
beginners, who were not able to complete a blindfold
game, but noted only a small drop in play strength by
the top players.

NoGo is a variant of Go in which players lose if
they capture a group or are forced to suicide, which
is equivalent to forbidding all captures and ending
the game when there are no legal moves. Chou et
al. [64] implemented an artificial player for NoGo and

27. A semeai is a capturing race.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 29

tested several standard enhancements. They conclude
that RAVE and anti-decisive moves (5.2.2) lead to
improvements in playing strength, slow node creation28

leads to benefits for situations in which time or memory
are the limiting factors, and that adding domain
knowledge to playouts was most beneficial.

Multi-player Go is simply Go with more than two
players. Cazenave [40] compares several versions of
UCT ranging from paranoid,29 to one that actively seeks
alliances with the other players. He concludes that in a
competition, there is no best algorithm independent of
the other competitors.

7.1.6 Future Work on Go
Rimmel et al. [170] identify four types of flaws in the
current generation of Go programs:

1) flaws in the opening library,
2) unwillingness to play in corners,
3) over-agressive play, and
4) handling of semeais and sekis (two groups that can-

not be captured, but are not absolutely alive).
Option (1) at least is an easy avenue for improvement.

Takeuchi et al. [210], [211] use the relationship between
the win probability obtained from playouts with actual
games to calculate evaluation curves, which allow the
comparison of different search methods, search param-
eters, and search performance at different stages of the
game. These measurements promise to improve perfor-
mance in Go and other MCTS applications.

Silver et al. [202] describe Dyna-2, a learning sys-
tem with permanent and dynamic values with parallels
to RAVE, which can beat standard UCT. Sylvester et
al. [208] built a neural network that is stronger than
standard UCT and found that a simple linear classifier
was stronger still. Marcolino and Matsubara suggest
that the next step in computer Go might be emergent
behaviour [139].

7.2 Connection Games
Connection games are games in which players strive
to complete a specified type of connection with their
pieces, be it connecting two or more goal regions,
forming a loop, or gathering pieces into connected
sets. The strongest known connection game agents
at competition board sizes are currently all MCTS
implementations.

Hex is the quintessential connection game, in which
players strive to connect the opposite sides of a
hexagonally tessellated rhombus marked with their
colour with a chain of their pieces. Hex has the feature

28. A technique in which a node is not created unless its parent has
already been created and it has been simulated a certain number of
times.

29. The paranoid player assumes that all other players will make the
moves that are most harmful towards it.

that exactly one player must win (since one player
winning explicitly blocks the other from doing so),
hence simulations may be performed until the board is
full and the win test applied only once, for efficiency.
This is similar to the Fill the Board policy used to
improve simulations in Go (6.1.3).

Raiko [161] first demonstrated the use of UCT for Hex
in 2008, using domain knowledge in the form of bridge
completion (6.1.9) during playouts. The resulting player
was unranked and performed best on smaller boards,
but also performed equally well on other hexagonally
based connection games without modification.

Arneson et al. [8] developed MOHEX, which uses
UCT in conjunction with RAVE and domain knowledge
in the form of inferior cell analysis to prune the search
tree, and bridge completion during simulations. MoHex
has won the 14th and 15th Computer Olympiads to
become the reigning Computer Hex world champion
[7]. Other MCTS Hex players that competed include
MIMHEX and YOPT [50], [180].

Y, *Star and Renkula! Y is the most fundamental
of connection games, in which players share the same
goal of connecting the three sides of a hexagonally
tessellated triangle with a chain of their pieces. *Star
is one of the more complex connection games, which
is played on a hexagonally tiled hexagon and involves
outer cell and group scores. Renkula! is a 3D connection
game played on the sphere which only exists virtually.
Raiko’s UCT connection game agent [161] plays all of
these three games and is the strongest known computer
player at all board sizes.

Havannah is a connection race game with more
complex rules, played on a hexagonal board tessellated
by hexagons. A player wins by completing with their
pieces:

1) a bridge connecting any two corners,
2) a fork connecting any three sides, and/or
3) a closed loop around any cells.

The complexity of these multiple winning conditions,
in addition to the large standard board of side length
10 (271 cells), makes it difficult to program an effective
agent and perhaps even more difficult than Go [214]. In
terms of number of MCTS enhancements tested upon it,
Havannah is arguably second only to Go (see Table 3).

Könnecke and Waldmann implemented a UCT Havan-
nah player with AMAF and a playout horizon [121], con-
centrating on efficient implementation but not finding
any other reliable computer opponent to test the playing
strength of their agent. Teytaud and Teytaud [214] then
implemented another UCT player for Havannah and
demonstrated that some lessons learnt from UCT for
computer Go also apply in this context while some do
not. Specifically, the RAVE heuristic improved playing
strength while progressive widening did not. Teytaud
and Teytaud [215] further demonstrate the benefit of de-
cisive and anti-decisive moves (5.2.2) to improve playing

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 30

strength.
Rimmel et al. [169] describe a general method for

biasing UCT search using RAVE values and demonstrate
its success for both Havannah and Go. Rimmel and
Teytaud [167] and Hook et al. [104] demonstrate the
benefit of Contextual Monte Carlo Search (6.1.2) for
Havannah.

Lorentz [133] compared five MCTS techniques for his
Havannah player WANDERER and reports near-perfect
play on smaller boards (size 4) and good play on
medium boards (up to size 7). A computer Havannah
tournament was conducted in 2010 as part of the 15th
Computer Olympiad [134]. Four of the five entries were
MCTS-based; the entry based on ↵-� search came last.

Stankiewicz [206] improved the performance of his
MCTS Havannah player to give a win rate of 77.5%
over unenhanced versions of itself by biasing move
selection towards key moves during the selection step,
and combining the Last Good Reply heuristic (6.1.8)
with N-grams30 during the simulation step.

Lines of Action is a different kind of connection
game, played on a square 8 ⇥ 8 grid, in which players
strive to form their pieces into a single connected group
(counting diagonals). Winands et al. [236] have used
Lines of Action as a test bed for various MCTS variants
and enhancements, including:

• The MCTS-Solver approach (5.4.1) which is able to
prove the game-theoretic values of positions given
sufficient time [234].

• The use of positional evaluation functions with
Monte Carlo simulations [232].

• Monte Carlo ↵-� (4.8.7), which uses a selective two-
ply ↵-� search at each playout step [233].

They report significant improvements in performance
over straight UCT, and their program MC-LOA↵� is the
strongest known computer player for Lines of Action.

7.3 Other Combinatorial Games
Combinatorial games are zero-sum games with discrete,
finite moves, perfect information and no chance element,
typically involving two players (2.2.1). This section
summarises applications of MCTS to combinatorial
games other than Go and connection games.

P-Game A P-game tree is a minimax tree intended
to model games in which the winner is decided by
a global evaluation of the final board position, using
some counting method [119]. Accordingly, rewards
are only associated with transitions to terminal states.
Examples of such games include Go, Othello, Amazons
and Clobber.

Kocsis and Szepesvári experimentally tested the per-
formance of UCT in random P-game trees and found

30. Markovian sequences of words (or in this case moves) that
predict the next action.

empirically that the convergence rates of UCT is of order
BD/2, similar to that of ↵-� search for the trees investi-
gated [119]. Moreover, Kocsis et al. observed that the
convergence is not impaired significantly when transpo-
sition tables with realistic sizes are used [120].

Childs et al. use P-game trees to explore two
enhancements to the UCT algorithm: treating the search
tree as a graph using transpositions and grouping moves
to reduce the branching factor [63]. Both enhancements
yield promising results.

Clobber is played on an 8 ⇥ 8 square grid, on which
players take turns moving one of their pieces to an
adjacent cell to capture an enemy piece. The game is
won by the last player to move. Kocsis et al. compared
flat Monte Carlo and plain UCT Clobber players against
the current world champion program MILA [120].
While the flat Monte Carlo player was consistently
beaten by MILA, their UCT player won 44.5% of
games, averaging 80,000 playouts per second over 30
seconds per move.

Othello is played on an 8 ⇥ 8 square grid, on which
players take turns placing a piece of their colour to
flip one or more enemy pieces by capping lines at both
ends. Othello, like Go, is a game of delayed rewards;
the board state is quite dynamic and expert players
can find it difficult to determine who will win a game
until the last few moves. This potentially makes Othello
less suited to traditional search and more amenable
to Monte Carlo methods based on complete playouts,
but it should be pointed out that the strongest Othello
programs were already stronger than the best human
players even before MCTS methods were applied.

Nijssen [152] developed a UCT player for Othello
called MONTHELLO and compared its performance
against standard ↵-� players. MONTHELLO played a
non-random but weak game using straight UCT and was
significantly improved by preprocessed move ordering,
both before and during playouts. MONTHELLO achieved
a reasonable level of play but could not compete against
human experts or other strong AI players.

Hingston and Masek [103] describe an Othello player
that uses straight UCT, but with playouts guided by
a weighted distribution of rewards for board positions,
determined using an evolutionary strategy. The resulting
agent played a competent game but could only win oc-
casionally against the stronger established agents using
traditional hand-tuned search techniques.

Osaki et al. [157] apply their TDMC(�) algorithm
(4.3.2) to Othello, and report superior performance
over standard TD learning methods. Robles et al. [172]
also employed TD methods to automatically integrate
domain-specific knowledge into MCTS, by learning a
linear function approximator to bias move selection in
the algorithm’s default policy. The resulting program
demonstrated improvements over a plain UCT player
but was again weaker than established agents for Othello

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 31

using ↵-� search.
Takeuchi et al. [210], [211] compare the win

probabilities obtained for various search methods,
including UCT, to those observed in actual games, to
evaluate the effectiveness of each search method for
Othello. Othello remains an open challenge for future
MCTS research.

Amazons is one of the more interesting combinatorial
games to emerge in recent years, remarkable for its
large move complexity, having on average over 1,000
move combinations to choose from each turn. It is
played on a 10 ⇥ 10 square grid, on which players
take turns moving one of their amazons as per a Chess
queen, then shooting an arrow from that piece along
any unobstructed line (orthogonal or diagonal) to block
the furthest cell. The number of playable cells thus
shrinks with each turn, and the last player to move
wins. Amazons has an obvious similarity to Go due to
the importance of territory and connectivity.

Kocsis et al. demonstrated the superiority of plain
UCT over flat Monte Carlo for Amazons [120]. Similarly,
Lorentz found that flat Monte Carlo performed poorly
against earlier ↵-� players in their Amazons players
INVADER and INVADERMC [132]. The inclusion of UCT
into INVADERMC elevated its playing strength to de-
feat all previous versions and all other known Ama-
zon agents. Forward pruning and progressive widening
(5.5.1) are used to focus the UCT search on key moves.

Kloetzer has studied MCTS approaches to Amazons
[116], [114] culminating in a PhD thesis on the topic
[115]. This includes MCTS approaches to endgame
analysis [117], [118] and more recently the generation
of opening books [115].

Arimaa is a Chess-like game designed in 1997 to
defeat traditional AI analysis through its huge move
space complexity; its branching factor averages between
17,000 to 50,000 move combinations per turn.

Kozelek [122] describes the implementation of a UCT
player for Arimaa. The basic player using straight UCT
played a weak game, which was improved signifi-
cantly using a technique described as the tree-tree history
heuristic (5.2.10), parallelisation, and information sharing
across the tree through transpositions (6.2.4). Implement-
ing heavy playouts that incorporate tactical information
and positional information from move advisers was also
beneficial, but standard MCTS enhancements such as
UCB tuning and RAVE were not found to work for
this game. This was probably due to Arimaa’s explosive
combinatorial complexity requiring an infeasible number
of simulations before significant learning could occur.

Kozelek [122] found it preferable to handle each
component sub-move as an individual action in the
UCT tree, rather than entire move combinations. This
reduces the search space complexity of such games with
compound moves to a reasonable level, at the expense
of strategic coherence within and between moves.

Khet is played on an 8 ⇥ 10 square board, on which
players place and move pieces with mirrors on some
sides. At the end of each turn, the mover activates
a laser and captures enemy pieces that the reflected
beam encounters, and wins by capturing the enemy
pharaoh. The average branching factor is 69 moves
and the average game length is 68 moves, giving an
average game tree complexity of around 1025 (similar
to Checkers).

Nijssen [153], [154] developed an MCTS Khet player
using straight UCT with transposition tables but no
other enhancements. Random playouts were found
to take too long on average (many taking over 1,000
turns), so playouts were capped at a certain length and
the game declared a draw at that point. The straight
UCT player did not win a single game against their
earlier ↵-� player.

Shogi is a Chess-like game most popular in Japan,
in which captured pieces may be dropped back into
play under the capturer’s control during a standard
move. Sato et al. [186] describe a UCT Shogi player
with a number of enhancements: history heuristic,
progressive widening, killer moves, checkmate testing
and the use of heavy playouts based on Elo rankings of
move features as proposed for Go by Coulom [71]. Sato
et al. found that UCT without enhancement performed
poorly for Shogi, but that their enhanced UCT player
competed at the level of a strong amateur. However,
even their enhanced program fared poorly against
state of the art Shogi agents using traditional search
techniques. These have now reached a high level of
play due to the popularity of Shogi and it is unlikely
that MCTS approaches will supersede them without
significant research effort.

Takeuchi et al. [210], [211] compare the win
probabilities obtained for various search methods,
including UCT, to those observed in actual games, to
investigate the effectiveness of each method for Shogi.

Mancala is one of the oldest families of traditional
combinatorial games. It is typically played on two lines
of six holes from which stones are picked up and sown
around subsequent holes on each turn, according to the
rules for the variant being played.

Ramanujan and Selman [165] implemented a UCT
player for Mancala and found it to be the first known
game for which minimax search and UCT both perform
at a high level with minimal enhancement. It was
shown that in this context, if the computational budget
is fixed, then it is far better to run more UCT iterations
with fewer playouts per leaf than to run fewer iterations
with more playouts. Ramanujan and Selman also
demonstrate the benefit of a hybrid UCT/minimax
approach if some heuristic knowledge of the domain is
available. Their work on comparing the performance
of UCT with minimax in various search spaces (3.5) is

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 32

continued elsewhere [164].

Blokus Duo is played on a 14 ⇥ 14 square grid
with 21 polyominoes of size 3, 4 and 5 belonging to
each player. Players take turns adding a piece to the
board to touch at least one existing friendly at the corners
only, and the game is won by the player to place the
largest total piece area.

Shibahara and Kotani [200] describe an MCTS player
for Blokus Duo using plain UCT without enhancement,
as the game is relatively new, hence it is difficult to
reliably evaluate non-terminal board positions given
the lack heuristic knowledge about it. Their program
uses a sigmoid function to combine the search score
and winning percentage in its search results, which
was found to make more moves that they describe as
“human” and “amusing” when losing. The program
placed seventh out of 16 entries in a Computer Blokus
Duo contest held in Japan.

Focus (also called Domination) is played on an
8 ⇥ 8 square board with truncated corners by two to
four players. Players start with a number of pieces on
the board, which they may stack, move and split, in
order to force their opponent(s) into a position with
no legal moves31. Nijssen and Winands [155] applied
their Multi-Player Monte-Carlo Tree Search Solver (4.5)
and Progressive History (5.2.11) techniques to Focus
to significantly improve playing strength against a
standard MCTS player.

Chinese Checkers is a traditional game played on
a star-shaped board by two to six players. Players aim
to move their pieces from their home area to a target
area on the opposite side of the board through a series
of steps and jumps over adjacent pieces.

Nijssen and Winands [155] also applied their
Multi-Player Monte-Carlo Tree Search Solver (MP-
MCTS-Solver) and Progressive History techniques to
Chinese Checkers, but found that only Progressive
History significantly improved playing strength against
a standard MCTS player. The failure of the MP-MCTS-
Solver enhancement in this case may be due to the fact
that Chinese Checkers is a sudden-death game while
Focus is not. In any event, Progressive History appears
to be a useful enhancement for multi-player games.

Yavalath is played on a hexagonally tessellated
hexagon of size 5, on which players strive to make
4-in-a-row of their colour without making 3-in-a-row
beforehand. It is the first computer-designed board
game to be commercially released. A plain UCT player
with no enhancements beyond pre-search handling
of winning and losing moves (similar to decisive and
anti-decisive moves [215]) played a competent game [28].

31. A simplified winning condition was used in the experiments to
speed up the self-play trials.

Connect Four is a well known children’s game played
on a 7x6 square grid, in which players drop pieces
down to make four in a row of their colour. Cazenave
and Saffidine demonstrated the benefit of ↵-�-style cuts
in solving the game for smaller boards using a Score
Bounded MCTS (5.4.3) approach [51].

Tic Tac Toe is a convenient test bed for MCTS
algorithms due to its simplicity and small search
space, but is rarely used as a benchmark for this very
reason. One exception is Veness et al. who describe the
application of ⇢UCT (4.10.6) in their MC-AIXA agent for
Tic Tac Toe and a number of other simple games [226].
Auger describes the application of MCTS methods to
the partially observable case of Phantom Tic Tac Toe [16].

Sum of Switches (SOS) is an artificial number picking
game played by two players, designed to represent
the best-case scenario for history heuristics such as
RAVE (5.3.5) for experimental purposes [219], [218],
[220]. A problem with the RAVE heuristic is that it
can accumulate strong bias against correct moves
when some moves are very good if played early, but
very bad if played later in a simulation. This is a
problem that does not happen in SOS. Tom and Müller
[219] indicate that UCT performance can be improved
through careful tuning of the RAVE parameters to
suit the situation, rather than necessarily focussing on
parallelisation and ever greater numbers of playouts.
Their extension RAVE-max (5.3.7) was found to improve
RAVE performance for degenerate cases in SOS [220].

Chess and Draughts Ramanujan et al. [163] describe
pathologies in behaviour that result from UCT Chess
players carefully constructed to explore synthetic search
spaces. Surprisingly, however, there are no human-
competitive MCTS implementations reported in the
literature for either Chess or Draughts, probably the
western world’s two most well known and widely
played board games. Existing agents for these games
may simply be too strong to invite competition or allow
meaningful comparisons.

The commercial Chess program RYBKA provides a
Monte Carlo feature to help players analyse posi-
tions [131]. It is unclear exactly what “Monte Carlo”
entails in this instance, but this feature can provide an
alternative interpretation of degenerate board positions
that confuse even strong Chess programs.

The relatively poor performance of UCT for Chess
compared to other games may also be due to the
occurrence of trap states (3.5) [162]. Takeuchi et al. [210],
[211] compare the win probabilities obtained for various
search methods, including UCT, to those observed in
actual games, to investigate the effectiveness of each
search method for Chess.

Gomoku is typically played with Go pieces on a

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 33

Go board, although 15⇥15 is also a common board size.
Players take turns adding a piece of their colour and
win by making 5-in-a-row orthogonally or diagonally.

Gomoku is popular (especially as a recreation among
Go players), simple to program, and makes an excellent
test case for UCT; it is a very good game for quickly
checking that a UCT implementation is working, and its
similarity to Go makes it an obvious stepping stone to-
wards a full Go program. Gomoku was an early UCT test
case for several of this paper’s authors, and is likely to
have been an early test case for others as well. However,
there is little mention of Gomoku in the literature and
no specific Gomoku programs are described, possibly
because the game has been solved up to at least 15⇥ 15.

7.4 Single-Player Games
Single-player (solitaire or puzzle) games are a special
case of combinatorial game in which the solver competes
against the null player or puzzle setter. This section
describes the use of MCTS methods to solve various
types of logic puzzles.

Leftmost Path and Left Move Problems The Leftmost
Path and Left Move problems [42] are simple artificial
games designed to test the nested Monte Carlo search
algorithm (4.9.2). The Leftmost Path Problem involves
constructing a binary tree and scoring the number of
moves on the leftmost part of the tree, hence leaf scores
are extremely correlated with the structure of the search
tree. This game is called LeftRight in [182], where it is
used to demonstrate the successful extension of MCTS
methods to DAGs for correctly handling transpositions
(5.2.4). In the Left Move Problem the score of a leaf is
the number of moves to the left that have been made
during a game, hence leaf scores are less correlated with
tree structure and NMCS is less informed.

Morpion Solitaire is an NP-hard solitaire puzzle,
in which the player successively colours a vertex of
an undirected graph, such that a line containing five
coloured vertices can be drawn. The aim is to make
as many moves as possible. Figure 9 from [42] shows
the standard board configuration. There are touching
and non-touching versions of the puzzle, in which two
moves in the same direction that share a circle at the
end of a line are either legal or non-legal respectively.

Cazenave applied a Reflexive Monte Carlo Search
(4.9.2) to solve the non-touching puzzle in 78 moves,
beating the existing human record of 68 moves and
AI record of 74 moves using simulated annealing [39].
Cazenave then applied nested Monte Carlo search
(NMCS) (4.9.2) to find an improved solution of 80 moves
[42]. The parallelisation of this problem technique is
discussed in further detail in [49].

Akiyama et al. incorporated the AMAF heuristic
(5.3) into NMCS to find a new world record solution
of 146 moves for the touching version of the puzzle

Fig. 9. 80 move Morpion Solitaire solution [42].

after about 36 days of computation [3]. This record
was for computer-generated solutions, since a human
generated solution of 170 is known. Edelkamp et al.
achieved a score of 128 using UCT with a number of
enhancements in their heuristically guided swarm tree
search [78] and reproduced the score of 170 when the
search was seeded with 111 moves. Rosin [176] applied
a Nested Rollout Policy Adaptation approach (4.9.3)
to achieve a new record of 177 for touching Morpion
Solitaire. This is the first automated method to improve
upon the human-generated record that had stood for
over 30 years.

Crossword Construction The construction of crosswords
is technically a single-player game, though played from
the designer’s view rather than that player’s; the
goal is to devise the most amusing and challenging
puzzles. Rosin’s Nested Rollout Policy Adaptation
(NRPA) approach (4.9.3) was also applied to crossword
construction, seeking to use as many words as possible
per puzzle [176].

SameGame, also called Bubble Breaker, is a logic
puzzle game played on a 15 ⇥ 15 square grid which
is initially coloured at random in five shades. At each
turn, the player selects a coloured group of at least two
orthogonally adjacent cells of the same colour, these
are removed and the remaining cells collapse down
to fill the gap. The game ends if the player fails to
clear all cells on a given level, i.e. if some singleton
groups remain. The average game length is estimated
to be 64.4 moves and the average branching factor 20.7
moves, resulting in a game-tree complexity of 1085 and

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 34

state-space complexity of 10159 [191].
Schadd et al. describe the Single-Player MCTS (SP-

MCTS) variant (4.4) featuring modified backpropagation,
parameter tuning and meta-search extension, and ap-
ply it to SameGame [191] [190]. Their player achieved
a higher score than any previous AI player (73,998).
Cazenave then applied Nested Monte Carlo Search
(4.9.2) to achieve an even higher score of 77,934 [42].

Matsumoto et al. later applied SP-MCTS with
domain knowledge to bias move choices during
playouts, for superior performance with little impact
on computational time [140]. Edelkamp et al. [78]
achieved a score of 82,604 using enhanced UCT in their
heuristically guided swarm tree search (4.9.5).

Sudoku and Kakuro Sudoku, the popular logic puzzle,
needs no introduction except perhaps to point out that
it is NP-complete for arbitrarily large boards. Cazenave
[42] applied nested Monte Carlo search (4.9.2) to 16⇥ 16

Sudoku as the standard 9⇥9 puzzle proved too easy for
comparison purposes and reported solution rates over
300,000 times faster than existing Forward Checking
methods and almost 50 times faster than existing
Iterative Sampling approaches.

Kakuro, also known as Cross Sums, is a similar
logic puzzle in the same class as Sudoku that is also
NP-complete. Cazenave [41] applied nested Monte
Carlo search (4.9.2) to 8⇥ 8 Kakaru puzzles for solution
rates over 5,000 times faster than existing Forward
Checking and Iterative Sampling approaches.

Wumpus World Asmuth and Littman [9] apply
their Bayesian FSSS (BFS3) technique to the classic 4x4
video game Wumpus World [178]. Their BFS3 player
clearly outperformed a variance-based reward bonus
strategy, approaching Bayes-optimality as the program’s
computational budget was increased.

Mazes, Tigers and Grids Veness et al. [226] describe the
application of ⇢UCT (4.10.6) in their MC-AIXA agent
to a range of puzzle games including:

• maze games,
• Tiger games in which the player must select the door

that maximises some reward, and
• a 4 ⇥ 4 grid world game in which the player moves

and teleports to maximise their score.
Veness et al. [226] also describe the application of ⇢UCT
to a number of nondeterministic games, which are sum-
marised in a following section.

7.5 General Game Playing
General Game Players (GGPs) are software agents in-
tended to play a range of games well rather than any
single game expertly. Such systems move more of the
mental work from the human to the machine: while
the programmer may fine-tune a dedicated single-game
agent to a high level of performance based on their

knowledge of the game, GGPs must find good solutions
to a range of previously unseen problems. This is more in
keeping with the original aims of AI research to produce
truly intelligent automata that can perform well when
faced with complex real-world problems.

GGP is another arena that MCTS-based agents have
dominated since their introduction several years ago.
The use of random simulations to estimate move values
is well suited to this domain, where heuristic knowledge
is not available for each given game.

CADIAPLAYER was the first MCTS-based GGP player,
developed by Hilmar Finnsson for his Masters Thesis
in 2007 [83]. The original incarnation of CADIAPLAYER
used a form of history heuristic and parallelisation
to improve performance, but otherwise used no
enhancements such as heavy playouts. Finnsson and
Björnsson point out the suitability of UCT for GGP
as random simulations implicitly capture, in real-time,
game properties that would be difficult to explicitly
learn and express in a heuristic evaluation function [84].
They demonstrate the clear superiority of their UCT
approach over flat MC. CADIAPLAYER went on to win
the 2007 and 2008 AAAI GGP competitions [21].

Finnsson and Björnsson added a number of
enhancements for CADIAPLAYER, including the Move-
Average Sampling Technique (MAST; 6.1.4), Tree-Only
MAST (TO-MAST; 6.1.4), Predicate-Average Sampling
Technique (PAST; 6.1.4) and RAVE (5.3.5), and found
that each improved performance for some games, but
no combination proved generally superior [85]. Shortly
afterwards, they added the Features-to-Action Sampling
Technique (FAST; 6.1.4), in an attempt to identify
common board game features using template matching
[86]. CADIAPLAYER did not win the 2009 or 2010 AAAI
GGP competitions, but a general increase in playing
strength was noted as the program was developed over
these years [87].

ARY is another MCTS-based GGP player, which
uses nested Monte Carlo search (4.9.2) and transposition
tables (5.2.4 and 6.2.4), in conjunction with UCT, to select
moves [144]. Early development of ARY is summarised
in [142] and [143]. ARY came third in the 2007 AAAI
GGP competition [143] and won the 2009 [145] and 2010
competitions to become world champion. Méhat and
Cazenave demonstrate the benefits of tree parallelisation
(6.3.3) for GPP, for which playouts can be slow as games
must typically be interpreted [146].

Other GGPs Möller et al. [147] describe their programme
CENTURIO which combines MCTS with Answer Set
Programming (ASP) to play general games. CENTURIO
came fourth in the 2009 AAAI GGP competition.

Sharma et al. [197] describe domain-independent
methods for generating and evolving domain-specific
knowledge using both state and move patterns, to im-
prove convergence rates for UCT in general games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 35

and improve performance against a plain UCT player.
They then extended this approach using Reinforcement
Learning and Ant Colony Algorithms, resulting in huge
improvements in AI player ability [198]. Mahlmamn et
al. [135] use an MCTS agent for testing and evaluating
games described in their Strategy Game Description
Game Language (SGDL).

7.6 Real-time Games
MCTS has been applied to a diverse range of real-time
games of varying complexity, ranging from Tron and
Ms. Pac-Man to a variety of real-time strategy games
akin to Starcraft. The greatest challenge facing MCTS
approaches is to achieve the same level of intelligence
and realistic behaviour achieved by standard methods
of scripting, triggers and animations.

Tron Samothrakis et al. [184] present an initial
investigation into the suitability of UCT for Tron.
They apply a standard implementation of MCTS to
Tron: the only two game-specific modifications include
the prevention of self-entrapment during the random
simulation phase (1-ply look-ahead) and the distinction
of a “survival mode” (once the players are physically
separated), where the game essentially turns into a
single-player game (a simple game tree is used here
instead). They compare different MCTS variants, using
UCB1, UCB-Tuned (5.1.1) and UCB-E (a modification of
UCB1 due to Coquelin and Munos [68]). Samothrakis
et al. find that MCTS works reasonably well but that
a large proportion of the random playouts produce
meaningless outcomes due to ineffective play.

Den Teuling [74] applies several enhancements to
plain UCT for Tron, including progressive bias (5.2.5),
MCTS-Solver (5.4.1), a game-specific mechanism
for handling simultaneous moves (4.8.10), and
game-specific simulation policies and heuristics for
predicting the outcome of the game without running
a complete simulation. These enhancements in various
combinations increase the playing strength in certain
situations, but their effectiveness is highly dependent
on the layout of the board.

Ms. Pac-Man Numerous tree-search and Monte
Carlo sampling approaches have been proposed in the
past to tackle the game of Ms. Pac-Man. For example,
Robles and Lucas [171] expand a route-tree based on
possible moves that Ms. Pac-Man can take,32 and a flat
Monte Carlo approach for the endgame strategy was
proposed by Tong and Sung [222] and Tong et al. [221],
based on path generation and path testing components.
The latter is carried out by means of Monte Carlo
simulations, making some basic assumptions regarding
the movement of Ms. Pac-Man and the four ghosts.
This strategy, which may be used in conjunction with

32. The best path was subsequently evaluated using hand-coded
heuristics.

other algorithms such as minimax or MCTS, improved
the agent’s score by 20%.

Samothrakis et al. [185] used MCTS with a 5-player
max

n game tree, in which each ghost is treated as
an individual player. Unlike traditional tree searches,
MCTS’s anytime nature lends itself nicely to the real-
time constraints of the game. Knowledge about the
opponent is clearly beneficial in this case, as it allows
not only for a smaller tree but also much more accurate
simulations in the forward projection.

Another application of MCTS to Ms. Pac-Man is
due to Ikehata and Ito [111], who use MCTS to avoid
pincer moves (i.e. moves where Ms. Pac-Man is trapped
by ghosts covering all exits). Nguyen et al. [151] also
describe the use of MCTS for move planning in Ms.
Pac-Man. In a follow-up paper [112], they extend their
MCTS agent to use heuristics learned from game-play,
such as the most dangerous places in the maze. Their
improved agent won the Ms. Pac-Man screen-capture
competition at IEEE CIG 2011, beating the previous best
winner of the competition by a significant margin.

Pocman and Battleship Silver and Veness [204]
apply a POMDP (2.1.2) approach to Pocman (partially
observable Pac-Man) and the classic children’s game
Battleship. Their players perform on a par with
full-width planning methods, but require orders of
magnitude less computation time and are applicable
to much larger problem instances; performance is far
superior to that of flat Monte Carlo. Veness et al. [226]
describe the application of ⇢UCT (4.10.6) in their MC-
AIXA agent for partially observable Pac-Man.

Dead-End is a real-time predator/prey game whose
participants are a cat (the player) and two dogs. The
aim of the cat is to reach the exit of the board, starting
from the bottom of the stage. On the other hand, the
aim of the dogs is to catch the cat or to prevent it from
reaching the exit within a period of time.

He et al. [100] use UCT for the behaviour of the
dogs in their artificial player. Their results show how
the performance is better when the simulation time is
higher and that UCT outperforms the flat Monte Carlo
approach. The same authors [99] used a more complex
approach based on a KNN classifier that predicts the
strategy of the player, to prune the search space in a
knowledge-based UCT (KB-UCT). Results show that the
pruned UCT outperforms the UCT that has no access to
player strategy information.

Yang et al. [239] and Fu et al. [88] used MCTS
methods to improve the performance of their joint
ANN-based Dead End player. Zhang et al. [240] deal
with the problem of Dynamic Difficulty Adjustment
(DDA) using a time-constrained UCT. The results show
the importance of the length of simulation time for UCT.
The performance obtained is seriously affected by this
parameter, and it is used to obtain different difficulty
levels for the game.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 36

Real-time Strategy (RTS) Games Numerous studies
have been published that evaluate the performance of
MCTS on different variants of real-time strategy games.
These games are usually modelled on well-known
and commercially successful games such as Warcraft,
Starcraft or Command & Conquer, but have been
simplified to reduce the number of available actions
at any moment in time (the branching factor of the
decision trees in such games may be unlimited).

Initial work made use of Monte Carlo simulations as
a replacement for evaluation functions; the simulations
were embedded in other algorithms such as minimax,
or were used with a 1-ply look-ahead and made use
of numerous abstractions to make the search feasible
given the time constraints.

Wargus Balla and Fern [18] apply UCT to a RTS game
called Wargus. Here the emphasis is on tactical assault
planning and making use of numerous abstractions,
most notably the grouping of individual units. The
authors conclude that MCTS is a promising approach:
despite the lack of domain-specific knowledge, the
algorithm outperformed baseline and human players
across 12 scenarios.

ORTS Naveed et al. [150] apply UCT and RRTs
(4.10.3) to the RTS game engine ORTS. Both algorithms
are used to find paths in the game and the authors
conclude that UCT finds solutions with less search
effort than RRT, although the RRT player outperforms
the UCT player in terms of overall playing strength.

7.7 Nondeterministic Games
Nondeterministic games have hidden information
and/or a random element. Hidden information may
arise through cards or tiles visible to the player, but
not the opponent(s). Randomness may arise through
the shuffling of a deck of cards or the rolling of dice.
Hidden information and randomness generally make
game trees much harder to search, greatly increasing
both their branching factor and depth.

The most common approach to dealing with this
increase in branching factor is to use determinization,
which involves sampling over the perfect information
game instances that arise when it is assumed that all
hidden and random outcomes are known in advance
(see Section 4.8.1).

Skat is a trick-taking card game with a bidding
phase. Schafer describes the UCT player XSKAT which
uses information sets to handle the nondeterministic
aspect of the game, and various optimisations in the
default policy for both bidding and playing [194].
XSKAT outperformed flat Monte Carlo players and was
competitive with the best artificial Skat players that
use traditional search techniques. A discussion of the

methods used for opponent modelling is given in [35].

Poker Monte Carlo approaches have also been used
for the popular gambling card game Poker [177]. The
poker game tree is too large to compute Nash strategies
precisely, so states must be collected in a small number
of buckets. Monte Carlo methods such as Monte Carlo
Counter Factual Regret (MCCFR) [125] (4.8.8) are
then able to find approximate Nash equilibria. These
approaches represent the current state of the art in
computer Poker.

Maı̂trepierre et al. [137] use UCB to select strategies,
resulting in global play that takes the opponent’s strat-
egy into account and results in unpredictable behaviour.
Van den Broeck et al. apply MCTS methods to multi-
player no-limit Texas Hold’em Poker [223], enabling
strong exploitative behaviour against weaker rule-based
opponents and competitive performance against experi-
enced human opponents.

Ponsen et al. [159] apply UCT to Poker, using a learned
opponent model (Section 4.8.9) to bias the choice of
determinizations. Modelling the specific opponent by
examining games they have played previously results
in a large increase in playing strength compared to UCT
with no opponent model. Veness et al. [226] describe
the application of ⇢UCT (4.10.6) to Kuhn Poker using
their MC-AIXA agent.

Dou Di Zhu is a popular Chinese card game with
hidden information. Whitehouse et al. [230] use
information sets of states to store rollout statistics, in
order to collect simulation statistics for sets of game
states that are indistinguishable from a player’s point of
view. One surprising conclusion is that overcoming the
problems of strategy fusion (by using expectimax rather
than a determinization approach) is more beneficial
than having a perfect opponent model.

Other card games such as Hearts and Spades are also
interesting to investigate in this area, although work to
date has only applied MCTS to their perfect information
versions [207].

Klondike Solitaire is a well known single-player
card game, which can be thought of as a single-player
stochastic game: instead of the values of the hidden
cards being fixed at the start of the game, they are
determined by chance events at the moment the cards
are turned over.33

Bjarnason et al. [20] apply a combination of the
determinization technique of hindsight optimisation
(HOP) with UCT to Klondike solitaire (Section 4.8.1).
This system achieves a win rate more than twice that
estimated for a human player.

Magic: The Gathering is a top-selling two-player

33. This idea can generally be used to transform a single-player
game of imperfect information into one of perfect information with
stochasticity.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 37

card game. Ward and Cowling [229] show bandit-based
approaches using random rollouts to be competitive
with sophisticated rule-based players. The rules of
Magic: The Gathering are to a great extent defined by
the cards in play, so the creation of strong techniques
for Magic: The Gathering can be seen as an exercise in,
or at least a stepping stone towards, GGP (7.5).

Phantom Chess34 is a Chess variant played on three
chessboards – one for each player and one for the
referee – that incorporates the notion of “fog of war”
as players can only see their own pieces while the
opponent’s pieces are in the dark.

Ciancarini and Favini developed an MCTS-based
Phantom Chess player [66], [67] based on previous
studies of Phantom Go (7.1.5). They tried different
models from the player’s and referee’s perspectives,
based on the partial information available to them,
and used probabilities based on experience to influence
moves during the playouts to simulate realistic
behaviour, for unexpectedly good results.

Urban Rivals is a free internet game played by
more than 10,000,000 registered users. Teytaud and
Flory [217] observe links between hidden information
and simultaneous moves (4.8.10), in order to extend
MCTS methods to this class of games and implement
a UCT player for Urban Rivals. They find that UCT
with EXP3 (5.1.3) outperforms plain UCT and UCT with
greedy enhancements for this game.

Backgammon The best current Backgammon agents
use reinforcement learning on millions of offline
games to learn positional evaluations, and are stronger
than the best human players. The UCT-based player
MCGAMMON developed by Van Lishout et al. [225]
only implemented a simplification of the game, but
was found to correctly choose expert moves in some
cases, despite making unfortunate choices in others.
MCGAMMON achieved around 6,500 playouts per
second and based its initial move on 200,000 playouts.

Settlers of Catan is a nondeterministic multi-player
game that has won several major game design awards,
and was the first “eurogame” to become widely popular
outside Germany. Szita et al. [209] implemented a multi-
player MCTS player (4.5) for Settlers of Catan, using
domain knowledge based on players’ resources and
current position to bias move selection. Their program
performed well against an existing artificial player,
JSETTLERS, achieving victory in 49% of games and still
achieving good scores in games that it lost. While the
agent made generally competent moves against human
players, it was found that expert human players could
confidently beat it.

34. Phantom Chess is sometimes called Kriegspiel, but should not
be confused with the board game Kriegsspiel to which it bears little
resemblance.

Scotland Yard is a turn-based video game with
imperfect information and fixed coalitions. Nijssen
and Winands describe the application of MCTS to
Scotland Yard using a coalition reduction method (4.5.1)
to outperform a commercial program for this game [156].

Roshambo is a child’s game more commonly known as
Rock, Paper, Scissors. Veness et al. [226] describe the
application of ⇢UCT (4.10.6) to biased Roshambo using
their MC-AIXA agent.

Thurn and Taxis is a German board game in the
“eurogame” style for two or more players, with
imperfect information and nondeterministic elements,
including cards and virtual assistants. Schadd [188]
implemented an MCTS player for Thurn and Taxis
that incorporated domain knowledge into the playout
policy to improve performance (slightly) over a flat
UCB implementation.

OnTop is a non-deterministic board game for two
to four players. Briesemeister [27] compared an MCTS
OnTop player against a number of Minimax, Expectimax
and flat Monte Carlo variants, and found that the MCTS
implementation won 80% of games.

7.8 Non-Game Applications
This section lists known examples of the application of
MCTS methods to domains other than games. These
domains include combinatorial optimisation, schedul-
ing tasks, sample based planning, and procedural con-
tent generation. Other non-game MCTS applications are
known,35 but have not yet been published in the litera-
ture, so are not listed here.

7.8.1 Combinatorial Optimisation
This sections lists applications of MCTS to combinatorial
optimisation problems found in the literature.

Security Tanabe [212] propose MCTS methods to
evaluate the vulnerability to attacks in an image-
based authentication system. The results obtained are
promising and suggest a future development of an
MCTS based algorithm to evaluate the security strength
of the image-based authentication systems.

Mixed Integer Programming In the study performed
by Sabharwal and Samulowitz [179], UCT is applied to
guide Mixed Integer Programming (MIP), comparing
the performance of the UCT based node selection with
that of CPLEX, a traditional MIP solver, and best-first,
breadth-first and depth-first strategies, showing very
promising results.

35. Including, for example, financial forecasting for the stock market
and power plant management.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 38

Travelling Salesman Problem The Travelling Salesman
Problem (TSP) is addressed in [168] using a nested Monte
Carlo search algorithm (4.9.2) with time windows. State of
the art solutions were reached up to 29 nodes, although
performance on larger problems is less impressive.

The Canadian Traveller Problem (CTP) is a variation of
the TSP in which some of the edges may be blocked
with given probability. Bnaya et al. [22] propose several
new policies and demonstrate the application of UCT to
the CTP, achieving near-optimal results for some graphs.

Sailing Domain Kocsis and Szepesvári [119] apply
UCT to the sailing domain, which is a stochastic
shortest path (SSP) problem that describes a sailboat
searching for the shortest path between two points
under fluctuating wind conditions. It was found that
UCT scales better for increasing problem size than
other techniques tried, including asynchronous real-
time dynamic programming (ARTDP) and a Markov
decision process called PG-ID based on online sampling.

Physics Simulations Mansely et al. apply the
Hierarchical Optimistic Optimisation applied to Trees
(HOOT) algorithm (5.1.4) to a number of physics
problems [138]. These include the Double Integrator,
Inverted Pendulum and Bicycle problems, for which
they demonstrate the general superiority of HOOT over
plain UCT.

Function Approximation Coquelin and Munos [68]
compare their BAST approach (4.2) with flat UCB for
the approximation of Lipschitz functions, and observe
that BAST outperforms flat UCB and is less dependent
on the size of the search tree. BAST returns a good
value quickly, and improves towards the optimal value
as the computational budget is increased.

Rimmel et al. [166] apply the MCTS-based Threshold
Ascent for Graphs (TAG) method (4.10.2) to the problem
of automatic performance tuning using DFT and FFT
linear transforms in adaptive libraries. They demonstrate
superior performance of TAG over standard optimisa-
tion methods.

7.8.2 Constraint Satisfaction
This sections lists applications of MCTS methods to
constraint satisfaction problems.

Constraint Problems Satomi et al. [187] proposed
a real-time algorithm based on UCT to solve a quantified
constraint satisfaction problems (QCSP).36 Plain UCT
did not solve their problems more efficiently than
random selections, so Satomi et al. added a constraint
propagation technique that allows the tree to focus in
the most favourable parts of the search space. This
combined algorithm outperforms the results obtained

36. A QCSP is a constraint satisfaction problem in which some
variables are universally quantified.

by state of the art ↵-� search algorithms for large-scale
problems [187].

Previti et al. [160] investigate UCT approaches to the
satisfiability of conjunctive normal form (CNF) problems.
They find that their UCTSAT class of algorithms do
not perform well if the domain being modelled has no
underlying structure, but can perform very well if the
information gathered on one iteration can successfully
be applied on successive visits to the same node.

Mathematical Expressions Cazenave [43] applied
his nested Monte Carlo search method (4.9.2) to the
generation of expression trees for the solution of
mathematical problems. He achieved better results than
existing methods for the Prime generating polynomials
problem37 and a finite algebra problem called the A2

primal algebra, for which a particular discriminator
term must be found.

7.8.3 Scheduling Problems
Planning is also a domain in which Monte Carlo tree
based techniques are often utilised, as described below.

Benchmarks Nakhost and Müller apply their Monte
Carlo Random Walk (MRW) planner (4.10.7) to all of the
supported domains from the 4th International Planning
Competition (IPC-4) [149]. MRW shows promising
results compared to the other planners tested, including
FF, Marvin, YASHP and SG-Plan.

Pellier et al. [158] combined UCT with heuristic
search in their Mean-based Heuristic Search for anytime
Planning (MHSP) method (4.10.8) to produce an anytime
planner that provides partial plans before building a
solution. The algorithm was tested on different classical
benchmarks (Blocks World, Towers of Hanoi, Ferry
and Gripper problems) and compared to some major
planning algorithms (A*, IPP, SatPlan, SG Plan-5 and
FDP). MHSP performed almost as well as classical
algorithms on the problems tried, with some pros and
cons. For example, MHSP is better than A* on the Ferry
and Gripper problems but worse on Blocks World and
the Towers of Hanoi.

Printer Scheduling Matsumoto et al. [140] applied
Single Player Monte Carlo Tree Search (4.4) to the
game Bubble Breaker (7.4). Based on the good results
obtained in this study, where the heuristics employed
improved the quality of the solutions, the application of
this technique is proposed for a re-entrant scheduling
problem, trying to manage the printing process of the
auto-mobile parts supplier problem.

Rock-Sample Problem Silver et al. [204] apply MCTS
and UCT to the rock-sample problem (which simulates
a Mars explorer robot that has to analyse and collect

37. Finding a polynomial that generates as many different primes in
a row as possible.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 39

rocks) and two games: Battleship and Pocman (a
partially observable variation of Pac-Man), showing a
high degree of performance in all cases.

Production Management Problems (PMPs) can be
defined as planning problems that require a parameter
optimisation process. Chaslot et al. propose the use
of an MCTS algorithm to solve PMPs, getting results
faster than Evolutionary Planning Heuristics (EPH),
reaching at least the same score in small problems and
outperforming EPH in large scenarios [54].

Double progressive widening (5.5.1) has been shown
to work well for energy stock management and other toy
problems, outperforming plain UCT with progressive
widening and Q-learning methods [69], but did not
work so well for complex real-world problems.

Bus Regulation The bus regulation problem is the task of
scheduling bus waiting times so as to minimise delays
for passengers [45]. Nested Monte Carlo search with
memorisation (4.9.2) was found to clearly outperform
the other methods tested.

7.8.4 Sample-Based Planning
Planners for many complex structured domains can
be learned with tractable sample complexity if near
optimal policies are known.

Large State Spaces Walsh et al. [227] apply Forward
Search Sparse Sampling (FSSS) to domains with large
state spaces (4.10.1), where neither its sample nor
computational efficiency is made intractable by the
exponential number of states. They describe a negative
case for UCT’s runtime that can require exponential
computation to optimise, in support of their approach.

Feature Selection To test their Feature UCT Selection
(FUSE) algorithm (4.4.1), Gaudel and Sebag [89] use
three benchmark data sets from the NIPS 2003 FS
Challenge competition in feature selection. The Arcene
data set contains 10,000 features, which Gaudel and
Sebag reduce to 2000 for tractability; the Madelon and
Colon sets contain 500 and 2,000 features respectively.
FUSE is found to achieve state of the art performance
on these data sets.

7.8.5 Procedural Content Generation (PCG)
Browne describes ways in which MCTS methods may
be extended to procedural content generation (PCG) for
creative domains, such as game design, linguistics, and
generative art and music [30]. An important difference
from the standard approach is that each search attempts
to produce not a single optimal decision but rather a
range of good solutions according to the target domain,
for which variety and originality can be as important
as quality. The fact that MCTS has an inherent restart
mechanism (3.3.1) and inherently performs a local iter-

ated search at each decision step makes it a promising
approach for PCG tasks.

Chevelu et al. propose the Monte Carlo Paraphrase
Generation (MCPG) modification to UCT (5.2.7) intended
for natural language processing (NLP) tasks such as the
paraphrasing of natural language statements [62].

Mahlmann et al. describe the use of UCT for content
creation in a strategy game [136]. This algorithm per-
forms battle simulations as the fitness function of an
evolutionary strategy, in order to fine tune the game
unit types and their parameters. Again, the aim is not
to produce the strongest AI player but to generate a
satisfactory range of digital in-game content.

8 SUMMARY

The previous sections have provided a snapshot of pub-
lished work on MCTS to date. In this section, we briefly
reflect on key trends and possible future directions for
MCTS research. Tables 3 and 4 summarise the many
variations and enhancements of MCTS and the domains
to which they have been applied, divided into combina-
torial games (Table 3) and other domains (Table 4).

The tables show us that UCT is by far the most
widely used MCTS technique, and that Go is by far
the domain for which most enhancements have been
tried, followed by Havannah and General Game Playing.
MCTS enhancements are generally applied to combi-
natorial games, while MCTS variations are generally
applied to other domain types.

8.1 Impact
MCTS has had a remarkable impact in the five years
since researchers first used Monte Carlo simulation as
a method for heuristically growing an interesting part
of the search tree for a game. Generally speaking, MCTS
appears to work for games and decision problems when:

• We can characterise the problem of making a good
decision as a search problem on a large directed
graph or tree (e.g. a state-action graph).

• We can sample decisions by conducting random
simulations, much faster than real-time. These sim-
ulations are (weakly) correlated with the true (ex-
pected) value of a given decision state.

A good deal of the MCTS research has focussed
on computer Go, spurred on by the success of MCTS
players against human professionals on small boards in
recent years. This success is remarkable, since human-
competitive computer Go was perceived by the AI com-
munity as an intractable problem until just a few years
ago – or at least a problem whose solution was some
decades away.

In the past, there have been two primary techniques
for decision-making in adversarial games: minimax ↵-
� search and knowledge-based approaches. MCTS pro-
vides an effective third way, particularly for games in
which it is difficult to evaluate intermediate game states

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 40

or to capture rules in sufficient detail. Hybridisation of
MCTS with traditional approaches provides a rich area
for future research, which we will discuss further below.

This survey has demonstrated the power of MCTS
across a wide range of game domains, in many cases
providing the strongest computer players to date. While
minimax search has proven to be an effective technique
for games where it is possible to evaluate intermediate
game states, e.g. Chess and Checkers, MCTS does not
require such intermediate evaluation and has proven
to be a more robust and general search approach. Its
success in such a wide range of games, and particularly
in General Game Playing, demonstrates its potential
across a broad range of decision problems. Success in
non-game applications further emphasises its potential.

8.2 Strengths
Using MCTS, effective game play can be obtained with
no knowledge of a game beyond its rules. This survey
demonstrates that this is true for a wide range of games,
and particularly for General Game Playing, where rules
are not known in advance. With further enhancement
to the tree or simulation policy, very strong play is
achievable. Thus enhanced, MCTS has proven effective
in domains of high complexity that are otherwise opaque
to traditional AI approaches.

Enhancements may result from incorporating human
knowledge, machine learning or other heuristic ap-
proaches. One of the great advantages of MCTS is that
even when the information given by an enhancement
is noisy or occasionally misleading, the MCTS sampling
approach is often robust enough to handle this noise and
produce stronger play. This is in contrast with minimax
search, where the search is brittle with respect to noise
in the evaluation function for intermediate states, and
this is especially true for games with delayed rewards.

Another advantage of MCTS is that the forward sam-
pling approach is, in some ways, similar to the method
employed by human game players, as the algorithm will
focus on more promising lines of play while occasionally
checking apparently weaker options. This is especially
true for new games, such as those encountered in the
AAAI General Game Playing competitions, for which no
strategic or heuristic knowledge exists. This “humanis-
tic” nature of MCTS makes it easier to explain to the
general public than search paradigms that operate very
differently to the way in which humans search.

MCTS is often effective for small numbers of sim-
ulations, for which mistakes often appear plausible to
human observers. Hence the approach is genuinely an
“anytime” approach, producing results of plausibility
that grows with increasing CPU time, through growing
the tree asymmetrically.

8.3 Weaknesses
Combining the precision of tree search with the general-
ity of random sampling in MCTS has provided stronger

decision-making in a wide range of games. However,
there are clear challenges for domains where the branch-
ing factor and depth of the graph to be searched makes
naive application of MCTS, or indeed any other search
algorithm, infeasible. This is particularly the case for
video game and real-time control applications, where a
systematic way to incorporate knowledge is required in
order to restrict the subtree to be searched.

Another issue arises when simulations are very CPU-
intensive and MCTS must learn from relatively few sam-
ples. Work on Bridge and Scrabble shows the potential of
very shallow searches in this case, but it remains an open
question as to whether MCTS is the best way to direct
simulations when relatively few can be carried out.

Although basic implementations of MCTS provide
effective play for some domains, results can be weak if
the basic algorithm is not enhanced. This survey presents
the wide range of enhancements considered in the short
time to date. There is currently no better way than a
manual, empirical study of the effect of enhancements to
obtain acceptable performance in a particular domain.

A primary weakness of MCTS, shared by most search
heuristics, is that the dynamics of search are not yet fully
understood, and the impact of decisions concerning pa-
rameter settings and enhancements to basic algorithms
are hard to predict. Work to date shows promise, with
basic MCTS algorithms proving tractable to “in the limit”
analysis. The simplicity of the approach, and effective-
ness of the tools of probability theory in analysis of
MCTS, show promise that in the future we might have
a better theoretical understanding of the performance of
MCTS, given a realistic number of iterations.

A problem for any fast-growing research community is
the need to unify definitions, methods and terminology
across a wide research field. We hope that this paper
may go some way towards such unification.

8.4 Research Directions
Future research in MCTS will likely be directed towards:

• Improving MCTS performance in general.
• Improving MCTS performance in specific domains.
• Understanding the behaviour of MCTS.
MCTS is the most promising research direction to

date in achieving human-competitive play for Go and
other games which have proved intractable for minimax
and other search approaches. It seems likely that there
will continue to be substantial effort on game-specific
enhancements to MCTS for Go and other games.

8.4.1 General-Purpose Enhancements
Many of the enhancements that have emerged through
the study of Go have proven applicable across a wide
range of other games and decision problems. The em-
pirical exploration of general-purpose enhancements to
the MCTS algorithm will likely remain a major area of
investigation. This is particularly important for MCTS, as
the approach appears to be remarkably general-purpose

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 41

and robust across a range of domains. Indeed, MCTS
may be considered as a high-level “meta-” technique,
which has the potential to be used in conjunction with
other techniques to produce good decision agents. Many
of the papers surveyed here use MCTS in conjunction
with other algorithmic ideas to produce strong results.
If we compare other powerful “meta-” approaches such
as metaheuristics and evolutionary algorithms, we can
see that there is the potential for MCTS to grow into a
much larger field of research in the future, capable of
solving a very wide range of problems.

8.4.2 MCTS Search Dynamics

Alongside the application-led study of possible enhance-
ments, there are many questions about the dynamics of
MCTS search. The theoretical and empirical work here
shows promise and is ripe for further study, for example
in comparing MCTS, minimax, A* and other search
approaches on an empirical and theoretical level, and
for understanding the impact of parameters and effective
ways for (adaptively) finding suitable values. A related
area is the idea of automatic methods for pruning sub-
trees based on their probability of containing game states
that will actually be reached. While UCB1 has made
the biggest impact as a bandit algorithm to date, the
investigation of other bandit algorithms is an interesting
area, for example when the branching factor and depth
of the tree is very large, or when the goal of search is to
find a mixed strategy, which yields a strategy giving a
probability to each of several possible decisions at each
decision point.

8.4.3 Hybridisation

The flexibility of MCTS allows it to be hybridised
with a range of other techniques, particularly minimax
search, heuristic evaluation of intermediate game states
and knowledge-based approaches. Hybridisation may
allow problems that were intractable for search-based
approaches to be effectively handled, in areas such as
video games and real-time control. Work to date on
MCTS for video games and other complex environments
has focussed on easily-modelled decisions or games with
fairly simple representation of state, where performing
simulation playouts is straightforward. Work is needed
on encoding state and incorporating human knowledge
or adaptive learning approaches to create a tractable
(state, action) graph in more general, complex environ-
ments.

The integration of MCTS with knowledge capture, and
with data mining and other machine learning methods
for automatically capturing knowledge, provides a ripe
area for investigation, with the potential to provide a
way forward for difficult problems in video gaming and
real-time control where large volumes of data are avail-
able, e.g. from network play between human players.

8.4.4 Dealing with Uncertainty and Hidden Information
Games with hidden information and stochastic elements
often have intractably wide game trees for standard
tree search approaches. Here MCTS has shown that
it can create approximate Nash players that represent
best-possible play, or at least play that is impossible
for an opponent to exploit. The integration of MCTS
with game-theoretic tools and with opponent-modelling
approaches is a promising research direction, due to the
importance of hidden information in video games and in
practical problems in systems and economic modelling.
We may use the tools of data mining and opponent
modelling to infer both the hidden information and the
strategy of an opponent. The tools of game theory may
also prove to be effective for analysis of MCTS in this
case. The need for mixed strategies in this case requires
a rethink of the basic exploration/exploitation paradigm
of MCTS.

8.4.5 Non-Game Applications
MCTS shows great promise in non-game applications,
in areas such as procedural content generation (indeed
a recent issue of this journal was devoted to this topic) as
well as planning, scheduling, optimisation and a range of
other decision domains. For example, the introduction of
an adversarial opponent provides an ability to work with
“worst-case” scenarios, which may open up a new range
of problems which can be solved using MCTS in safety
critical and security applications, and in applications
where simulation rather than optimisation is the most
effective decision support tool.

9 CONCLUSION

MCTS has become the pre-eminent approach for many
challenging games, and its application to a broader range
of domains has also been demonstrated. In this paper we
present by far the most comprehensive survey of MCTS
methods to date, describing the basics of the algorithm,
major variations and enhancements, and a representative
set of problems to which it has been applied. We identify
promising avenues for future research and cite almost
250 articles, the majority published within the last five
years, at a rate of almost one paper per week.

Over the next five to ten years, MCTS is likely to
become more widely used for all kinds of challenging AI
problems. We expect it to be extensively hybridised with
other search and optimisation algorithms and become
a tool of choice for many researchers. In addition to
providing more robust and scalable algorithms, this will
provide further insights into the nature of search and op-
timisation in difficult domains, and into how intelligent
behaviour can arise from simple statistical processes.

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for their helpful
suggestions. This work was funded by EPSRC grants

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 42

EP/I001964/1, EP/H048588/1 and EP/H049061/1, as
part of the collaborative research project UCT for Games
and Beyond being undertaken by Imperial College, Lon-
don, and the Universities of Essex and Bradford.

REFERENCES
Entries marked with an asterisk * denote support
material that does not directly cite MCTS methods.

[1] * B. Abramson, “Expected-Outcome: A General Model of Static
Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, pp.
182 – 193, 1990.

[2] * R. Agrawal, “Sample mean based index policies with zero
(log n) regret for the multi-armed bandit problem,” Adv. Appl.
Prob., vol. 27, no. 4, pp. 1054–1078, 1995.

[3] H. Akiyama, K. Komiya, and Y. Kotani, “Nested Monte-Carlo
Search with AMAF Heuristic,” in Proc. Int. Conf. Tech. Applicat.
Artif. Intell., Hsinchu, Taiwan, Nov. 2010, pp. 172–176.

[4] * L. V. Allis, M. van der Meulen, and H. J. van den Herik, “Proof-
Number Search,” Artif. Intell., vol. 66, no. 1, pp. 91–124, 1994.

[5] * I. Althöfer, “On the Laziness of Monte-Carlo Game Tree Search
in Non-tight Situations,” Friedrich-Schiller Univ., Jena, Tech.
Rep., 2008.

[6] * ——, “Game Self-Play with Pure Monte-Carlo: The Basin
Structure,” Friedrich-Schiller Univ., Jena, Tech. Rep., 2010.

[7] B. Arneson, R. B. Hayward, and P. Henderson, “MoHex Wins
Hex Tournament,” Int. Comp. Games Assoc. J., vol. 32, no. 2, pp.
114–116, 2009.

[8] ——, “Monte Carlo Tree Search in Hex,” IEEE Trans. Comp.
Intell. AI Games, vol. 2, no. 4, pp. 251–258, 2010.

[9] J. Asmuth and M. L. Littman, “Approaching Bayes-optimalilty
using Monte-Carlo tree search,” in Proc. 21st Int. Conf. Automat.
Plan. Sched., Freiburg, Germany, 2011.

[10] ——, “Learning is planning: near Bayes-optimal reinforcement
learning via Monte-Carlo tree search,” in Proc. Conf. Uncert. Artif.
Intell., Barcelona, Spain, 2011, pp. 19–26.

[11] * J.-Y. Audibert and S. Bubeck, “Minimax policies for adversarial
and stochastic bandits,” in Proc. 22nd Annu. Conf. Learn. Theory,
Montreal, Canada, 2009, pp. 773–818.

[12] P. Audouard, G. M. J.-B. Chaslot, J.-B. Hoock, J. Perez,
A. Rimmel, and O. Teytaud, “Grid coevolution for adaptive
simulations; application to the building of opening books in the
game of Go,” in Proc. Evol. Games, Tübingen, Germany, 2009,
pp. 323–332.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis
of the Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2,
pp. 235–256, 2002.

[14] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire,
“Gambling in a rigged casino: The adversarial multi-armed
bandit problem,” in Proc. Annu. Symp. Found. Comput. Sci.,
Milwaukee, Wisconsin, 1995, pp. 322–331.

[15] A. Auger and O. Teytaud, “Continuous Lunches are Free Plus
the Design of Optimal Optimization Algorithms,” Algorithmica,
vol. 57, no. 1, pp. 121–146, 2010.

[16] D. Auger, “Multiple Tree for Partially Observable Monte-Carlo
Tree Search,” in Proc. Evol. Games., Torino, Italy, 2011, pp. 53–62.

[17] H. Baier and P. D. Drake, “The Power of Forgetting: Improving
the Last-Good-Reply Policy in Monte Carlo Go,” IEEE Trans.
Comp. Intell. AI Games, vol. 2, no. 4, pp. 303–309, 2010.

[18] R.-K. Balla and A. Fern, “UCT for Tactical Assault Planning in
Real-Time Strategy Games,” in Proc. 21st Int. Joint Conf. Artif.
Intell., Pasadena, California, 2009, pp. 40–45.

[19] V. Berthier, H. Doghmen, and O. Teytaud, “Consistency
Modifications for Automatically Tuned Monte-Carlo Tree
Search,” in Proc. Learn. Intell. Optim., Venice, Italy, 2010, pp.
111–124.

[20] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding
Klondike Solitaire with Monte-Carlo Planning,” in Proc. 19th
Int. Conf. Automat. Plan. Sched., Thessaloniki, Greece, 2009, pp.
26–33.

[21] Y. Björnsson and H. Finnsson, “CadiaPlayer: A Simulation-
Based General Game Player,” IEEE Trans. Comp. Intell. AI Games,
vol. 1, no. 1, pp. 4–15, 2009.

[22] Z. Bnaya, A. Felner, S. E. Shimony, D. Fried, and O. Maksin,
“Repeated-task Canadian traveler problem,” in Proc. Symp. Com-
bin. Search, Barcelona, Spain, 2011, pp. 24–30.

[23] J. Borsboom, J.-T. Saito, G. M. J.-B. Chaslot, and J. W.
H. M. Uiterwijk, “A Comparison of Monte-Carlo Methods for
Phantom Go,” in Proc. BeNeLux Conf. Artif. Intell., Utrecht,
Netherlands, 2007, pp. 57–64.

[24] A. Bourki, G. M. J.-B. Chaslot, M. Coulm, V. Danjean,
H. Doghmen, J.-B. Hoock, T. Hérault, A. Rimmel, F. Teytaud,
O. Teytaud, P. Vayssière, and Z. Yu, “Scalability and
Parallelization of Monte-Carlo Tree Search,” in Proc. Int.
Conf. Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010,
pp. 48–58.

[25] A. Bourki, M. Coulm, P. Rolet, O. Teytaud, and P. Vayssière,
“Parameter Tuning by Simple Regret Algorithms and Multiple
Simultaneous Hypothesis Testing,” in Proc. Int. Conf. Inform.
Control, Autom. and Robot., Funchal, Portugal, 2010, pp. 169–173.

[26] * B. Bouzy, “Move Pruning Techniques for Monte-Carlo Go,” in
Proc. Adv. Comput. Games, LNCS 4250, Taipei, Taiwan, 2005, pp.
104–119.

[27] R. Briesemeister, “Analysis and Implementation of the Game
OnTop,” M.S. thesis, Maastricht Univ., Netherlands, 2009.

[28] C. Browne, “Automatic Generation and Evaluation of
Recombination Games,” Ph.D. dissertation, Qld. Univ. Tech.
(QUT), Brisbane, 2008.

[29] ——, “On the Dangers of Random Playouts,” Int. Comp. Games
Assoc. J., vol. 34, no. 1, pp. 25–26, 2010.

[30] ——, “Towards MCTS for Creative Domains,” in Proc. Int. Conf.
Comput. Creat., Mexico City, Mexico, 2011, pp. 96–101.

[31] * B. Brügmann, “Monte Carlo Go,” Max-Planke-Inst. Phys.,
Munich, Tech. Rep., 1993.

[32] S. Bubeck, R. Munos, and G. Stoltz, “Pure Exploration
in Finitely-Armed and Continuously-Armed Bandits,” Theor.
Comput. Sci., vol. 412, pp. 1832–1852, 2011.

[33] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “Online
Optimization in X-Armed Bandits,” in Proc. Adv. Neur. Inform.
Process. Sys., vol. 22, Vancouver, Canada, 2009, pp. 201–208.

[34] ——, “X-Armed Bandits,” J. Mach. Learn. Res., vol. 12, pp.
1587–1627, 2011.

[35] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving
State Evaluation, Inference, and Search in Trick-Based Card
Games,” in Proc. 21st Int. Joint Conf. Artif. Intell., Pasadena,
California, 2009, pp. 1407–1413.

[36] T. Cazenave, “A Phantom Go Program,” in Proc. Adv. Comput.
Games, Taipei, Taiwan, 2006, pp. 120–125.

[37] ——, “Evolving Monte-Carlo Tree Search Algorithms,” Univ.
Paris 8, Dept. Inform., Tech. Rep., 2007.

[38] ——, “Playing the Right Atari,” Int. Comp. Games Assoc. J.,
vol. 30, no. 1, pp. 35–42, 2007.

[39] ——, “Reflexive Monte-Carlo Search,” in Proc. Comput. Games
Workshop, Amsterdam, Netherlands, 2007, pp. 165–173.

[40] ——, “Multi-player Go,” in Proc. Comput. and Games, LNCS
5131, Beijing, China, 2008, pp. 50–59.

[41] ——, “Monte-Carlo Kakuro,” in Proc. Adv. Comput. Games, LNCS
6048, Pamplona, Spain, 2009, pp. 45–54.

[42] ——, “Nested Monte-Carlo Search,” in Proc. 21st Int. Joint Conf.
Artif. Intell., Pasadena, California, 2009, pp. 456–461.

[43] ——, “Nested Monte-Carlo Expression Discovery,” in Proc. Euro.
Conf. Artif. Intell., Lisbon, Portugal, 2010, pp. 1057–1058.

[44] ——, “Monte-Carlo Approximation of Temperature,” Games of
No Chance, vol. 4, 2011.

[45] T. Cazenave, F. Balbo, and S. Pinson, “Monte-Carlo Bus
Regulation,” in Proc. Int. IEEE Conf. Intell. Trans. Sys., St Louis,
Missouri, 2009, pp. 340–345.

[46] T. Cazenave and J. Borsboom, “Golois Wins Phantom Go
Tournament,” Int. Comp. Games Assoc. J., vol. 30, no. 3, pp.
165–166, 2007.

[47] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,”
in Proc. Comput. Games Workshop, Amsterdam, Netherlands, 2007,
pp. 93–101.

[48] ——, “A parallel Monte-Carlo tree search algorithm,” in Proc.
Comput. and Games, LNCS 5131, Beijing, China, 2008, pp. 72–80.

[49] ——, “Parallel Nested Monte-Carlo search,” in Proc. IEEE Int.
Parallel Distrib. Processes Symp., Rome, Italy, 2009, pp. 1–6.

[50] T. Cazenave and A. Saffidine, “Monte-Carlo Hex,” in Proc. Board
Games Studies Colloq., Paris, France, 2010.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 43

[51] ——, “Score Bounded Monte-Carlo Tree Search,” in Proc.
Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010, pp.
93–104.

[52] G. M. J.-B. Chaslot, S. Bakkes, I. Szita, and P. Spronck,
“Monte-Carlo Tree Search: A New Framework for Game AI,”
in Proc. Artif. Intell. Interact. Digital Entert. Conf., Stanford Univ.,
California, 2008, pp. 216–217.

[53] G. M. J.-B. Chaslot, L. Chatriot, C. Fiter, S. Gelly, J.-B. Hoock,
J. Perez, A. Rimmel, and O. Teytaud, “Combining expert, offline,
transient and online knowledge in Monte-Carlo exploration,”
Lab. Rech. Inform. (LRI), Paris, Tech. Rep., 2008.

[54] G. M. J.-B. Chaslot, S. de Jong, J.-T. Saito, and J. W. H. M.
Uiterwijk, “Monte-Carlo Tree Search in Production Management
Problems,” in Proc. BeNeLux Conf. Artif. Intell., Namur, Belgium,
2006, pp. 91–98.

[55] G. M. J.-B. Chaslot, C. Fiter, J.-B. Hoock, A. Rimmel, and
O. Teytaud, “Adding Expert Knowledge and Exploration in
Monte-Carlo Tree Search,” in Proc. Adv. Comput. Games, LNCS
6048, vol. 6048, Pamplona, Spain, 2010, pp. 1–13.

[56] G. M. J.-B. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, O. Teytaud,
and M. H. M. Winands, “Meta Monte-Carlo Tree Search for
Automatic Opening Book Generation,” in Proc. 21st Int. Joint
Conf. Artif. Intell., Pasadena, California, 2009, pp. 7–12.

[57] G. M. J.-B. Chaslot, J.-B. Hoock, F. Teytaud, and O. Teytaud,
“On the huge benefit of quasi-random mutations for
multimodal optimization with application to grid-based tuning
of neurocontrollers,” in Euro. Symp. Artif. Neur. Net., Bruges,
Belgium, 2009.

[58] G. M. J.-B. Chaslot, M. H. M. Winands, I. Szita, and H. J. van den
Herik, “Cross-Entropy for Monte-Carlo Tree Search,” Int. Comp.
Games Assoc. J., vol. 31, no. 3, pp. 145–156, 2008.

[59] G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den
Herik, “Parallel Monte-Carlo Tree Search,” in Proc. Comput. and
Games, LNCS 5131, Beijing, China, 2008, pp. 60–71.

[60] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik,
J. W. H. M. Uiterwijk, and B. Bouzy, “Progressive Strategies
for Monte-Carlo Tree Search,” New Math. Nat. Comput., vol. 4,
no. 3, pp. 343–357, 2008.

[61] K.-H. Chen, D. Du, and P. Zhang, “Monte-Carlo Tree Search and
Computer Go,” Adv. Inform. Intell. Sys., vol. 251, pp. 201–225,
2009.

[62] J. Chevelu, T. Lavergne, Y. Lepage, and T. Moudenc,
“Introduction of a new paraphrase generation tool based
on Monte-Carlo sampling,” in Proc. 4th Int. Joint Conf. Natur.
Lang. Process., vol. 2, Singapore, 2009, pp. 249–252.

[63] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and
Move Groups in Monte Carlo Tree Search,” in Proc. IEEE Symp.
Comput. Intell. Games, Perth, Australia, 2008, pp. 389–395.

[64] C.-W. Chou, O. Teytaud, and S.-J. Yen, “Revisiting Monte-Carlo
Tree Search on a Normal Form Game: NoGo,” Proc. Applicat.
Evol. Comput., LNCS 6624, pp. 73–82, 2011.

[65] P.-C. Chou, H. Doghmen, C.-S. Lee, F. Teytaud, O. Teytaud, H.-
M. Wang, M.-H. Wang, L.-W. Wu, and S.-J. Yen, “Computational
and Human Intelligence in Blind Go,” in Proc. IEEE Conf. Comput.
Intell. Games, Seoul, South Korea, 2011, pp. 235–242.

[66] P. Ciancarini and G. P. Favini, “Monte Carlo Tree Search
Techniques in the Game of Kriegspiel,” in Proc. 21st Int. Joint
Conf. Artif. Intell., Pasadena, California, 2009, pp. 474–479.

[67] ——, “Monte Carlo tree search in Kriegspiel,” Artif. Intell., vol.
174, no. 11, pp. 670–684, Jul. 2010.

[68] R. Coquelin, Pierre-Arnaud and Munos, “Bandit Algorithms
for Tree Search,” in Proc. Conf. Uncert. Artif. Intell. Vancouver,
Canada: AUAI Press, 2007, pp. 67–74.

[69] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and
N. Bonnard, “Continuous Upper Confidence Trees,” in Proc.
Learn. Intell. Optim., Rome, Italy, 2011, pp. 433–445.

[70] R. Coulom, “Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search,” in Proc. 5th Int. Conf. Comput. and
Games, Turin, Italy, 2006, pp. 72–83.

[71] ——, “Computing Elo Ratings of Move Patterns in the Game of
Go,” Int. Comp. Games Assoc. J., vol. 30, no. 4, pp. 198–208, 2007.

[72] ——, “Monte-Carlo Tree Search in Crazy Stone,” in Proc. Game
Prog. Workshop, Tokyo, Japan, 2007, pp. 74–75.

[73] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel,
“Bandit-Based Optimization on Graphs with Application to
Library Performance Tuning,” in Proc. 26th Annu. Int. Conf.
Mach. Learn., Montreal, Canada, 2009, pp. 729–736.

[74] N. G. P. Den Teuling, “Monte-Carlo Tree Search for the
Simultaneous Move Game Tron,” Univ. Maastricht, Netherlands,
Tech. Rep., 2011.

[75] P. D. Drake, “The Last-Good-Reply Policy for Monte-Carlo Go,”
Int. Comp. Games Assoc. J., vol. 32, no. 4, pp. 221–227, 2009.

[76] P. D. Drake and S. Uurtamo, “Heuristics in Monte Carlo Go,”
in Proc. Int. Conf. Artif. Intell., Las Vegas, Nevada, 2007, pp.
171–175.

[77] ——, “Move Ordering vs Heavy Playouts: Where Should
Heuristics be Applied in Monte Carlo Go,” in Proc. 3rd North
Amer. Game-On Conf., Gainesville, Florida, 2007, pp. 35–42.

[78] S. Edelkamp, P. Kissmann, D. Sulewski, and H. Messerschmidt,
“Finding the Needle in the Haystack with Heuristically Guided
Swarm Tree Search,” in Multikonf. Wirtschaftsinform., Gottingen,
Germany, 2010, pp. 2295–2308.

[79] M. Enzenberger and M. Müller, “Fuego - An Open-source
Framework for Board Games and Go Engine Based on Monte-
Carlo Tree Search,” Univ. Alberta, Edmonton, Tech. Rep. April,
2009.

[80] ——, “A Lock-free Multithreaded Monte-Carlo Tree Search
Algorithm,” in Proc. Adv. Comput. Games, LNCS 6048, vol. 6048,
Pamplona, Spain, 2010, pp. 14–20.

[81] M. Enzenberger, M. Müller, B. Arneson, and R. B. Segal, “Fuego
- An Open-Source Framework for Board Games and Go Engine
Based on Monte Carlo Tree Search,” IEEE Trans. Comp. Intell. AI
Games, vol. 2, no. 4, pp. 259–270, 2010.

[82] A. Fern and P. Lewis, “Ensemble Monte-Carlo Planning: An
Empirical Study,” in Proc. 21st Int. Conf. Automat. Plan. Sched.,
Freiburg, Germany, 2011, pp. 58–65.

[83] H. Finnsson, “CADIA-Player: A General Game Playing Agent,”
M.S. thesis, Reykjavik Univ., Iceland, Mar. 2007.

[84] H. Finnsson and Y. Björnsson, “Simulation-Based Approach
to General Game Playing,” in Proc. Assoc. Adv. Artif. Intell.,
Chicago, Illinois, 2008, pp. 259–264.

[85] ——, “Simulation Control in General Game Playing Agents,”
in Proc. Int. Joint Conf. Artif. Intell. Workshop Gen. Game Playing,
Pasadena, California, 2009, pp. 21–26.

[86] ——, “Learning Simulation Control in General Game-Playing
Agents,” in Proc. 24th AAAI Conf. Artif. Intell., Atlanta, Georgia,
2010, pp. 954–959.

[87] ——, “CadiaPlayer: Search-Control Techniques,” Künstliche
Intelligenz, vol. 25, no. 1, pp. 9–16, Jan. 2011.

[88] Y. Fu, S. Yang, S. He, J. Yang, X. Liu, Y. Chen, and D. Ji,
“To Create Intelligent Adaptive Neuro-Controller of Game
Opponent from UCT-Created Data,” in Proc. Fuzzy Sys. Knowl.
Disc., Tianjin, China, 2009, pp. 445–449.

[89] R. Gaudel and M. Sebag, “Feature Selection as a One-Player
Game,” in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, 2010,
pp. 359–366.

[90] S. Gelly, “A Contribution to Reinforcement Learning; Appli-
cation to Computer-Go,” Ph.D. dissertation, Univ. Paris-Sud,
France, 2007.

[91] S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian,
“The Parallelization of Monte-Carlo Planning,” in Proc. 5th Int.
Conf. Inform. Control, Automat. and Robot., Funchal, Portugal,
2008, pp. 244–249.

[92] S. Gelly and D. Silver, “Combining Online and Offline
Knowledge in UCT,” in Proc. 24th Annu. Int. Conf. Mach. Learn.
Corvalis, Oregon: ACM, 2007, pp. 273–280.

[93] ——, “Achieving Master Level Play in 9 x 9 Computer Go,” in
Proc. Assoc. Adv. Artif. Intell., vol. 1, Chicago, Illinois, 2008, pp.
1537–1540.

[94] ——, “Monte-Carlo tree search and rapid action value estimation
in computer Go,” Artif. Intell., vol. 175, no. 11, pp. 1856–1875,
Jul. 2011.

[95] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT
for Monte-Carlo Go,” in Proc. Adv. Neur. Inform. Process. Syst.,
Vancouver, Canada, 2006.

[96] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of
UCT with Patterns in Monte-Carlo Go,” Inst. Nat. Rech. Inform.
Auto. (INRIA), Paris, Tech. Rep., 2006.

[97] * M. L. Ginsberg, “GIB: Imperfect Information in a
Computationally Challenging Game,” J. Artif. Intell. Res.,
vol. 14, pp. 303–358, 2001.

[98] T. Graf, U. Lorenz, M. Platzner, and L. Schaefers, “Paral-
lel Monte-Carlo Tree Search for HPC Systems,” in Proc. 17th

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 44

Int. Euro. Conf. Parallel Distrib. Comput., LNCS 6853, Bordeaux,
France, 2011, pp. 365–376.

[99] S. He, Y. Wang, F. Xie, J. Meng, H. Chen, S. Luo, Z. Liu, and
Q. Zhu, “Game Player Strategy Pattern Recognition and How
UCT Algorithms Apply Pre-knowledge of Player’s Strategy
to Improve Opponent AI,” in Proc. 2008 Int. Conf. Comput.
Intell. Model. Control Automat., Vienna, Austria, Dec. 2008, pp.
1177–1181.

[100] S. He, F. Xie, Y. Wang, S. Luo, Y. Fu, J. Yang, Z. Liu, and
Q. Zhu, “To Create Adaptive Game Opponent by Using UCT,”
in Proc. 2008 Int. Conf. Comput. Intell. Model. Control Automat.,
Vienna, Austria, Dec. 2008, pp. 67–70.

[101] D. P. Helmbold and A. Parker-Wood, “All-Moves-As-First
Heuristics in Monte-Carlo Go,” in Proc. Int. Conf. Artif. Intell.,
Las Vegas, Nevada, 2009, pp. 605–610.

[102] B. Helmstetter, C.-S. Lee, F. Teytaud, O. Teytaud, M.-H. Wang,
and S.-J. Yen, “Random positions in Go,” in Proc. IEEE Conf.
Comput. Intell. Games, Seoul, South Korea, 2011, pp. 250–257.

[103] P. Hingston and M. Masek, “Experiments with Monte Carlo
Othello,” in Proc. IEEE Congr. Evol. Comput., Singapore, 2007,
pp. 4059–4064.

[104] J.-B. Hoock, C.-S. Lee, A. Rimmel, F. Teytaud, O. Teytaud, and
M.-H. Wang, “Intelligent Agents for the Game of Go,” IEEE
Comput. Intell. Mag., vol. 5, no. 4, pp. 28–42, 2010.

[105] J.-B. Hoock and O. Teytaud, “Bandit-Based Genetic
Programming,” in Proc. Euro. Conf. Gen. Prog., vol. 6021,
Istanbul, Turkey, 2010, pp. 268–277.

[106] J. Huang, Z. Liu, B. Lu, and F. Xiao, “Pruning in UCT
Algorithm,” in Proc. Int. Conf. Tech. Applicat. Artif. Intell.,
Hsinchu, Taiwan, 2010, pp. 177–181.

[107] S.-C. Huang, “New Heuristics for Monte Carlo Tree Search
Applied to the Game of Go,” Ph.D. dissertation, Nat. Taiwan
Normal Univ., Taipei, 2011.

[108] S.-C. Huang, R. Coulom, and S.-S. Lin, “Monte-Carlo Simulation
Balancing Applied to 9x9 Go,” Int. Comp. Games Assoc. J., vol. 33,
no. 4, pp. 191–201, 2010.

[109] ——, “Monte-Carlo Simulation Balancing in Practice,” in Proc.
Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010, pp.
81–92.

[110] ——, “Time Management for Monte-Carlo Tree Search Applied
to the Game of Go,” in Proc. Int. Conf. Tech. Applicat. Artif.
Intell., Hsinchu City, Taiwan, 2010, pp. 462–466.

[111] N. Ikehata and T. Ito, “Monte Carlo Tree Search in Ms. Pac-Man,”
in Proc. 15th Game Progr. Workshop, Kanagawa, Japan, 2010, pp.
1–8.

[112] ——, “Monte-Carlo Tree Search in Ms. Pac-Man,” in Proc. IEEE
Conf. Comput. Intell. Games, Seoul, South Korea, 2011, pp. 39–46.

[113] H. Kato and I. Takeuchi, “Parallel Monte-Carlo Tree Search
with Simulation Servers,” in Proc. Int. Conf. Tech. Applicat. Artif.
Intell., Hsinchu City, Taiwan, 2010, pp. 491–498.

[114] J. Kloetzer, “Experiments in Monte-Carlo Amazons,” J. Inform.
Process. Soc. Japan, vol. 2010-GI-24, no. 6, pp. 1–4, 2010.

[115] ——, “Monte-Carlo Opening Books for Amazons,” in Proc.
Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010, pp.
124–135.

[116] J. Kloetzer, H. Iida, and B. Bouzy, “The Monte-Carlo Approach
in Amazons,” in Proc. Comput. Games Workshop, Amsterdam,
Netherlands, 2007, pp. 113–124.

[117] ——, “A Comparative Study of Solvers in Amazons Endgames,”
in Proc. IEEE Conf. Comput. Intell. Games, Perth, Australia, 2008,
pp. 378–384.

[118] ——, “Playing Amazons Endgames,” Int. Comp. Games Assoc. J.,
vol. 32, no. 3, pp. 140–148, 2009.

[119] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo
Planning,” in Euro. Conf. Mach. Learn. Berlin, Germany:
Springer, 2006, pp. 282–293.

[120] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-
Carlo Search,” Univ. Tartu, Estonia, Tech. Rep. 1, 2006.

[121] S. Könnecke and J. Waldmann, “Efficient Playouts for the
Havannah Abstract Board Game,” Hochschule Technik, Leipzig,
Tech. Rep., 2009.

[122] T. Kozelek, “Methods of MCTS and the game Arimaa,” M.S.
thesis, Charles Univ., Prague, 2009.

[123] K. L. Kroeker, “A New Benchmark for Artificial Intelligence,”
Commun. ACM, vol. 54, no. 8, pp. 13–15, Aug. 2011.

[124] * T. L. Lai and H. Robbins, “Asymptotically Efficient Adaptive
Allocation Rules,” Adv. Appl. Math., vol. 6, pp. 4–22, 1985.

[125] * M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte
Carlo Sampling for Regret Minimization in Extensive Games,”
in Proc. Adv. Neur. Inform. Process. Sys., Vancouver, Canada,
2009, pp. 1078–1086.

[126] * S. M. LaValle, “Rapidly-Exploring Random Trees: A New
Tool for Path Planning,” Iowa State Univ., Comp Sci. Dept., TR
98-11, Tech. Rep., 1998.

[127] C.-S. Lee, M. Müller, and O. Teytaud, “Guest Editorial: Special
Issue on Monte Carlo Techniques and Computer Go,” IEEE
Trans. Comp. Intell. AI Games, vol. 2, no. 4, pp. 225–228, Dec.
2010.

[128] C.-S. Lee, M.-H. Wang, G. M. J.-B. Chaslot, J.-B. Hoock,
A. Rimmel, O. Teytaud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong,
“The Computational Intelligence of MoGo Revealed in Taiwan’s
Computer Go Tournaments,” IEEE Trans. Comp. Intell. AI Games,
vol. 1, no. 1, pp. 73–89, 2009.

[129] C.-S. Lee, M.-H. Wang, T.-P. Hong, G. M. J.-B. Chaslot, J.-B.
Hoock, A. Rimmel, O. Teytaud, and Y.-H. Kuo, “A Novel
Ontology for Computer Go Knowledge Management,” in Proc.
IEEE Int. Conf. Fuzzy Sys., Jeju Island, Korea, Aug. 2009, pp.
1056–1061.

[130] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak,
“Understanding the Success of Perfect Information Monte Carlo
Sampling in Game Tree Search,” in Proc. Assoc. Adv. Artif. Intell.,
Atlanta, Georgia, 2010, pp. 134–140.

[131] * S. Lopez, “Rybka’s Monte Carlo analysis,” 2008. [Online].
Available: http://www.chessbase.com/newsdetail.asp?newsid=
5075

[132] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in Proc.
Comput. and Games, LNCS 5131, Beijing, China, 2008, pp. 13–24.

[133] ——, “Improving Monte-Carlo Tree Search in Havannah,” in
Proc. Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010,
pp. 105–115.

[134] ——, “Castro Wins Havannah Tournament,” Int. Comp. Games
Assoc. J., vol. 33, no. 4, p. 232, 2011.

[135] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Modelling
and evaluation of complex scenarios with the Strategy Game
Description Language,” in Proc. IEEE Conf. Comput. Intell. Games,
Seoul, South Korea, 2011, pp. 174–181.

[136] ——, “Towards Procedural Strategy Game Generation: Evolving
Complementary Unit Types,” in Proc. Applicat. Evol. Comput.,
LNCS 6624, Torino, Italy, 2011, pp. 93–102.

[137] R. Maı̂trepierre, J. Mary, and R. Munos, “Adaptive play in Texas
Hold’em Poker,” in Proc. Euro. Conf. Artif. Intell., Patras, Greece,
2008, pp. 458–462.

[138] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-Based
Planning for Continuous Action Markov Decision Processes,”
in Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg, Germany,
2011, pp. 335–338.

[139] L. S. Marcolino and H. Matsubara, “Multi-Agent Monte Carlo
Go,” in Proc. Int. Conf. Auton. Agents Multi. Sys., Taipei, Taiwan,
2011, pp. 21–28.

[140] S. Matsumoto, N. Hirosue, K. Itonaga, K. Yokoo, and
H. Futahashi, “Evaluation of Simulation Strategy on Single-
Player Monte-Carlo Tree Search and its Discussion for a
Practical Scheduling Problem,” in Proc. Int. Multi Conf. Eng.
Comput. Scientists, vol. 3, Hong Kong, 2010, pp. 2086–2091.

[141] * R. E. McInerney, “Multi-Armed Bandit Bayesian Decision
Making,” Univ. Oxford, Oxford, Tech. Rep., 2010.

[142] J. Méhat and T. Cazenave, “Ary: A Program for General Game
Playing,” Univ. Paris 8, Dept. Inform., Tech. Rep., 2008.

[143] ——, “Monte-Carlo Tree Search for General Game Playing,”
Univ. Paris 8, Dept. Info., Tech. Rep., 2008.

[144] ——, “Combining UCT and Nested Monte Carlo Search for
Single-Player General Game Playing,” IEEE Trans. Comp. Intell.
AI Games, vol. 2, no. 4, pp. 271–277, 2010.

[145] ——, “A Parallel General Game Player,” Künstliche Intelligenz,
vol. 25, no. 1, pp. 43–47, 2011.

[146] ——, “Tree Parallelization of Ary on a Cluster,” in Proc. Int. Joint
Conf. Artif. Intell., Barcelona, Spain, 2011, pp. 39–43.

[147] M. Möller, M. Schneider, M. Wegner, and T. Schaub, “Centurio, a
General Game Player: Parallel, Java- and ASP-based,” Künstliche
Intelligenz, vol. 25, no. 1, pp. 17–24, Dec. 2010.

[148] M. Müller, “Fuego-GB Prototype at the Human machine com-
petition in Barcelona 2010: a Tournament Report and Analysis,”
Univ. Alberta, Edmonton, Tech. Rep., 2010.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 45

[149] H. Nakhost and M. Müller, “Monte-Carlo Exploration for
Deterministic Planning,” in Proc. 21st Int. Joint Conf. Artif. Intell.,
Pasadena, California, 2009, pp. 1766–1771.

[150] M. Naveed, D. E. Kitchin, and A. Crampton, “Monte-Carlo
Planning for Pathfinding in Real-Time Strategy Games,” in Proc.
28th Workshop UK Spec. Inter. Group Plan. Sched., Brescia, Italy,
2010, pp. 125–132.

[151] K. Q. Nguyen, T. Miyama, A. Yamada, T. Ashida, and R. Tha-
wonmas, “ICE gUCT,” Int. Comput. Entertain. Lab., Rit-
sumeikan Univ., Tech. Rep., 2011.

[152] J. P. A. M. Nijssen, “Playing Othello Using Monte Carlo,” Strate-
gies, pp. 1–9, 2007.

[153] ——, “Using Intelligent Search Techniques to Play the Game
Khet,” M. S. Thesis, Maastricht Univ., Netherlands, 2009.

[154] J. P. A. M. Nijssen and J. W. H. M. Uiterwijk, “Using Intelligent
Search Techniques to Play the Game Khet,” Maastricht Univ.,
Netherlands, Netherlands, Tech. Rep., 2009.

[155] J. P. A. M. Nijssen and M. H. M. Winands, “Enhancements
for Multi-Player Monte-Carlo Tree Search,” in Proc. Comput. and
Games, LNCS 6515, Kanazawa, Japan, 2010, pp. 238–249.

[156] ——, “Monte-Carlo Tree Search for the Game of Scotland Yard,”
in Proc. IEEE Conf. Comput. Intell. Games, Seoul, South Korea,
2011, pp. 158–165.

[157] Y. Osaki, K. Shibahara, Y. Tajima, and Y. Kotani, “An Othello
Evaluation Function Based on Temporal Difference Learning
using Probability of Winning,” in Proc. IEEE Conf. Comput. Intell.
Games, Perth, Australia, Dec. 2008, pp. 205–211.

[158] D. Pellier, B. Bouzy, and M. Métivier, “An UCT Approach for
Anytime Agent-Based Planning,” in Proc. Int. Conf. Pract. Appl.
Agents Multi. Sys., Salamanca, Spain, 2010, pp. 211–220.

[159] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating
Opponent Models with Monte-Carlo Tree Search in Poker,” in
Proc. Conf. Assoc. Adv. Artif. Intell.: Inter. Decis. Theory Game Theory
Workshop, Atlanta, Georgia, 2010, pp. 37–42.

[160] A. Previti, R. Ramanujan, M. Schaerf, and B. Selman, “Monte-
Carlo Style UCT Search for Boolean Satisfiability,” in Proc. 12th
Int. Conf. Ital. Assoc. Artif. Intell., LNCS 6934, Palermo, Italy, 2011,
pp. 177–188.

[161] T. Raiko and J. Peltonen, “Application of UCT Search to the
Connection Games of Hex, Y, *Star, and Renkula!” in Proc. Finn.
Artif. Intell. Conf., Espoo, Finland, 2008, pp. 89–93.

[162] R. Ramanujan, A. Sabharwal, and B. Selman, “On Adversarial
Search Spaces and Sampling-Based Planning,” in Proc. 20th Int.
Conf. Automat. Plan. Sched., Toronto, Canada, 2010, pp. 242–245.

[163] ——, “Understanding Sampling Style Adversarial Search
Methods,” in Proc. Conf. Uncert. Artif. Intell., Catalina Island,
California, 2010, pp. 474–483.

[164] ——, “On the Behavior of UCT in Synthetic Search Spaces,” in
Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg, Germany,
2011.

[165] R. Ramanujan and B. Selman, “Trade-Offs in Sampling-Based
Adversarial Planning,” in Proc. 21st Int. Conf. Automat. Plan.
Sched., Freiburg, Germany, 2011, pp. 202–209.

[166] A. Rimmel, “Improvements and Evaluation of the Monte-Carlo
Tree Search Algorithm,” Ph.D. dissertation, Lab. Rech. Inform.
(LRI), Paris, 2009.

[167] A. Rimmel and F. Teytaud, “Multiple Overlapping Tiles for
Contextual Monte Carlo Tree Search,” in Proc. Applicat. Evol.
Comput. 1, LNCS 6624, Torino. Italy, 2010, pp. 201–210.

[168] A. Rimmel, F. Teytaud, and T. Cazenave, “Optimization of
the Nested Monte-Carlo Algorithm on the Traveling Salesman
Problem with Time Windows,” in Proc. Applicat. Evol. Comput. 2,
LNCS 6625, Torino, Italy, 2011, pp. 501–510.

[169] A. Rimmel, F. Teytaud, and O. Teytaud, “Biasing Monte-Carlo
Simulations through RAVE Values,” in Proc. Comput. and Games,
LNCS 6515, Kanazawa, Japan, 2010, pp. 59–68.

[170] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-
R. Tsai, “Current Frontiers in Computer Go,” IEEE Trans. Comp.
Intell. AI Games, vol. 2, no. 4, pp. 229–238, 2010.

[171] * D. Robles and S. M. Lucas, “A Simple Tree Search Method for
Playing Ms. Pac-Man,” in Proc. IEEE Conf. Comput. Intell. Games,
Milan, Italy, 2009, pp. 249–255.

[172] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning Non-
Random Moves for Playing Othello: Improving Monte Carlo
Tree Search,” in Proc. IEEE Conf. Comput. Intell. Games, Seoul,
South Korea, 2011, pp. 305–312.

[173] P. Rolet, M. Sebag, and O. Teytaud, “Boosting Active Learning to
Optimality: a Tractable Monte-Carlo, Billiard-based Algorithm,”
in Proc. Euro. Conf. Mach. Learn. Knowl. Disc. Datab. Bled,
Slovenia: Springer, 2009, pp. 302–317.

[174] ——, “Optimal Robust Expensive Optimization is Tractable,” in
Proc. 11th Annu. Conf. Genet. Evol. Comput., Montreal, Canada,
2009, pp. 1951–1956.

[175] ——, “Upper Confidence Trees and Billiards for Optimal Active
Learning,” in Proc. Conf. l’Apprentissage Autom., Hammamet,
Tunisia, 2009.

[176] C. D. Rosin, “Nested Rollout Policy Adaptation for Monte Carlo
Tree Search,” in Proc. 22nd Int. Joint Conf. Artif. Intell., Barcelona,
Spain, 2011, pp. 649–654.

[177] J. Rubin and I. Watson, “Computer poker: A review,” Artif.
Intell., vol. 175, no. 5-6, pp. 958–987, Apr. 2011.

[178] * S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed. Upper Saddle River, New Jersey: Prentice
Hall, 2009.

[179] A. Sabharwal and H. Samulowitz, “Guiding Combinatorial
Optimization with UCT,” in Proc. 21st Int. Conf. Automat. Plan.
Sched., Freiburg, Germany, 2011.

[180] A. Saffidine, “Utilisation dUCT au Hex,” Ecole Normale Super.
Lyon, France, Tech. Rep., 2008.

[181] ——, “Some Improvements for Monte-Carlo Tree Search, Game
Description Language Compilation, Score Bounds and Transpo-
sitions,” M.S. thesis, Paris-Dauphine Lamsade, France, 2010.

[182] A. Saffidine, T. Cazenave, and J. Méhat, “UCD: Upper
Confidence bound for rooted Directed acyclic graphs,” in Proc.
Conf. Tech. Applicat. Artif. Intell., Hsinchu City, Taiwan, 2010, pp.
467–473.

[183] * J.-T. Saito, G. M. J.-B. Chaslot, J. W. H. M. Uiterwijk, and
H. J. van den Herik, “Monte-Carlo Proof-Number Search for
Computer Go,” in Proc. 5th Int. Conf. Comput. and Games, Turin,
Italy, 2006, pp. 50–61.

[184] S. Samothrakis, D. Robles, and S. M. Lucas, “A UCT Agent for
Tron: Initial Investigations,” in Proc. IEEE Symp. Comput. Intell.
Games, Dublin, Ireland, 2010, pp. 365–371.

[185] ——, “Fast Approximate Max-n Monte-Carlo Tree Search for Ms
Pac-Man,” IEEE Trans. Comp. Intell. AI Games, vol. 3, no. 2, pp.
142–154, 2011.

[186] Y. Sato, D. Takahashi, and R. Grimbergen, “A Shogi Program
Based on Monte-Carlo Tree Search,” Int. Comp. Games Assoc. J.,
vol. 33, no. 2, pp. 80–92, 2010.

[187] B. Satomi, Y. Joe, A. Iwasaki, and M. Yokoo, “Real-Time Solving
of Quantified CSPs Based on Monte-Carlo Game Tree Search,”
in Proc. 22nd Int. Joint Conf. Artif. Intell., Barcelona, Spain, 2011,
pp. 655–662.

[188] F. C. Schadd, “Monte-Carlo Search Techniques in the Modern
Board Game Thurn and Taxis,” M.S. thesis, Maastricht Univ.,
Netherlands, 2009.

[189] M. P. D. Schadd, “Selective Search in Games of Different Com-
plexity,” Ph.D. dissertation, Maastricht Univ., Netherlands, 2011.

[190] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik,
and H. Aldewereld, “Addressing NP-Complete Puzzles with
Monte-Carlo Methods,” in Proc. Artif. Intell. Sim. Behav. Symp.
Logic Sim. Interact. Reason., Aberdeen, UK, 2008, pp. 55–61.

[191] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik,
G. M. J.-B. Chaslot, and J. W. H. M. Uiterwijk, “Single-Player
Monte-Carlo Tree Search,” in Proc. Comput. and Games, LNCS
5131, Beijing, China, 2008, pp. 1–12.

[192] L. Schaefers, M. Platzner, and U. Lorenz, “UCT-Treesplit - Par-
allel MCTS on Distributed Memory,” in Proc. 21st Int. Conf.
Automat. Plan. Sched., Freiburg, Germany, 2011.

[193] * J. Schaeffer, “The History Heuristic and Alpha-Beta Search
Enhancements in Practice,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 11, no. 11, pp. 1203–1212, 1989.

[194] J. Schäfer, “The UCT Algorithm Applied to Games with Im-
perfect Information,” Diploma thesis, Otto-Von-Guericke Univ.
Magdeburg, Germany, 2008.

[195] R. B. Segal, “On the Scalability of Parallel UCT,” in Proc. Comput.
and Games, LNCS 6515, Kanazawa, Japan, 2010, pp. 36–47.

[196] M. Shafiei, N. R. Sturtevant, and J. Schaeffer, “Comparing UCT
versus CFR in Simultaneous Games,” in Proc. Int. Joint Conf.
Artif. Intell. Workshop Gen. Game Playing, Pasadena, California,
2009.

[197] S. Sharma, Z. Kobti, and S. Goodwin, “Knowledge Generation
for Improving Simulations in UCT for General Game Playing,”

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 46

in Proc. Adv. Artif. Intell., Auckland, New Zealand, 2008, pp.
49–55.

[198] ——, “Learning and Knowledge Generation in General Games,”
in Proc. IEEE Symp. Comput. Intell. Games, Perth, Australia, Dec.
2008, pp. 329–335.

[199] * B. Sheppard, “World-championship-caliber Scrabble,” Artif.
Intell., vol. 134, pp. 241–275, 2002.

[200] K. Shibahara and Y. Kotani, “Combining Final Score with
Winning Percentage by Sigmoid Function in Monte-Carlo
Simulations,” in Proc. IEEE Conf. Comput. Intell. Games, Perth,
Australia, Dec. 2008, pp. 183–190.

[201] D. Silver, “Reinforcement Learning and Simulation-Based Search
in Computer Go,” Ph.D. dissertation, Univ. Alberta, Edmonton,
2009.

[202] D. Silver, R. S. Sutton, and M. Müller, “Sample-Based Learning
and Search with Permanent and Transient Memories,” in Proc.
25th Annu. Int. Conf. Mach. Learn., Helsinki, Finland, 2008, pp.
968–975.

[203] D. Silver and G. Tesauro, “Monte-Carlo Simulation Balancing,”
in Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, Canada,
2009, pp. 945–952.

[204] D. Silver and J. Veness, “Monte-Carlo Planning in Large
POMDPs,” in Proc. Neur. Inform. Process. Sys., Vancouver,
Canada, 2010, pp. 1–9.

[205] Y. Soejima, A. Kishimoto, and O. Watanabe, “Evaluating Root
Parallelization in Go,” IEEE Trans. Comp. Intell. AI Games, vol. 2,
no. 4, pp. 278–287, 2010.

[206] J. A. Stankiewicz, “Knowledge-Based Monte-Carlo Tree Search
in Havannah,” M.S. thesis, Maastricht Univ., Netherlands, 2011.

[207] N. R. Sturtevant, “An Analysis of UCT in Multi-Player Games,”
in Proc. Comput. and Games, LNCS 5131, Beijing, China, 2008,
pp. 37–49.

[208] N. Sylvester, B. Lohre, S. Dodson, and P. D. Drake, “A Linear
Classifier Outperforms UCT in 9x9 Go,” in Proc. Int. Conf. Artif.
Intell., Las Vegas, Nevada, 2011, pp. 804–808.

[209] I. Szita, G. M. J.-B. Chaslot, and P. Spronck, “Monte-Carlo
Tree Search in Settlers of Catan,” in Proc. Adv. Comput. Games,
Pamplona, Spain, 2010, pp. 21–32.

[210] S. Takeuchi, T. Kaneko, and K. Yamaguchi, “Evaluation of
Monte Carlo Tree Search and the Application to Go,” in Proc.
IEEE Conf. Comput. Intell. Games, Perth, Australia, Dec. 2008,
pp. 191–198.

[211] ——, “Evaluation of Game Tree Search Methods by Game
Records,” IEEE Trans. Comp. Intell. AI Games, vol. 2, no. 4, pp.
288–302, 2010.

[212] Y. Tanabe, K. Yoshizoe, and H. Imai, “A Study on
Security Evaluation Methodology for Image-Based Biometrics
Authentication Systems,” in Proc. IEEE Conf. Biom.: Theory,
Applicat. Sys., Washington, DC, 2009, pp. 1–6.

[213] G. Tesauro, V. T. Rajan, and R. B. Segal, “Bayesian Inference
in Monte-Carlo Tree Search,” in Proc. Conf. Uncert. Artif. Intell.,
Catalina Island, California, 2010, pp. 580–588.

[214] F. Teytaud and O. Teytaud, “Creating an Upper-Confidence-Tree
program for Havannah,” in Proc. Adv. Comput. Games, LNCS
6048, Pamplona, Spain, 2010, pp. 65–74.

[215] ——, “On the Huge Benefit of Decisive Moves in Monte-Carlo
Tree Search Algorithms,” in Proc. IEEE Symp. Comput. Intell.
Games, no. 1, Dublin, Ireland, 2010, pp. 359–364.

[216] ——, “Lemmas on Partial Observation, with Application to
Phantom Games,” in Proc. IEEE Conf. Comput. Intell. Games,
Seoul, South Korea, 2011, pp. 243–249.

[217] O. Teytaud and S. Flory, “Upper Confidence Trees with Short
Term Partial Information,” in Proc. Applicat. Evol. Comput. 1,
LNCS 6624, Torino, Italy, 2011, pp. 153–162.

[218] D. Tom, “Investigating UCT and RAVE: Steps towards a more
robust method,” M.S. thesis, Univ. Alberta, Edmonton, 2010.

[219] D. Tom and M. Müller, “A Study of UCT and its Enhancements
in an Artificial Game,” in Proc. Adv. Comput. Games, LNCS 6048,
Pamplona, Spain, 2010, pp. 55–64.

[220] ——, “Computational Experiments with the RAVE Heuristic,”
in Proc. Comput. and Games, LNCS 6515, Kanazawa, Japan, 2010,
pp. 69–80.

[221] B. K.-B. Tong, C. M. Ma, and C. W. Sung, “A Monte-Carlo
Approach for the Endgame of Ms. Pac-Man,” in Proc. IEEE Conf.
Comput. Intell. Games, Seoul, South Korea, 2011, pp. 9–15.

[222] B. K.-B. Tong and C. W. Sung, “A Monte-Carlo Approach for
Ghost Avoidance in the Ms. Pac-Man Game,” in Proc. IEEE

Consum. Elect. Soc. Games Innov. Conf., Hong Kong, 2011, pp.
1–8.

[223] G. van den Broeck, K. Driessens, and J. Ramon, “Monte-Carlo
Tree Search in Poker using Expected Reward Distributions,”
Adv. Mach. Learn., LNCS 5828, no. 1, pp. 367–381, 2009.

[224] H. J. van den Herik, “The Drosophila Revisited,” Int. Comp.
Games Assoc. J., vol. 33, no. 2, pp. 65–66., 2010.

[225] F. van Lishout, G. M. J.-B. Chaslot, and J. W. H. M. Uiterwijk,
“Monte-Carlo Tree Search in Backgammon,” in Proc. Comput.
Games Workshop, Amsterdam, Netherlands, 2007, pp. 175–184.

[226] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver, “A Monte-
Carlo AIXI Approximation,” J. Artif. Intell. Res., vol. 40, pp. 95–
142, 2011.

[227] T. J. Walsh, S. Goschin, and M. L. Littman, “Integrating Sample-
based Planning and Model-based Reinforcement Learning,”
in Proc. Assoc. Adv. Artif. Intell., Atlanta, Georgia, 2010, pp.
612–617.

[228] Y. Wang and S. Gelly, “Modifications of UCT and sequence-like
simulations for Monte-Carlo Go,” in Proc. IEEE Symp. Comput.
Intell. Games, Honolulu, Hawaii, 2007, pp. 175–182.

[229] C. D. Ward and P. I. Cowling, “Monte Carlo Search Applied to
Card Selection in Magic: The Gathering,” in Proc. IEEE Symp.
Comput. Intell. Games, Milan, Italy, 2009, pp. 9–16.

[230] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization
and Information Set Monte Carlo Tree Search for the Card Game
Dou Di Zhu,” in Proc. IEEE Conf. Comput. Intell. Games, Seoul,
South Korea, 2011, pp. 87–94.

[231] G. M. J. Williams, “Determining Game Quality Through UCT
Tree Shape Analysis,” M.S. thesis, Imperial Coll., London, 2010.

[232] M. H. M. Winands and Y. Björnsson, “Evaluation Function
Based Monte-Carlo LOA,” in Proc. Adv. Comput. Games, LNCS
6048, Pamplona, Spain, 2010, pp. 33–44.

[233] ——, “↵�-based Play-outs in Monte-Carlo Tree Search,” in IEEE
Conf. Comput. Intell. Games, Seoul, South Korea, 2011, pp. 110–
117.

[234] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo
Tree Search Solver,” in Proc. Comput. and Games, LNCS 5131,
Beijing, China, 2008, pp. 25–36.

[235] ——, “Monte-Carlo Tree Search in Lines of Action,” IEEE Trans.
Comp. Intell. AI Games, vol. 2, no. 4, pp. 239–250, 2010.

[236] M. H. M. Winands, Y. Björnsson, and J.-t. Saito, “Monte Carlo
Tree Search in Lines of Action,” IEEE Trans. Comp. Intell. AI
Games, vol. 2, no. 4, pp. 239–250, 2010.

[237] F. Xie and Z. Liu, “Backpropagation Modification in Monte-
Carlo Game Tree Search,” in Proc. Int. Symp. Intell. Inform. Tech.
Applicat., NanChang, China, 2009, pp. 125–128.

[238] F. Xie, H. Nakhost, and M. Müller, “A Local Monte Carlo Tree
Search Approach in Deterministic Planning,” in Proc. Assoc. Adv.
Artif. Intell., San Francisco, California, 2011, pp. 1832–1833.

[239] J. Yang, Y. Gao, S. He, X. Liu, Y. Fu, Y. Chen, and D. Ji,
“To Create Intelligent Adaptive Game Opponent by Using
Monte-Carlo for Tree Search,” in Proc. 5th Int. Conf. Natural
Comput., Tianjian, China, 2009, pp. 603–607.

[240] Y. Zhang, S. He, J. Wang, Y. Gao, J. Yang, X. Yu, and L. Sha,
“Optimizing Player’s Satisfaction through DDA of Game AI by
UCT for the Game Dead-End,” in Proc. 6th Int. Conf. Natural
Comput., Yantai, China, 2010, pp. 4161–4165.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 47

Cameron Browne (IEEE) received a Ph.D. in
Computer Science from the Queensland Univer-
sity of Technology (QUT), Australia, in 2008, win-
ning the Dean’s Award for Outstanding Thesis.
He was Canon Australia‘s Inventor of the Year
for 1998. He is currently a Research Fellow at
Imperial College, London, working on the EP-
SRC project UCT for Games and Beyond, inves-
tigating MCTS methods for procedural content
generation in creative domains such as game
design, linguistics, and generative art and music.

Edward Powley (IEEE) received an M.Math
degree in Mathematics and Computer Science
from the University of York, UK, in 2006, and
was awarded the P. B. Kennedy Prize and the
BAE Systems ATC Prize. He received a Ph.D. in
Computer Science from the University of York in
2010. He is currently a Research Fellow at the
University of Bradford, investigating MCTS for
games with hidden information and stochastic
outcomes. His other research interests include
cellular automata, and game theory for security.

Daniel Whitehouse (IEEE) received the Master
of Mathematics degree in Mathematics from the
University of Manchester, UK, in 2010. He is cur-
rently pursuing a Ph.D. in Artificial Intelligence
in the School of Computing, Informatics and
Media at the University of Bradford and is funded
as part of the EPSRC project UCT for games
and Beyond. He is published in the domain of
Monte Carlo Tree Search and is investigating the
application of Monte Carlo Tree Search methods
to games with chance and hidden information.

Simon Lucas (SMIEEE) is a professor of Com-
puter Science at the University of Essex (UK)
where he leads the Game Intelligence Group.
His main research interests are games, evolu-
tionary computation, and machine learning, and
he has published widely in these fields with over
130 peer-reviewed papers. He is the inventor of
the scanning n-tuple classifier, and is the found-
ing Editor-in-Chief of the IEEE Transactions on
Computational Intelligence and AI in Games.

Peter Cowling (IEEE) is Professor of Com-
puter Science and Associate Dean (Research
and Knowledge Transfer) at the University of
Bradford (UK), where he leads the Artificial
Intelligence research centre. His work centres
on computerised decision-making in games,
scheduling and resource-constrained optimisa-
tion. He has worked with a wide range of indus-
trial partners, is director of 2 research spin-out
companies, and has published over 80 scientific
papers in high-quality journals and conferences.

Philipp Rohlfshagen received a B.Sc. in Com-
puter Science and Artificial Intelligence from the
University of Sussex, UK, in 2003, winning the
prize for best undergraduate final year project.
He received the M.Sc. in Natural Computation in
2004 and a Ph.D. in Evolutionary Computation
in 2007, both from the University of Birmingham,
UK. Philipp is now a senior research officer at
the University of Essex, working together with
Professor Simon Lucas on Monte Carlo Tree
Search for real-time video games.

Stephen Tavener received a B.Sc. from Queen
Mary and Westfield College, London, in 1989.
He is currently pursuing a Ph.D. in the Com-
putational Creativity Group, Imperial College,
London, on benevolence in artificial agents. He
has worked for the BBC and Zillions of Games,
reviewed for major abstract games magazines,
and run the London-based retail shop Game-
sale. His interests include board game design,
fractal geometry and program optimisation.

Diego Perez received a B.Sc. and a M.Sc. in
Computer Science from University Carlos III,
Madrid, in 2007. He is currently pursuing a
Ph.D. in Artificial Intelligence applied to games
at the University of Essex, Colchester. He has
published in the domain of artificial intelligence
applied to games and participated in several AI
competitions such as the Simulated Car Racing
Competition and Mario AI. He also has program-
ming experience in the videogames industry with
titles published for game consoles and PC.

Spyridon Samothrakis is currently pursuing a
Ph.D. in Computational Intelligence and Games
at the University of Essex. He holds a B.Sc.
from the University of Sheffield (Computer Sci-
ence) and an M.Sc. from the University of Sus-
sex (Intelligent Systems). His interests include
game theory, machine learning, evolutionary al-
gorithms, consciousness and abolishing work.

Simon Colton is Reader in Computational Cre-
ativity at Imperial College, London, and an EP-
SRC Leadership Fellow. He heads the Com-
putational Creativity Group, which studies no-
tions related to creativity in software. He has
published over 120 papers on AI topics such
as machine learning, constraint solving, compu-
tational creativity, evolutionary techniques, the
philosophy of science, mathematical discovery,
visual arts and game design. He is the author of
the programs HR and The Painting Fool.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 48

G
o

Ph
an

to
m

G
o

Bl
in

d
G

o
N

oG
o

M
ul

ti-
pl

ay
er

G
o

H
ex

Y,
St

ar
,R

en
ku

la
!

H
av

an
na

h
Li

ne
s

of
A

ct
io

n
P-

G
am

e
C

lo
bb

er
O

th
el

lo
A

m
az

on
s

A
ri

m
aa

K
he

t
Sh

og
i

M
an

ca
la

Bl
ok

us
D

uo
Fo

cu
s

C
hi

ne
se

C
he

ck
er

s
Ya

va
la

th
C

on
ne

ct
Fo

ur
Ti

c
Ta

c
To

e
Su

m
of

Sw
itc

he
s

C
he

ss
Le

ft
R

ig
ht

G
am

es
M

or
pi

on
So

lit
ai

re
C

ro
ss

w
or

d
Sa

m
eG

am
e

Su
do

ku
,K

ak
ur

o
W

um
pu

s
W

or
ld

M
az

es
.T

ig
er

s,
G

ri
ds

C
A

D
IA

P
L

A
Y

E
R

A
R

Y

Flat MC/UCB + + +
BAST

TDMC(�) +
BB Active Learner

UCT + ? + +
SP-MCTS +

FUSE
MP-MCTS + +

Coalition Reduction
Multi-agent MCTS +

Ensemble MCTS +
HOP

Sparse UCT
Info Set UCT

Multiple MCTS +
UCT+
MC↵� + ?

MCCFR
Reflexive MC +

Nested MC + + + + +
NRPA + +

HGSTS + +
FSSS, BFS3 +

TAG
UNLEO

UCTSAT
⇢UCT + +
MRW

MHSP
UCB1-Tuned

Bayesian UCT
EXP3

HOOT
First Play Urgency +

(Anti)Decisive Moves + + + +
Move Groups + +

Move Ordering + + +
Transpositions + + + + +

Progressive Bias +
Opening Books + +

MCPG
Search Seeding +

Parameter Tuning +
History Heuristic + + + + + +

AMAF + + + +
RAVE + + + + + + + + + +

Killer RAVE +
RAVE-max +
PoolRAVE + +

MCTS-Solver +
MC-PNS +

Score Bounded MCTS + +
Progressive Widening + +

Pruning + + + +
Contextual MC + +

Fill the Board + + +
MAST, PAST, FAST +

Simulation Balancing +
Last Good Reply + +

Patterns + + + +
Score Bonus +

Decaying Reward +
Leaf Parallelisation + + + +
Root Parallelisation + +
Tree Parallelisation + +

UCT-Treesplit + +

TABLE 3
Summary of MCTS variations and enhancements applied to combinatorial games.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 49

Tr
on

M
s.

Pa
c-

M
an

Po
cm

an
,B

at
tle

sh
ip

D
ea

d-
En

d
W

ar
gu

s
O

RT
S

Sk
at

Br
id

ge
Po

ke
r

D
ou

D
iZ

hu
K

lo
nd

ik
e

So
lit

ai
re

M
ag

ic
:T

he
G

at
he

ri
ng

Ph
an

to
m

C
he

ss
U

rb
an

R
iv

al
s

Ba
ck

ga
m

m
on

Se
tt

le
rs

of
C

at
an

Sc
ot

la
nd

Ya
rd

R
os

ha
m

bo
Th

ur
n

an
d

Ta
xi

s
O

nT
op

Se
cu

ri
ty

M
ix

ed
In

te
ge

r
Pr

og
.

TS
P,

C
TP

Sa
ili

ng
D

om
ai

n
Ph

ys
ic

s
Si

m
ul

at
io

ns
Fu

nc
tio

n
A

pp
ro

x.
C

on
st

ra
in

t
Sa

tis
fa

ct
io

n
Sc

he
du

l.
Be

nc
hm

ar
ks

Pr
in

te
r

Sc
he

du
lin

g
R

oc
k-

Sa
m

pl
e

Pr
ob

le
m

PM
Ps

Bu
s

R
eg

ul
at

io
n

La
rg

e
St

at
e

Sp
ac

es
Fe

at
ur

e
Se

le
ct

io
n

PC
G

Flat MC/UCB + + + + + + + + +
BAST +

TDMC(�)
BB Active Learner

UCT +
SP-MCTS +

FUSE +
MP-MCTS + +

Coalition Reduction +
Multi-agent MCTS

Ensemble MCTS
HOP +

Sparse UCT +
Info Set UCT + +

Multiple MCTS
UCT+ +
MC↵�

MCCFR +
Reflexive MC

Nested MC + + +
NRPA

HGSTS
FSSS, BFS3 +

TAG +
UNLEO

UCTSAT +
⇢UCT + + +
MRW +

MHSP +
UCB1-Tuned +

Bayesian UCT
EXP3 +

HOOT +
First Play Urgency

(Anti)Decisive Moves
Move Groups

Move Ordering
Transpositions

Progressive Bias +
Opening Books

MCPG +
Search Seeding

Parameter Tuning
History Heuristic

AMAF +
RAVE +

Killer RAVE
RAVE-max
PoolRAVE

MCTS-Solver +
MC-PNS

Score Bounded MCTS
Progressive Widening +

Pruning +
Contextual MC

Fill the Board
MAST, PAST, FAST

Simulation Balancing
Last Good Reply

Patterns
Score Bonus

Decaying Reward +
Leaf Parallelisation
Root Parallelisation
Tree Parallelisation

UCT-Treesplit

TABLE 4
Summary of MCTS variations and enhancements applied to other domains.

