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Abstract

The growing computational and storage needs of
several scientific applications mandate the deployment
of extreme-scale parallel machines, such as IBM’s
BlueGene/L which can accommodate as many as 128K
processors. One of the challenges when designing
and deploying these systems in a production setting
is the need to take failure occurrences, whether it be
in the hardware or in the software, into account. Ear-
lier work has shown that conventional runtime fault-
tolerant techniques such as periodic checkpointing are
not effective to the emerging systems. Instead, the
ability to predict failure occurrences can help develop
more effective checkpointing strategies. Failure predic-
tion has long been regarded as a challenging research
problem, mainly due to the lack of realistic failure data
from actual production systems. In this study, we have
collected RAS event logs from BlueGene/L over a pe-
riod of more than 100 days. We have investigated the
characteristics of fatal failure events, as well as the
correlation between fatal events and non-fatal events.
Based on the observations, we have developed three
simple yet effective failure prediction methods, which
can predict around 80% of the memory and network
failures, and 47% of the application I/O failures.

1 Introduction

Meta-scale scientific and engineering applications
have been and continue to be playing a critical role
in every aspect of the society, including economies of
enterprises and even countries, health and human de-
velopment, military/security, and even overall quality
of life. The large processing and storage demands of
these applications call for supercomputers that scale
much beyond what have been built so far. IBM Blue-

Gene/L, consisting of 128K processors [1], is such
a system deployed at Lawrence Livermore National
Laboratory (LLNL). Upon its deployment in August,
2005, it became the fastest supercomputer on the
Top500 Supercomputers list [5]. Since then, it has
been hosting applications that span several thousand
processors, in the domains including hydrodynamics,
quantum chemistry, molecular dynamics and climate
modeling.

As applications and the underlying platforms scale
to this level, failure occurrence as well as its impacts on
system performance and operation costs, are becoming
a critically important concern to the research commu-
nity. Specifically, failures are becoming a norm, rather
than an exception. Firstly, transient hardware failures
are increasing, not just in memory structures and com-
munication paths, but also in combinational circuits
[17, 19]. Higher chip integration densities and lower
voltages (to reduce power consumption), are making
circuits more susceptible to bit flips [31]. Secondly,
permanent hardware device failures are also a grow-
ing concern, especially with high power consumption
for these large scale systems leading to immense heat
dissipation, which in consequence can accelerate the
failure rates for different devices [23, 21], including
the CPUs, memory systems, and disk drives. External
events, such as cooling system failures, also play a cru-
cial role in the reliability of these systems that need to
provide continuous operation over extended periods of
time. Thirdly, in addition to the hardware issues, the
sophisticated software that is taking on more duties,
can (i) contain bugs, (ii) be difficult to comprehend
and analyze (and thus may not be used in the right
way), and (iii) age in quality over time [9, 27], which
can all again lead to application crashes and/or system
downtime.

Failures can make nodes unavailable, thereby low-
ering system utilization. Further, failures can cause
applications executing on the nodes (probably having
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run for a long time) to abort, thus wasting the effort
already expended. A long running (over several days)
application that spans a large (hundreds/thousands)
number of nodes, may find it very difficult to make
any forward progress because of the failures. Addi-
tionally, some failures, especially those in network sub-
system, may affect multiple applications that happen
to run side by side. Eventually, the lower utilization
and availability impacts the response times and sys-
tem throughput of all the jobs, thus putting at risk
the main motivation behind deploying these large scale
systems. Our earlier studies [32, 18] show 100% wors-
ening of job performance, with a 1 failure per day as-
sumption (and we assume these failures affect one job
at a time). As a real example, LLNL has witnessed
frequent L1 cache failures for long running jobs, and
in order to finish these jobs, L1 cache has been dis-
abled for jobs longer than 4 hours, which results in
much prolonged execution times for these jobs.

In addition to lowering system performance and
availability, failures can also greatly increase the sys-
tem management costs. The system administrator
may need to detect failure occurrence, diagnose the
problem, and figure out the best sequence of reme-
dial actions. On the hardware end, this may en-
tail resetting a node, changing the motherboard/disk,
etc., and on the software end it may require migrat-
ing the application, restarting the application, re-
initializing/rejuvenating [27] a software module, etc.
In addition to the time incurred by such operations
during which the system (or at least the affected
nodes) may be unavailable, personnel time needs to
be allotted for this purpose. The resulting personnel
involvement will increase the Total Cost of Operation
(TCO), which is becoming a serious concern in numer-
ous production environments [12, 4].

It has been recognized that preventing failures from
occurring is very challenging, if at all possible [4].
Instead, we take the viewpoint that runtime fault-
tolerant measures that can mitigate the adverse im-
pacts of failures are in an urgent need. Checkpoint-
ing [32] is such a technique that can allow the failed
jobs to start from a saved point, rather than restarting
from the beginning. Though checkpointing techniques
have been widely used in conventional systems, they
are not as effective in large-scale parallel systems such
as BlueGene/L because the overheads of checkpointing
overshadow the gain: checkpointing a job that involves
tens of thousand tasks may take at least half an hour.
In our earlier study [32], we find that checkpointing at
regular intervals simply does not improve the perfor-
mance; a large interval may miss many failures, while a
small interval may incur high checkpointing overheads.
Instead, we find that the capability of predicting the
time/location of the next failure, though not perfect,
can considerably boost the benefits of runtime tech-
niques such as job checkpointing or scheduling[32, 18].

Failure prediction, however, has long been consid-

ered a challenging research problem. One of the main
reasons is the lack of suitable data from realistic sys-
tems. To address this void, we have obtained event
logs containing all the RAS (reliability, availability,
and serviceability) data since 08/02/05, from Blue-
Gene/L. After carefully preprocessing these data using
a three-step filtering tool [14], we extract all the failure
events that can lead to job terminations, and catego-
rize them into memory failures, network failures, and
application I/O failures. After filtering out important
events, we conduct in-depth studies to explore the pre-
dictability of these failure events. Firstly, we find that
50% of the network failures and 35% of the application
I/O failures occur within a window of half an hour af-
ter the preceding failures. Secondly, we find that net-
work failures exhibit strong spatial skewness, with 6%
of the nodes encountering 61% of the failures. Thirdly,
we find that jobs that report non-fatal events are very
likely followed by a fatal failure event. These obser-
vations are evidence that we can effectively predict
failures, which can in turn be used to develop efficient
runtime fault-tolerant strategies. In this paper, we
have developed three prediction algorithms based on
the bursty nature of failure occurrence, spatial skew-
ness, and preceding non-fatal events. We have eval-
uated the effectiveness of these algorithms carefully,
and found they are able to capture a large fraction of
failures.

The rest of this paper is organized as follows. Sec-
tion 2 describes the logs used in the study. In section 3,
we discuss the temporal and spatial characteristics of
failure events, and develop two prediction strategies
based upon these characteristics. Following the fail-
ure characteristics, in Section 4, we examine the re-
lationship between fatal events and non-fatal events,
and develop another prediction scheme. The related
work and concluding remarks are shown in Sections 5
and 6 respectively.

2 Overview of RAS Event Logs Logs

In this study, the RAS event logs are collected from
BlueGene/L at Lawrence Livermore National Labora-
tory (LLNL), which currently stands at number 1 in
the top500 supercomputer list [5]. More specifically,
the RAS event logs are obtained from IBM, the su-
percomputer vendor, through their RAS monitoring
system.

BlueGene/L has 128K PowerPC 440 700MHz pro-
cessors, which are organized into 64 racks. Each rack
consists of 2 midplanes, and a midplane (with 1024
processors) is the granularity of job allocation. A mid-
plane contains 16 node cards (which houses the com-
pute chips), 4 I/O cards (which houses the I/O chips),
and 24 midplane switches (through which different
midplanes connect). RAS events are logged through
the Machine Monitoring and Control System (CMCS),
and finally stored in a DB2 database engine. The log-
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ging granularity is less than 1 millisecond. More de-
tailed descriptions of the BlueGene/L hardware and
the logging mechanism can be found in our earlier pa-
per [14].

2.1 Raw RAS Event Logs

We have been collecting RAS event logs from Blue-
Gene/L since August 2, 2005. Up to the date of
November 18, 2005, we have totally 1,318,137 entries.
These entries are records of all the RAS related events
that occur within various components of the machine.
Information about scheduled maintenances, reboots,
and repairs is not included. Each record of the logs
has a number of attributes. The relevant attributes
are described as follows:

• RECID is the sequence number of an error entry,
which is incremented upon each new entry being
appended to the logs.

• EVENT TYPE specifies the mechanism through
which the event is recorded, with most of them
being through RAS [8].

• FACILITY denotes the component where
the event is flagged, which is one of the
following: LINKCARD, APP, KERNEL,
HARDWARE, DISCOVERY, CMCS, BGLMAS-
TER, SERV NET or MONITOR. Events with
LINKCARD facility report problems with
midplane switches, which is related to commu-
nication between midplanes. APP events are
those flagged in the application domain of the
compute chips. Most of these are reported by
the I/O demon regarding invalid path names,
wrong access permissions, severed links, etc.
Events with KERNEL facility are those reported
by the OS kernel domain of the compute chips,
which are usually in the memory or network
subsystem. These could include memory par-
ity/ECC errors in the hardware, bus errors
due to wrong addresses being generated by
the software, torus errors due to links failing,
etc. Events with HARDWARE facility are
usually related to the hardware operations of the
system (e.g. “node card power module is not
accessible”, “node card is not fully functional”,
etc). Events with DISCOVERY facility are
usually related to resource discovery and initial
configurations within the machine (e.g. “cannot
get assembly information for a node card”, “fan
module is missing”, etc), with most of these
being at the INFO or WARNING severity levels.
CMCS, BGLMASTER SERV NET facility errors
are again mostly at the INFO level, which
report events in the operation of the CMCS,
BGLMASTER and the service network. Finally,
events with MONITOR facility are usually

related to the power/temperature/wiring issues
of link-card/node-card/service-card. Nearly all
MONITOR events are in the FAILURE severity
levels.

• SEVERITY can be one of the following levels
- INFO, WARNING, SEVERE, ERROR, FA-
TAL, or FAILURE - which also denotes the
increasing order of severity. INFO events are
more informative in nature on overall system
reliability, such as “a torus problem has been
detected and corrected”, “the card status has
changed”, “the kernel is generating the core”,
etc. WARNING events are usually associated
with node-card/link-card/service-card not being
functional. SEVERE events give more details on
why these cards may not be functional (e.g.“link-
card is not accessible”, “problem while initializing
link/node/service card”, “error getting assembly
information from the node card”, etc.). ERROR
events report problems that are more persistent
and further pin-point their causes (“Fan module
serial number appears to be invalid”, “cable x
is present but the corresponding reverse cable is
missing”, “Bad cables going into the linkcard”,
etc.). All of these above events are either informa-
tive in nature, or are related more to initial config-
uration errors, and are thus relatively transparent
to the applications/runtime environment. How-
ever, FATAL or FAILURE events (such as “un-
correctable torus error”, “memory error”, etc.)
are more severe, and usually lead to applica-
tion/software crashes. Our primary focus in this
study is consequently on FATAL and FAILURE
events.

• EVENT TIME is the time stamp associated with
that event.

• JOB ID denotes the job that detects this event.
This field is only valid for events reported by com-
pute/IO chips.

• LOCATION of an event (i.e., which chip/node-
card/service-card/link-card experiences the er-
ror), can be specified in two ways. It can either
be specified as (i) a combination of job ID, pro-
cessor, node, and block, or (ii) through a separate
location field. We mainly use the latter approach
(location attribute) to determine where an error
takes place.

• ENTRY DATA gives a short description of the
event.

2.2 RAS Data Preprocessing

The raw logs contain an enormous amount of en-
tries, many of which are repeated or redundant. Be-
fore we can use these logs to study the failure behavior
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of BlueGene/L, we must first filter the failure data and
isolate unique failures. Filtering failure data has tra-
ditionally been a challenging task [14]. Further com-
plicating the process is the fact that the BlueGene/L
logging mechanism operates at much finer granular-
ity in both temporal (e.g. the logging interval is less
than 1 millisecond) and spatial (hundreds of thousand
of processors) domains than earlier machines. In addi-
tion, the nature of parallel applications calls for unique
filtering techniques that are not needed for sequential
applications. To address these challenges, we suitably
modify the filtering tool we developed in our earlier
work [14], which involves the following three steps:

1. Extracting and Categorizing Failure Events. In
this step, we extract all the events whose severity
levels are either FATAL or FAILURE, referred to
as failures, because these events will lead to appli-
cation crashes, and thus significantly degrade the
performance. Further, we classify failures into the
following categories according to the subsystem in
which they occurs: (i) memory failures, (ii) net-
work failures, (iii) application I/O failures, (iv)
midplane switch failures, and (v) node card fail-
ures. Failures are classified into these five types
based on the ENTRY DATA field.

2. Temporal Compression at a Single Location. Fail-
ure events from the same location often occur in
bursts, and we call such bursts as clusters. Some
clusters are homogeneous, with their failures hav-
ing identical values in the ENTRY DATA field;
others are heterogeneous and their failures usu-
ally report different attributes of the same event.
For example, a memory failure cluster is hetero-
geneous because each entry reports a unique sys-
tem state upon the occurrence of a memory failure
[14]. Therefore, in the second step, we need to co-
alesce a cluster into a single failure record. Iden-
tifying such clusters from the log, requires sort-
ing/grouping all the failures according to the as-
sociated subsystem (i.e. memory, network, or ap-
plication/IO), the location, and the job ID, and
using a suitable threshold Tth. Hence, failures
that occur within the same subsystem and are re-
ported by the same location and the same job,
belong to a cluster if the gaps between them are
less than Tth. Table 1 (a) presents the number
of remaining failure records after filtering with
different Tth values. In this exercise, we set the
threshold value to 5 minutes, as also suggested by
previous studies [14, 7, 13].

3. Spatial Compression across Multiple Locations. A
failure can be detected/reported by multiple loca-
tions, especially because BlueGene/L hosts paral-
lel jobs. For example, all the tasks from a job will
experience the same I/O failure if they access the
same directory. For another example, a network

failure is very likely detected by multiple loca-
tions. As a result, it is essential to filter across
locations, which we call spatial filtering. Spatial
filtering removes failures that are close to each
other (gaps between them below the threshold
Sth), with the same entry data, from the same
job, but from different locations. Similarly, Ta-
ble 1 (b) presents the number of remaining fail-
ure records after spatial filtering with different Sth

values. Choosing the appropriate value for Sth is
rather straightforward since the resulting failure
count is not very sensitive to the threshold value.
Then we simply choose 5 minutes.

After applying the three-step filtering algorithm,
we can identify unique failures within the boundary
of a job. In this paper, we do not attempt to co-
alesce failures that are experienced by different jobs
because relevant information is missing for this pur-
pose. Among memory, network, and app-IO failures,
we find that temporal filtering is effective for memory
failures, while spatial filtering is more effective for net-
work and app-IO failures. This is because tasks from a
parallel job are more likely to detect same I/O failures
or network failures.

3 Failure Prediction Based on Failure
Characteristics

Before we report our observations, we would like to
emphasize that each failure event in our study does
not necessarily correspond to a unique physical fail-
ure in the system hardware or software. Instead, sev-
eral failure events, especially those with the same en-
try data and temporally close to each other, may just
be that the same failure is encountered by subsequent
jobs. Therefore, the observations do not only reflect
the system’s failure behaviors, but also the interplay
between the failure behaviors and the usage patterns
(e.g. jobs’ arrive/execution times). This vagueness is
due to the lack of exact duration information for each
failure. However, we emphasize that it is extremely
difficult to pinpoint the real root of each failure event,
let alone its actual duration, so in this paper we do
not isolate the impact of job execution on the failure
pattern.

3.1 Temporal Characteristics

Figures 1 (a)-(h) depict the two aspects of temporal
characteristics of failure events: time series of failure
occurrence, i.e. number of failures observed every day
during the log duration, and the probability density
function (PDF) of the TBF distribution. Figure 1 (b)
shows that memory failures almost occur every day,
and further, that the number of failures per day does
not vary considerably. Figure 1 (f) shows that mem-
ory failures, though not bursty, do not exhibit periodic
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Log size with Tth = Memory Network APP-IO Midplane Switch Node Cards
0 8,206 10,554 178,292 166 96
30 sec 267 9,418 178,015 83 6
1 min 251 9,418 173,491 52 6
5 min 246 9,415 102,442 30 4
30 min 241 9,219 89,333 22 4
1 hour 237 8,705 81,834 17 4

(a) Number of failure events after temporal filtering using different Tth

Log size with Sth = Memory Network APP-IO Midplane Switch Node Cards
0 246 9,415 101,196 30 4
30 sec 217 139 331 30 4
1 min 217 139 318 30 4
5 min 215 139 299 30 4
30 min 208 114 237 22 4
1 hour 199 105 225 17 4

(b) Number of failure events after spatial filtering using different Sth

Table 1. Filtering thresholds

occurrence as well; not a single TBF value dominates,
but many TBF values are possible and have compara-
ble likelihoods. Unlike memory failures, both network
and application I/O failures occur in bursts. As a re-
sult, small TBF values are more popular than larger
ones. For example, 50% of the network failures occur
within half an hour after the previous failures, and
35% of the application I/O failures occur within half
an hour after the previous failures. In addition, an-
other 10% the network and application I/O failures
occur within a window of between half an hour and
an hour after the preceding failures. A possible rea-
son is that it is harder to pinpoint network as well
as application I/O failures than memory failures be-
cause they tend to involve more hardware components.
This hypothesis is supported by the results presented
in Table 1 (a) and (b), which show that a network or
application I/O failure is usually reported by many lo-
cations simultaneously (e.g. 139 network failures lead
to 9,415 records; 299 application I/O failures 102,442
records), while a memory failure is usually reported
by only one or few locations (e.g. 215 memory failures
only have 246 records). As a result, a network or ap-
plication I/O failure may hit several consecutive jobs,
or jobs that are running side by side simultaneously,
resulting in small TBF values.

Prediction Based on TBF: Based on the above ob-
servation, we can naturally develop a simple failure
prediction strategy for network and application I/O
failures: as soon as such a failure is reported, the sys-
tem should be closely monitored for a period of time
since more failures are likely to occur in the near fu-
ture. However, the tricky issue here is that if the next
failure is too close to the current one, say within a win-
dow of a few seconds, then predicting its occurrence is
not very useful. For instance, in the example scenario
shown in Figure 3, although f1 can be used to predict

the occurrence of f2, the gap between them is only
2 seconds, making the prediction less useful since few
meaningful actions can be taken in such a short time
frame. On the other hand, f1 can be used to predict
the occurrence of f3 and f4, and both predictions are
useful. As a result, in this example, we can use this
simple prediction strategies to make effectively predict
the following three failures: f3, f4, and f5.

We have run the proposed prediction algorithms
against the network failures and application I/O fail-
ures. In the experiments, we assume that a failure can
be predicted by another failure that occurs within a
window between 5 minutes and 2 hours before its own
occurrence. The rationale of choosing this window du-
ration is that predicting a failure that will occur within
5 minutes is not very useful, and that monitoring the
system for more than 2 hours incurs a high overhead.
Using this window size, we find that we can predict 52
network failures out of 139 (37%), and 143 application
I/O failures out of 299 (48%). Furthermore, if we lump
all the failures together, and use this strategy, then we
can predict 370 failures out of 687 (54%). To further
support the feasibility of this strategy, Figures 2 (a)
and (b) reveal that subsequent failures tend to occur
on the same midplane or neighboring midplane(s).

3.2 Spatial Characteristics

After considering the temporal characteristics of
failures, we next look at their spatial characteristics,
i.e. how the failures are distributed across the 128
midplanes. Figures 4 (a)-(d) present the number of
failures that have occurred on each midplane during
the entire period. In order to study the spatial distri-
bution of failures, we do not perform the normal spa-
tial filtering algorithm, in which all the failure records
(1) whose entry data are the same, (2) whose job
IDs are identical, (3) whose timestamps are within a
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Figure 1. Temporal distribution of failure events from 8/2/05 to 11/18/05. The top four plots show the
number of failure events observed every day during the duration of 109 days, and the bottom four
plots show the probability density function (PDF) of the TBF.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Midplane ID

N
um

be
r 

of
 F

ai
lu

re
s

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Midplane ID

N
um

be
r 

of
 F

ai
lu

re
s

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

Midplane ID

N
um

be
r 

of
 F

ai
lu

re
s

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Midplane ID
N

um
be

r 
of

 F
ai

lu
re

s

(a) entire system (b) memory failures (c) network failures (d) application I/O failures

Figure 4. Number of failures for each midplane during the period between 08/02/05 and 11/18/05. In
these results, we have performed spatial filtering within a midplane, by removing redundant records
from different nodes within a midplane, but not across midplanes.

window of Sth from each other, and (4) whose loca-
tions are different, are coalesced into one single failure
record. Instead, we adopt a partial spatial filtering
algorithm, which coalesces redundant failure records
only within the boundary of a midplane. Those fail-
ure records, though satisfying the conditions (1)-(3),
but from different midplanes, then stay uncompressed.
Hence, summing up the number of failures for each
midplane after using the partial spatial filtering algo-
rithm, results in a larger number than what is reported
in earlier sections due to the redundancy between mid-
planes. Specifically, using the partial spatial filtering
algorithm can lead to 230 memory failure records (ver-
sus 215 after using the normal algorithm), 180 network
failure records (versus 139 after using the normal al-
gorithm), and 14303 application I/O failure records
(versus 299 using the normal algorithm).

Figure 4 shows that failures from different compo-
nents demonstrate different spatial behaviors. Like
the case in temporal distribution, memory failures are
fairly evenly distributed across all the midplanes; 104
out of 128 midplanes have reported failures, and the
maximum number of memory failures a midplane has
is 7. This observation indicates that all the midplanes
have a similar probability of failing in their memory
subsystem, and that it is hard to predict memory fail-
ures based on the spatial characteristics. Similarly,
we also observe that every midplane has a compara-
ble number of application I/O failures (refer to Fig-
ure 4(d)). This observation, however, is not because
all the midplanes have uniform probabilities of fail-
ing in the I/O subsystem, but due to the fact that an
application I/O failure can be detected/reported by
many midplanes simultaneously. Therefore, it is not
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Figure 3. Prediction algorithm based on TBF

very feasible to predict application I/O failures using
their spatial distribution.

Network failures show more pronounced skewness in
the spatial distribution. Among the 128 midplanes, 61
of them have network failures, and midplane 103 alone
experiences 35 failures, 26% of the total network fail-
ures. In addition, 6% of the midplanes encounter 61%
of the failures. Because of this skewness, we propose
to develop a simple prediction strategy for network
failures.

Failure Prediction Based on Spatial Skewness:

For network failures, we can focus on those midplanes
that have reported more failures than others because
they are likely to have even more failures in the future.
Figure 5 shows the time series of failure occurrence on
midplane 103, which has the most number of failures
(35) among all the midplanes. Clearly, most of the
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Figure 5. The time series of failure occurrence on
midplane 103

failures on midplane 103 are close to each other tem-
porally as well. This observation has two implications
on the failure prediction: (1) this simple prediction
strategy is very promising since most of the failures
are clustered together; and (2) the hotspot midplane
may change with time, and we need to dynamically
choose the appropriate hotspot.

4 Predicting Failures Using the Occur-
rence of Non-Fatal Events

After studying the temporal/spatial characteristics
of the BlueGene/L fatal events, we next investigate the
correlation between fatal events and non-fatal events.
Such correlation may lead to efficient ways of predict-
ing the occurrence of fatal events, and thus minimizing
the adverse impact of such events on system perfor-
mance.

Since exploring the correlation in detail requires an
enormous amount of effort simply due to the volume of
the non-fatal events, we first conduct a quick experi-
ment to evaluate the likelihood of such correlation. For
this purpose, we take those fatal events (after filtering)
with a valid JOB ID field, and search the raw logs to
examine whether the same job has also reported non-
fatal events before this fatal event. This experiment
reveals that, among 134 jobs that are terminated by
a fatal memory failure, 82 reported one or more non-
fatal events; among 34 jobs that are terminated by a
fatal network failure, 15 reported one or more non-
fatal events. (There are more jobs that failed due to
memory or network failures, but not all of them have
a valid JOB ID field.) This observation shows that it
is promising to use the occurrence of non-fatal events
to predict the occurrence of fatal events.

Motivated by the observation from the quick ex-
periment, we next conduct a more detailed study to
extract the occurrence pattern of both the fatal and
non-fatal events. Again, we limit our investigation to
events that have a valid JOB ID field. We first filter
all the non-fatal evens using the same three-step fil-
tering algorithm as described in Section 2.2. Then we
mix the filtered fatal and non-fatal events, and count
the number of events each job has encountered. (An
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Figure 6. The number of non-fatal and fatal events for each job. On the x-axis, we obtain the job
sequence number by subtracting the minimum JOB ID from the original JOB ID field of the raw log.

no. of jobs with n no. of failures within a window
n

non-fatal events (x) of 5 jobs after these jobs (y)
y/x (%)

[40,∞) 4 1 25
[20, 40) 9 2 22.22
[10, 20) 30 8 26.67
[2, 10) 257 53 20.62

1 1543 74 4.70

(a) The correlation between non-fatal events and fatal events

Number of failures with a valid JOB ID field 168
Number of failures that follow non-fatal events (within a window of 5 jobs) 138
Number of failures that follow another failure (within a window of 5 jobs) 16
Number of stand-alone failures 14

(b) Some statistics about fatal failures

Table 2. Exploring the correlation between non-fatal events and fatal failures based on the job ID
field

job has at most one fatal event.) In this process, we
lump together memory events and network events be-
cause most of the application I/O events do not have
a valid Job ID field. Figure 6 plots the number of non-
fatal/fatal events reported by each job, and the x-axis
is normalized by subtracting the minimum job ID from
every job ID. The figure shows that large bursts of non-
fatal events are likely followed by fatal failures. More
specifically, we observe that, if an job experiences fre-
quent occurrence of non-fatal events, either itself or
jobs immediately following it may be terminated by a
fatal failure.

Tables 2 (a) and (b) present detailed statistics
about the correlation between the occurrence of non-
fatal and fatal events. There are 168 fatal mem-
ory/network failures that have a valid JOB ID field,
among which only 14 failures are stand-alone, i.e. not
within a window of 5 jobs after any job with non-fatal

events or fatal events. 16 failures occur within a win-
dow of 5 jobs after another fatal failure, and 138 fail-
ures are within a window of 5 jobs after an job with
non-fatal events. Further, according to Table 2 (a),
these 138 fatal failures are more likely to occur after
jobs that experience more non-fatal events (after fil-
tering). For example, if an job reports more than 40
non-fatal events, then there is a 25% chance that a
fatal failure will occur within a window of 5 jobs after
it. On average, we observe that if an job experiences
2 or more non-fatal events after filtering, then there is
a 21.33% chance that a fatal failure will follow. For
jobs that only have 1 non-fatal event, this probabil-
ity drops to 4.7%. Given that only 300 jobs out of
24,942 (1.2%) have two or more non-fatal events dur-
ing their lifetimes, it is very reasonable to develop a
simple prediction strategy: if an job has observed two
non-fatal events, then a fatal failure may occur to this
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job, or the following four jobs. This prediction strat-
egy only incurs very little overhead, and it can predict
65 out of 168 fatal failures. In addition, if one is will-
ing to pay slightly more cost, by checking the following
5 jobs after observing one non-fatal event (1843 jobs
have one or more non-fatal events out of 24,942 to-
tal jobs), then one can predict 82% of the total fatal
failures. Furthermore, if one can also monitor 5 jobs
after a fatal failure, then 16 more fatal failures can be
caught, corresponding to 9.5% of total failures. This
extra overhead is negligible, since the number of fatal
failures is low compared to the total number of jobs.

An interesting phenomenon is that after filtering,
only a few types of non-fatal events remain, all with
the severity level of INFO. These events are “instruc-
tion cache parity error corrected”, “critical input inter-
rupt”, “ddr: activating redundant bit steering”, “ddr:
unable to steer”. Furthermore, these events appear be-
fore both memory failures and network failures. This
will further simplify our prediction strategy because
we only need to track very few types of INFO events.

5 Related Work

Understanding (and possibly anticipating) the fail-
ure properties of real systems is essential when devel-
oping pro-active fault-tolerance mechanisms. There
has been prior work on monitoring and predicting
failures for specific components in computer systems.
Storage is one such subsystem which has received con-
siderable attention because of its higher failure rates,
and their goals are somewhat similar to PROGNO-
SIS (except in a different context). S.M.A.R.T. is a
recent technology, that disk drive manufacturers now
provide, to help predict failures of storage devices [11].
SIGuardian[3] and Data Lifeguard [2] are utilities to
check and monitor the state of a hard drive, and pre-
dict the next failure, to take pro-active remedies before
the failure. More recently, a Reliability Odometer [22]
has been proposed for processors to track their wear-
and-tear and predict lifetimes.

Moving to parallel/distributed systems, Tang et al.
[26, 24, 25] studied the error/failure log collected from
a small (seven machines) VAXcluster system, to show
that most errors are recoverable and the failures on dif-
ferent machines are correlated. A confirmation of the
error propagation across machines was noted by [30]
on a heterogeneous cluster of 503 PC servers. A more
recent study [10] collected failure data from three dif-
ferent clustered servers (between 18-89 workstations),
and used Weibull distribution to model inter-failure
times. Both these studies [30, 10] found that nodes
which just failed are more likely to fail again in the
near future. At the same time, it has also been found
[27] that software related error conditions can accu-
mulate over time, leading to system failing in the long
run.

In addition to examining just the inter-failure times,
a more careful examination of all system events can
provide better insights/predictions. Consequently,
several studies [6, 29, 28], including ours [20], have ex-
amined system logs either in an online or offline fash-
ion, to identify causal events that lead to failures. The
imposed workload can also have a high correlation on
the failure properties of real systems as pointed out
in many studies [16, 15]. Cross-correlations between
the workload and system events can thus be useful to
develop better failure prediction models.

However, there is a void in event/failure data of
a large scale parallel system which can be used to
not only develop fault prediction models, but also for
designing/evaluating runtime solution strategies, that
this paper attempts to fill using event/failure logs from
the BlueGene/L system.

6 Concluding Remarks and Future Di-
rections

Frequent fault occurrences and their consequences
on system performance and management costs are a
rapidly growing concern for large-scale parallel sys-
tems, such as IBM BlueGene/L. While fault avoid-
ance has been shown impossible, fault-tolerance has
not made much progress either, mainly due to the
high overheads involved in runtime techniques, such
as checkpointing, and the complete lack of hints about
when and where the next failure will occur. Though it
is widely believed that failures are hard to predict, as
the scale of the system/application increases, and the
logging mechanism evolves, it is worthwhile to revisit
the feasibility of predicting failure occurrences.

This paper has tackled this challenge by looking
at RAS event logs from BlueGene/L over a period
of 100 days. It finds strong correlations between the
occurrence of a failure and several factors, including
the time stamp of other failures, the location of other
failures, and even the occurrence of non-fatal events.
Based on these correlations, three simple yet powerful
prediction schemes have been designed, and their effec-
tiveness have been demonstrated through analysis and
empirical results. With these prediction schemes de-
ployed online, one is able to effectively predict failures
in the future, and possibly take remedial actions to
mitigate the adverse impacts that these failures would
cause. Also, this paper shows that these prediction
schemes can be implemented at a low runtime cost.

This paper has just started to address a difficult
problem by looking at the RAS data from the early
phase of BlueGene/L. As the system stabilizes, we
plan to continue to explore correlations between fail-
ure events with more factors, such as CPU utilization.
Concurrently, we will also develop effective runtime
strategies such as failure-aware checkpointing and job
scheduling, utilizing the output from the proposed pre-
diction techniques.
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