Error Log Processing for Accurate Failure Prediction

Felix Salfner

International Computer Science Institute, Berkeley

salfner @icsi.berkeley.edu

Abstract

Error logs are a fruitful source of information both for di-
agnosis as well as for proactive fault handling — however
elaborate data preparation is necessary to filter out valu-
able pieces of information. In addition to the usage of
well-known techniques, we propose three algorithms: (a)
assignment of error IDs to error messages based on Lev-
enshtein’s edit distance, (b) a clustering approach to group
similar error sequences, and (c) a statistical noise filtering
algorithm. By experiments using data of a commercial
telecommunication system we show that data preparation
is an important step to achieve accurate error-based online
failure prediction.

1 Introduction

Despite of some early work such as [1], preparation of
data has long been seen as the “inevitable evil” and has
hence been neglected in most scientific papers. This ap-
plies especially to logfile data. However, with the emer-
gence of concepts such as IBM’s autonomic computing
[2], the importance of logfiles as a valuable source of in-
formation on a system’s status continues to increase, as
can be seen from a variety of recent works such as [3] and
the development of standards such as the Common Base
Event [4]. This paper shows that clever mining of infor-
mation from logfiles can significantly improve accuracy
of an error-based online failure prediction method. How-
ever, the goal is not to provide a comprehensive overview
of various techniques that could be applied — we focus on
a description of the techniques we have applied and how
these techniques improved our results for online failure
prediction.

error events

failure?
>

data window
prediction
present time

Figure 1: Error-based online failure prediction.

Steffen Tschirpke
Humboldt-Universitidt zu Berlin
tschirpk @informatik.hu-berlin.de

The term online failure prediction subsumes techniques
that try to forecast the occurrence of system failures dur-
ing runtime based on continuous system observation. It
should not be confused with failure prediction techniques
in traditional reliability theory. More specifically, the fail-
ure prediction approach used in this paper is based on the
observation of error events during runtime, i.e., upcom-
ing failures are predicted by analyzing the errors that have
occurred recently before present time (see Figure 1).

The failure prediction technique is based on hidden
semi-Markov models (HSMM) and has been described in
detail in [5]. However, the main focus of this paper is not
the prediction model but the preparation of the data fed
into the HSMM. More specifically, the main steps of data
preparation are:

e Input data of the failure predictor are error se-
quences. Each error event consists of a timestamp
and a distinctive integer error ID denoting the type
of the error event. The process of sequence extrac-
tion is described in Section 3.

e Since the HSMM failure predictor applies techniques
from machine learning, training data needs to be ex-
tracted that should represent system characteristics
as precisely as possible. In this paper we propose
a method to group similar failure-related error se-
quences. Grouping is based on a sequence clustering
technique (see Section 4).

e Error logs often contain events that are unrelated to
a specific fault, but due to parallelism in the system
these events are interweaved with unrelated events.
This can be seen as noise in the data set. We propose
a noise filtering algorithm based on a statistical test
in Section 5.

The data used in this paper derives from a commer-
cial telecommunication system which is described in Sec-
tion 2. In order to demonstrate the effect of sequence
clustering and noise filtering on failure prediction accu-
racy we show experiments in Section 6. It is shown that
without data preparation techniques failure prediction ac-
curacy drops by up to 45%.

2 The Data Set

The data set used for experiments derives from a commer-
cial telecommunication system. Its main purpose is to re-
alize a Service Control Point (SCP) in an Intelligent Net-
work (IN), providing Service Control Functions (SCF) for
communication related management such as billing, num-
ber translations or prepaid functionality. Services are of-
fered for Mobile Originated Calls (MOC), Short Message
Service (SMS), or General Packet Radio Service (GPRS).
Service requests are transmitted to the system using vari-
ous communication protocols such as Remote Authentica-
tion Dial In User Interface (RADIUS), Signaling System
Number 7 (SS7), or Internet Protocol (IP). Since the sys-
tem is a SCP, it cooperates closely with other telecommu-
nication systems in the Global System for Mobile Com-
munication (GSM), however, it does not switch calls it-
self. The system is realized as multi-tier architecture em-
ploying a component-based software design. At the time
when measurements were taken the system consisted of
more than 1.6 million lines of code, approximately 200
components realized by more than 2000 classes, running
simultaneously in several containers, each replicated for
fault tolerance.

Specification of the telecommunication system requires
that within successive, non-overlapping five minute inter-
vals, the fraction of calls having response time longer than
250ms must not exceed 0.01%. This definition of the fail-
ures to be predicted is equivalent to a required four-nines
interval service availability. Hence the failures that are
predicted by the HSMM failure predictor belong to the
class of performance failures.

The setup from which data has been collected is de-
picted in Figure 2. A call tracker kept trace of re-
quest response times and logged each request that showed
a response time exceeding 250ms. Furthermore, the
call tracker provided information in five-minute intervals
whether call availability dropped below 99.99%. More
specifically, the exact time of failure has been determined
to be the first failed request that caused interval availabil-
ity to drop below the threshold.

Telecommunication System . Call Tracker
response times
error logs failure log

Figure 2: Experimental setup. Call response times have been
tracked from outside the system in order to identify failures.

We had access to data collected at 200 non-consecutive
days spanning a period of 273 days. The entire dataset
consists of error logs with a total of 26,991,314 log
records including 1,560 failures of two types: The first
type (885 instances) relates to GPRS and the second (675

instances) to SMS and MOC services. In this study, only
the first failure type has been investigated.

3 Data Preprocessing

3.1 Creating Machine Processable Logfiles

Traditionally, logfiles were intended to be read by humans
in order to support fault diagnosis and root cause analysis
after a system had failed. They are not well-suited for ma-
chine processing. An (anonymized) example log record
consisting of three lines in the error log is shown in Fig-
ure 3.

2004/04/09-19:26:13.634089-29846-00010-LIB.ABC.USER-AGOMP#020200034000060|
020101044430000/000000000000-020234£43301e000-2.0.1[020200003200060

2004/04/09-19:26:13.634089-29846-00010-LIB-ABC.USER-NOT: src=ERROR-APPLICATION
sev=SEVERITY.MINOR 1d=020d02222083730a

2004/04/09-19:26:13.634089-29846-00010-LIB-ABC.USER-unknown nature of address

value specified

Figure 3: Anonymized error log record from the telecommunica-
tion system. The record consists of three log lines.

In order to simplify machine processing, we applied the
transformations described in the following paragraphs.

Eliminating logfile rotation. Logfile rotation denotes a
technique to switch to a new logfile when the current log-
file has reached a size limit, time span limit, or both. In
the telecommunication system logging was organized in
a ring-buffer fashion consisting of n logfiles. Data has
been reorganized to form one large chronologically or-
dered logfile.

Identifying borders between messages. While error
messages “travel” through various modules and architec-
tural levels of the system, more and more information is
accumulated until the resulting log-record is written to the
logfile. This often leads to situations where the original er-
ror message is quoted several times within one log record
and one log record spans several lines in the file. We elim-
inated duplicated information and assigned each piece to
a fixed column in the log such that each line corresponds
to exactly one log record. This also involved the usage of
a unique field delimiter.

Converting time. Timestamps in the original log-
files were tailored to humans and had the form
2004/04/09-19:26:13.634089 stating that the
log message occurred at 7:26pm and 13.634089 seconds
on 04/09/2004. In order to enable, e.g., computation of the
time interval between two error messages we transformed
each timestamp into real-valued UTC, which roughly re-
lates to seconds since Jan. 1st, 1970. This also involved
the issue of timezone information.

3.2 Assigning IDs to Error Messages

Many error analysis tools including the HSMM failure
predictor rely on an integer number to characterize the
type of each error message. However, in our case such
an identifier was not available. This section describes the
algorithm we used to assign an ID to each error message
in the log.

The type of an error report is only implicitly given by
a natural language sentence describing the event. In this
section, we propose a method to automatically assign er-
ror IDs to messages on the basis of Levenshtein’s edit dis-
tance. Note that the error ID is meant to characterize what
has happened, which corresponds to the fype of an error
message in contrast to the message source, as has been
discussed in [6].

Removal of numbers. Assume that the following mes-
sage occurs in the error log

process 1534: end of buffer reached

The situation that exactly process with number 1534
reaches the end of a buffer will occur rather rarely. Fur-
thermore, the process number relates to the source rather
than the type of the message. Hence, all numbers and log-
record specific data such as IP addresses, etc. are replaced
by placeholders. For example, the message shown above
is translated into:

process xx: end of buffer reached

In order not to loose the information, a copy of the original
message is kept.

Number assignment. Since a 100% complete replace-
ment of all record-specific data is infeasible (there were
even typos in the error messages) error IDs are assigned
on the basis of Levenshtein’s edit distance [7] expressing
dissimilarity of messages. After number removal, Leven-
shtein distance is computed between all pairs of log mes-
sages appearing in the log. By applying a threshold on
dissimilarity, similar messages receive the same integer
number — the error ID.

Applying this algorithm to the telecommunication data
resulted in an immense reduction of the number of mes-
sage types: While in the original dataset there were
1,695,160 different log-messages, the number of message
types could be reduced to 1,435 (see Table 1)

Applying a simple threshold might seem too simplistic
to make a decision which messages are grouped together.
However, experiments have shown that this is not the case.
Figure 4 provides a plot where the gray value of each point
indicates Levenshtein distance of the corresponding mes-
sage pair for a selection of messages. In the plot all mes-
sages that are assigned the same error ID are arranged next

Data ‘ No of msgs ‘ Reduction in %
Original 1,695,160 | n/a

Without numbers 12,533 | 99.26%
Levenshtein 1,435 | 88.55% /99.92%

Table 1: Number of different log messages in the original data,
after substitution of numbers by placeholders, and after clustering
by the Levenshtein distance metric.

to each other. Except for a few blocks in the middle of the
plot, dark steps only occur along the main descending di-
agonal and the rest of the plot is rather light-colored. This
indicates that strong similarity is only present among mes-
sages with the same ID and not between other message
types. In addition to the plot, we have manually checked
a selection of a few tens of messages. Hence using a fixed
threshold is a simple yet robust approach. Nevertheless,
as is the case for any grouping algorithm it may assign the
same ID to two error message that should be kept separate.
For example, if process 1534 was a crucial singleton pro-
cess in the system (like the “init” process in the Linux ker-
nel, which always has process ID one) the number would
be an important piece of information that should not be
eliminated. However, in our case the significant reduction
in the number of messages outweighs such effects. Note
that Levenshtein distances have to be computed only once
for any pair of messages.

A

= S —

'~

~

~

Figure 4: Levenshtein similarity plot for a subset of message
types. Points represent Levenshtein distance between one pair
of error messages (dark color indicates small distance).

3.3 Tupling

In [8], the authors note that repetitive log records occur-
ring more or less at the same time are frequently multiple
reports of the same fault. Tsao and Siewiorek introduced a
procedure called tupling, which basically refers to group-
ing of error events that occur within some time interval or
that refer to the same location [9]. Current research aims
at quantifying temporal and spatial tupling. For example,

in [10] the authors introduce a correlation measure for this
purpose.

We adopt the tupling method of [9]. However, equat-
ing the location reported in an error message with the true
location of the fault only works for systems with strong
fault containment regions. Since this assumption does not
hold for the telecommunication system under considera-
tion, spatial tupling is not considered any further, here.
The basic idea of tupling is that all errors showing an inter-
arrival time less than a threshold ¢ are grouped.! Grouping
can lead to two problems:

1. Error messages might be combined that refer to sev-
eral (unrelated) faults. This is called a collision.

2. If an inter-arrival time > ¢ occurs within the error
pattern of one single fault, this pattern is divided into
more than one tuple. This effect is called truncation.

Both the number of collisions and truncations depend
on e. If € is large, truncation happens rarely and collision
will occur very likely. If € is small the effect is vice versa.
To find an optimal ¢, the authors suggest to plot the num-
ber of tuples over €. This should yield an L-shaped curve:
If € equals zero, the number of tuples equals the number
of error events in the logfile. While ¢ is increased, the
number drops quickly. When the optimal value for ¢ is
reached, the curve flattens suddenly. Our data supports
this claim: Figure 5 shows the plot for a subset of one
million log records. The graph shows a clear change point
and a value of € = 0.015s has been chosen.

1000000
1

900000

number of tuples
I

800000

700000

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

epsilon [s]
Figure 5: Effect of tupling window size «: the graph shows the

resulting number of tuples depending on e for one million log
records.

3.4 Extracting Sequences

Two types of data sets are needed to train the HSMM-
based failure predictor: a set of failure-related error se-

n [9], there is a second, larger threshold to add later events if they
are similar, but this is not considered, here

quences and a set of non-failure-related sequences. In or-
der to decide whether a sequence is a failure sequence
or not, the failure log, which has been written by the
call tracker, has been analyzed, to extract timestamps and
types of failure occurrences. In this last step of data pre-
processing both types of sequences are extracted from the
data set.
Three parameters are involved in sequence extraction:

1. Lead-time. In order to predict failures before a fail-
ure occurs, extracted failure sequences preceded the
time of failure occurrence by time At;. In the exper-
iments we used a value of five minutes.

2. Data window size. The length of each sequence is
determined by a maximum time Aty. In the experi-
ments we used sequences of five minute length.

3. Margins for non-failure sequences. The set of non-
failure sequences should be extracted from the log
at times when the system is fault-free. However,
whether a system really is fault-free is hard to tell.
Therefore, we applied a “ban period” of size At,, be-
fore and after a failure. By visual inspection (length
of bursts of failures, etc.), we determined At,, to be
20 minutes.

Non-failure sequences have been generated using overlap-
ping time windows, which simulates the case that failure
prediction is performed each time an error occurs, and a
random selection has been used to reduce the size of the
training data set.

4 Failure Sequence Clustering

The term failure mechanism, as used in this paper, denotes
a principle chain of actions or conditions that leads to a
system failure. It is assumed that in complex computer
systems such as the telecommunication system various
failure mechanisms can lead to the same failure. Different
failure mechanisms can show completely different behav-
ior in the error event logs, which makes it very difficult
for the learning algorithm to extract the inherent “princi-
ple” of failure behavior in a given training data set. The
idea of clustering failure-related error sequences (which
for brevity reasons from now on will be called “failure
sequences”) is to group similar sequences and train a sep-
arate HSMM for each group. Failure sequence cluster-
ing aims at grouping failure sequences according to their
similarity — however, there is no “natural” distance met-
ric such as Euclidean norm for error event sequences. We
use sequence likelihoods from small HSMMs for this pur-
pose. The approach is inspired by [11] but yields separate
specialized models instead of one mixture model.

F1 FZ F3

TS AT TS WY

“@“ -2.1 4.2 9.7
i

b w00 2.6 13 102
i

by W) 78 6.9 1.2

]

Figure 6: Matrix of logarithmic sequence likelihoods. Each
element (i,7) in the matrix is logarithmic sequence likelihood
log [P(F?|M7)] for sequence F* and model M.

4.1 Obtaining the Dissimilarity Matrix

Most clustering algorithms require as their input data a
matrix of dissimilarities among data points (D). In our
case, each data point is a failure sequence F* and hence
D(4, j) denotes the dissimilarity between failure sequence
F?and FJ.

As first step a small HSMM M? is trained separately
for each failure sequence F*. The objective of the train-
ing algorithm is to adjust the HSMM parameters (e.g.,
transition probabilities and observation probability distri-
butions) to the training sequence, i.e., the HSMM is tuned
such that it assigns a high sequence likelihood to the train-
ing sequence.

In order to compute D(i,j) the sequence likelihood
P(F* M) is computed for each sequence F'* using each
model M7. Sequence likelihood is used as a similarity
score € [0,1]. Since model M7 has been trained with
sequence F, it assigns a high sequence likelihood to se-
quences F* that are similar to F7, and a lower sequence
likelihood to sequences F' that are less similar to F7. In
order to avoid numeric instabilities, the logarithm of the
likelihood (log-likelihood) is used (see Figure 6).

The resulting matrix is not yet a dissimilarity matrix,
since first, values are < 0 and second, sequence likeli-
hoods are not symmetric: P(F|M7) # P(F7|M?). This
is solved by taking the arithmetic mean of both likelihoods
and using the absolute value. Hence D(i, j) is defined as:

log [P(F'|M7)] + log [P(FI|M")]

6]

Still, matrix D is not a proper dissimilarity matrix
since a proper metric requires that D(i,j) =0, if
Fi' = FJ. There is no solution to this problem since
from D(j,j) =0 follows that P(F7|M7) =1. How-
ever, if M7 would assign a probability of one to F7 it
would assign a probability of zero to all other sequences

F' # FJ, which would be useless for clustering. Nev-
ertheless, D(j,j) is close to zero since it denotes log-
sequence likelihood for the sequence, model M7 has been
trained with.

In order to achieve a good measure of similarity among
sequences models should not be overfitted to their train-
ing sequences. Furthermore, one model needs to be
trained for each failure sequence in the training data set.
Therefore, models M?* have only a few states and are er-
godic (have the structure of a clique). An example is
shown in Figure 7. In order to further avoid too specific
models, exponential distributions for inter-error durations
and a uniform background distribution have been used.
Background distributions add some small probability to

&
Y

Figure 7: Topology of HSMMs used for computation of the dis-
similarity matrix. Observation symbol probabilities are omitted.

all HMM observation probabilities following a (data in-
dependent) distribution such as uniform.

4.2 Grouping Failure Sequences

In order to group similar failure sequences, a clustering al-
gorithm has been applied to the dissimilarity matrix. Due
to the fact that the number of groups cannot be determined
upfront and can vary greatly, we applied hierarchical clus-
tering methods (both agglomerative and divisive, c.f.,, e.g.,
[12]). The actual number of groups has been determined
by visual inspection of banner plots.

4.3 Analysis of Sequence Clustering

The failure sequence clustering approach implies several
parameters such as the number of states of the HSMMs,
or the clustering method used. This section explores their
influence on sequence clustering (not on failure prediction
accuracy, which is investigated in Section 6). In order to
do so many combinations of parameters have been ana-
lyzed, but only key results can be presented here. In order
to support clarity of the plots, a data excerpt from five
successive days including 40 failure sequences has been
used.

We explored one divisive algorithm (DIANA), and four
agglomerative approaches (AGNES) using single linkage,
average linkage, complete linkage and Ward’s procedure

(c.f. [12]) Figure 8 shows banner plots for all methods
using a dissimilarity matrix that has been generated using
a HSMM with 20 states and a uniform background distri-
bution with a weighting factor of 0.25. Banner plots con-
nect data points (sequences) by a bar of length to the level
of distance metric where the two points are merged / di-
vided. Single linkage clustering (second row, left) shows

agnes average agnes complete
20 ctatez bg = 0.25 20 ctatez bg =025

agnes ward
20 ctates. bg=0.25

o =0 100 150 00 250 300 =0 400
Haight Haight
Agomeraiie CosMrsn = 055

na standard
20 states bg= 025

oo 1@ 1@
e

DOhishve Gagllcent = 062

X

Figure 8: Clustering of 40 failure sequences using five different
clustering methods: agglomerative clustering (“agnes”) using av-
erage, complete, and single linkage, agglomerative clustering us-
ing Ward’s method and divisive clustering (“diana”).

the typical chaining effect, which does not result in a good
separation of failure sequences yielding an agglomera-
tive coefficient of only 0.45. Complete linkage (first row,
right) performs better resulting in a clear separation of two
groups and an agglomerative coefficient of 0.72. Not sur-
prisingly, average linkage (first row, left) resembles some
mixture of single and complete linkage clustering. Divi-
sive clustering (bottom row, left) divides data into three
groups at the beginning but does not look consistent since
groups are split up further rather quickly. The resulting
agglomerative coefficient is 0.69. Finally, agglomerative
clustering using Ward’s method (second row, right) results
in the clearest separation achieving an agglomerative co-
efficient of 0.85. The results are roughly the same if other
parameter settings are considered.

In order to investigate the impact of the number of
states IV of the HSMMs, we performed several experi-
ments ranging from five to 50 states. We found that fail-
ure grouping only works well if the number of states is
roughly above v/L where L denotes the average length of
the sequences. This might be explained by the fact that

Clustering
Filtering Group 1 Filtering Group
S I F'
=1
s BA =
A

time of

Training Sequences for failure

Failure Mechanism 1

Training Sequences for
Failure Mechanism n

Figure 9: After clustering similar failure sequences, filtering is ap-
plied to remove failure unrelated errors from training sequences.
Times of failure occurrence are indicated by V.

there are roughly N? transitions in the model.

We also investigated the effect of background distri-
butions and found that some background distribution is
necessary (otherwise, each model only recognizes exactly
the sequence it has been trained with). However, the ac-
tual strength (or weight) of the background distribution
has only small impact as long as it stays in a reasonable
range (if the weighting factor for background distributions
gets too large, the “chaining-effect” can be observed and
the agglomerative coefficient is decreasing).

5 Filtering the Noise

The objective of the previous clustering step was to group
failure sequences that are traces of the same failure mech-
anism. Hence it can be expected that failure sequences of
one group are more or less similar. However, experiments
have shown that this is not always the case. The reason for
this is that error logfiles contain noise (unrelated events),
which results mainly from parallelism within the system.
Hence we applied some filtering to eliminate noise and
to mine the events in the sequences that make up the true
pattern.

The filtering mechanism is based on the notion that
within a certain time window prior to failure, indicative
events occur more frequently within failure sequences
of the same failure mechanism than within all other se-
quences. The precise definition of “more frequently” is
based on the x? test of goodness of fit.

The filtering process is depicted in the blow-up of Fig-
ure 9 and performs the following steps:

1. Prior probabilities are estimated for each symbol.
Priors express the “general” probability that a given
symbol occurs.

2. All failure sequences of one group (which are simi-
lar and are expected to represent one failure mecha-
nism), are aligned such that the failure occurs at time

Entire dataset

Training
sequences

Figure 10: The three different sequence sets that can be used to
compute symbol prior probabilities.

t = 0. In the figure, sequences F'!, F2, and F** are
aligned and the dashed line indicates time of failure
occurrence.

3. Time windows are defined that reach backwards in
time. The length of the time window is fixed and time
windows may overlap. Time windows are indicated
by shaded vertical bars in the figure.

4. The test is performed for each time window sepa-
rately, taking into account all error events that have
occurred within the time window in all failure se-
quences of the group.

5. Only error events that occur significantly more fre-
quently in the time window than their prior proba-
bility stay in the set of training sequences. All other
error events within the time window are removed.

6. Filtering rules are stored for each time window spec-
ifying error symbols that pass the filter. The filter
rules are used later for online failure prediction in
order to filter new sequences that occur during run-
time.

More formally, each error e; that occurs in failure se-
quences of the same cluster within a time window (¢ —
At, t] prior to failure is checked for significant deviation
from the prior p! by a test variable known from y-grams,
which are a non-squared version of the testing variable
of the x? goodness of fit test (see, e.g., [13]). The test-
ing variable X is defined as the non-squared standardized
difference:
ni —npy

Vnp?
where n; denotes the number of occurrences of error e;
and n is the total number of errors in the time window.
An analysis reveals that all X; have an expected value of
zero and variance of one, hence they can all be compared
to one threshold c: Filtering eliminates all errors e; from
the sequences within the time window, for which X; < c.
For online prediction, the sequence under investigation is
filtered the same way before sequence likelihood is com-
puted.

X; = ©)

Three variants regarding the computation of priors ;"
exist (see Figure 10):

1. p? are estimated from all training sequences (failure
and non-failure). X; compares the frequency of oc-
currence of error e; to the frequency of occurrence
within the entire training data.

2. p? are estimated from all failure sequences (irrespec-
tive of the groups obtained from clustering). X;
compares the frequency of occurrence of error e; to

all failure sequences (irrespective of the group).

3. pY are estimated separately for each group of failure

sequences from all errors within the group (over all
time windows). For each error e; the testing variable
X; compares the occurrence within one time window
to the entire group of failure sequences.

Experiments have been performed on the dataset used
previously for clustering analysis and six non-overlapping
filtering time windows of length 50 seconds have been an-
alyzed. Figure 11 plots the average number of symbols in
one group of failure sequences after filtering out all errors
with X; < ¢ for various values of c.

group 1

ﬁ i RSN «cluster prior
-~ failure sequenca prior
— all sequence prior

mean sequence length [symbols]

filtering threshold ¢

Figure 11: Mean sequence length depending on threshold ¢ for
three different priors.

Regarding the prior computed from all sequences (solid
line), all symbols pass the filter for very small thresholds.
At some value of c the length of sequences starts dropping
quickly until some point where sequence lengths stabilize
for some range of c. With further increasing c average se-
quence length drops again until finally not a single symbol
passes filtering. Similar to the tupling heuristic by [8], we
consider a threshold at he beginning of the middle plateau
to best distinguish between “signal” and noise. Other pri-
ors do not show this behavior, hence we used priors esti-
mated from all sequences (first prior).

6 Results

As stated before, the overall objective was to predict fail-
ures of the telecommunication system as accurate as pos-
sible. The metric used to measure accuracy of predictions
is the so-called F-measure, which is the harmonic mean
of precision and recall. Precision is the relative number
of correctly predicted failures to the total number of pre-
dictions, and recall is the relative number of correctly pre-
dicted failures to the total number of failures. A definition
and comprehensive analysis can be found in Chapter 8.2
of [5]. The HSMM prediction method involves a cus-
tomizable threshold determining whether a failure warn-
ing is issued very easily (at a low level of confidence in the
prediction) or only if it is rather sure that a failure is im-
minent, which affects the trade-off between precision and
recall.? In this paper we only report maximum achievable
F-measure.

Applying the full chain of data preparation as described
in Sections 3 to 5 yields a failure prediction F-measure of
0.66. A comparative study has shown that this result is
significantly more accurate than best-known error-based
prediction approaches (see Chapter 9.9 of [5]). In or-
der to determine the effect of clustering and filtering, we
have conducted experiments based on ungrouped (unclus-
tered) data as well as on unfiltered data. Unfortunately,
experiments with neither filtering nor grouping were not
feasible. All experiments have been performed with the
same HSMM setup (i.e., number of states, model topol-
ogy, etc.). Results unveil that data preparation plays a sig-
nificant role in achieving accurate failure predictions (see
Table 2).

Method | Max. F-Measure | rel. Quality
Optimal results 0.66 100%
Without grouping 0.5097 77%
Without filtering 0.3601 55%

Table 2: Failure prediction accuracy expressed as maximum F-
measure from data with full data preparation, without failure se-
quence grouping (clustering) and without noise filtering.

7 Conclusions

It is common perception today that logfiles, and in partic-
ular error logs, are a fruitful source of information both
for analysis after failure and for proactive fault handling
which frequently builds on the anticipation of upcoming
failures. However, in order to get (machine) access to the
information contained in logs, the data needs to be put
into shape and valuable pieces of information need to be
picked from the vast amount of data. This paper described

2In fact, either precision or recall can be increased to 100% at the
cost of the other.

the process we used to prepare error logs of a commercial
telecommunication system for a hidden semi-Markov fail-
ure predictor.

The preparation process consists of three major steps
and involved the following new concepts: (a) an algo-
rithm to automatically assign integer error IDs to error
messages, (b) a clustering algorithm for error sequences,
and (c) a statistical filtering algorithm to reduce noise in
the sequences. We conducted experiments to assess the
effect of sequence clustering and noise filtering. The re-
sults unveiled that elaborate data preparation is a very im-
portant step to achieve good prediction accuracy.

In addition to failure prediction the proposed tech-
niques might also be helpful to speed up the process of
diagnosis: For example, if root causes have been identi-
fied for each failure group in a reference data set, identifi-
cation of the most similar reference sequence would allow
a first assignment of potential root causes for a failure that
has occurred during runtime.

References

[1]1 R.K.Iyer, L. T. Young, and V. Sridhar. Recognition of error symp-
toms in large systems. In Proceedings of 1986 ACM Fall joint com-
puter conference, pages 797-806, Los Alamitos, CA, USA, 1986.
IEEE Computer Society Press.

[2

—

Paul Horn. Autonomic computing: IBM’s perspective on the state
of information technology, Oct. 2001.

[3

=

Adam Oliner and Jon Stearley. What supercomputers say: A study
of five system logs. In IEEE proceedings of International Confer-
ence on Dependable Systems and Networks (DSN’07), pages 575—
584. IEEE Computer Society, 2007.

[4

=

David Bridgewater. Standardize messages with the common base
event model, 2004.

[5] Felix Salfner. Event-based Failure Prediction: An Extended Hid-
den Markov Model Approach. dissertation.de - Verlag im Internet
GmbH, Berlin, Germany, 2008. (Available as PDF).

=

[6

—_

Felix Salfner, Steffen Tschirpke, and Miroslaw Malek. Compre-
hensive logfiles for autonomic systems. In IEEE Proceedings
of IPDPS, Workshop on Fault-Tolerant Parallel, Distributed and
Network-Centric Systems (FTPDS), 2004.

[7

—

Alberto E. D.T. Apostolico and Zvi Galil. Pattern Matching Algo-
rithms. Oxford University Press, 1997.

[8

—

R. Iyer and D. Rosetti. A statistical load dependency of cpu errors
at slac. In IEEE Proceedings of 12th International Symposium on
Fault Tolerant Computing (FTCS-12), 1982.

[9]1 M. M. Tsao and Daniel P. Siewiorek. Trend analysis on system er-
ror files. In Proc. 13th International Symposium on Fault-Tolerant
Computing, pages 116—119, Milano, Italy, 1983.

[10] Song Fu and Cheng-Zhong Xu. Quantifying temporal and spatial
fault event correlation for proactive failure management. In /EEE
Proceedings of Symposium on Reliable and Distributed Systems
(SRDS 07), 2007.

(1]

[12]

[13]

Padhraic Smyth. Clustering sequences with hidden Markov mod-
els. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche,
editors, Advances in Neural Information Processing Systems, vol-
ume 9, page 648. The MIT Press, 1997.

Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in
Data. John Wiley and Sons, New York, 1990.

Rainer Schlittgen. Einfiihrung in die Statistik: Analyse und Mod-
ellierung von Daten. Oldenbourg-Wissenschaftsverlag, Miinchen,
‘Wien, 9 edition, 2000.

