Predicting Computer System Failures Using Support Vector Machines

Errin W. Fulp*

“Wake Forest University
Department of Computer Science
Winston-Salem, NC

Abstract

Mitigating the impact of computer failure is possible if
accurate failure predictions are provided. Resources, ap-
plications, and services can be scheduled around pre-
dicted failure and limit the impact. Such strategies are
especially important for multi-computer systems, such
as compute clusters, that experience a higher rate fail-
ure due to the large number of components. However
providing accurate predictions with sufficient lead time
remains a challenging problem.

This paper describes a new spectrum-kernel Sup-
port Vector Machine (SVM) approach to predict failure
events based on system log files. These files contain mes-
sages that represent a change of system state. While a
single message in the file may not be sufficient for pre-
dicting failure, a sequence or pattern of messages may
be. The approach described in this paper will use a slid-
ing window (sub-sequence) of messages to predict the
likelihood of failure. The a frequency representation of
the message sub-sequences observed are then used as in-
put to the SVM. The SVM then associates the messages
to a class of failed or non-failed system. Experimental
results using actual system log files from a Linux-based
compute cluster indicate the proposed spectrum-kernel
SVM approach has promise and can predict hard disk
failure with an accuracy of 73% two days in advance.

1 Introduction

Hardware failures, such as hard disk and processor fail-
ures, can impede the execution of applications on High-
Performance Computing (HPC) systems since the recov-
ery process can require unexpected amounts of time and
resources. The impact of failure is more substantial for
large-scale HPC clusters that consist of many computing
elements. BlueGene demonstrated that the mean-time to
failure of these systems is inversely proportional to the
system size (number of computing elements) [1], which

Glenn A. Fink'

Jereme N. Haack'

tPacific Northwest National Laboratory
Information and Infrastructure Integrity Initiative

Richland, WA

results in lower reliability.

We can improve reliability by predicting hardware
failure and scheduling applications and services around it
[10]. This strategy will enable us to fully harness the po-
tential of the next generation HPC. For example Tantawi
and Ruschitzka [12] added the concept of an equicost
checkpointing strategy, which calculates the checkpoint
interval by attempting to balance the checkpointing cost
against the likelihood of failure. Oliner and Sahoo in-
troduced a risk-based model that incorporates failure in-
dicators from real job logs, communication topologies,
scheduling policies, and real failures to predict processor
failure. They found that risk-based cooperative check-
pointing with prediction accuracies of only 10% can still
produce performance improvements [8]. However, the
success of this strategy will ultimately rely on accurate
predictions of imminent failures with sufficient lead time
to efficiently mitigate failure.

There have been several approaches for predicting sys-
tem failure using system log files [4, 8, 11, 15, 14]. Sys-
tem log files consist of messages created by the differ-
ent processes executing on the system. The information
recorded varies from general messages concerning user
logins to more critical warnings about program failures.
Prediction methods include standard machine learning
techniques such as Bayes networks, Hidden Markov
Models (HMM), and Partially Observable Markov De-
cision Process (POMDP) [14].

The use of time-series analysis is common among
these methods since a system message in isolation has
been shown to be insufficient for predicting failure [9,
15]. We also believe that certain sequences of log mes-
sages may provide sufficient information to predict fail-
ure. But the large amount of information available in
system log files makes finding the right pattern(s) diffi-
cult.

In this paper we introduce a new approach for predict-
ing critical system events based on Support Vector Ma-
chines (SVMs). Given labeled training data, an SVM

can determine the maximum hyperplane that separates
the two classes of data. The classifier that results from
training is represented by a smaller portion of the training
data, called the support vector. A classifier can be used
to associate a system with a certain group, for example
systems that fail, based on information that precedes the
event thereby producing a prediction.

Aggregate features are often used for SVM-based clas-
sification, for example the the average number of mes-
sages during a period of time. However it is important
to exploit the sequential nature of system messages. Un-
like other applications of SVM classifiers [8, 15, 14], this
paper will use a spectrum representation of message se-
quences, which represents a k-length sequence of mes-
sages as one feature. The SVM can then classify sys-
tems as either fail or non-fail using the number of oc-
currences of different message sequences. Experimen-
tal results using actual system log files from a Linux-
based cluster show this approach can predict hard drive
failure with 73% accuracy two days in advance (lead
time). This three-orders-of-magnitude extension in the
window length will be very useful for allocating proces-
sors to longer-running jobs. We believe our approach
will greatly enhance the performance and reliability of
HPC.

The remainder of this paper is structured as follows.
Section 2 describes the information contained in system
log files and how it may be used for predictions. Fail-
ure predictions using SVM and spectrum-representation
is given in section 3. Experimental disk failure prediction
results using actual Linux log files is given in section 4,
while section 5 provides a summary and reviews some
open questions about this promising prediction method.

2 System Log Files

System log files are important for managing computer
systems since they provide a history or audit trail of
events [5]. In this context, an event is a change in sys-
tem status, such as a user login or an application failure.
Given the log file information it may be possible to de-
termine causes of events such as system errors or secu-
rity problems that have occurred. Although this type of
forensic analysis is valuable, it is also possible to use the
information contained in system log files for predicting
events.

System log files typically are text files, that consist of
messages sent to the logging service by applications. For
example syslog is configurable general purpose log-
ging application available for different Unix platforms
[5]. Applications can send information to the syslog pro-
cess, which stores the messages in a text file in the order
that they arrive. In a typically cluster the syslog server
process resides on a separate host and receives messages

from each node over a network connection.

Syslog is primarily responsible for managing the log
file while the message content is largely created by the
application. As seen in figure 1, messages do have a spe-
cific format consisting of the six fields. In this example,
the host field is the IP of the machine sending the mes-
sage (since one syslog instance may serve multiple com-
puters). The facility field is the source of the message,
for example kernel or user space. The level indicates the
severity of the message, which ranges from general to
critical. The tag field is a positive integer that represents
the facility and level fields where lower tag values repre-
sent more critical messages. For example in figure 1, a
disk failure has a tag value of 1 while the execution of a
command (first message) has a tag value of 189. Since
this value is the combination of the facility and level, it
does not reflect the actual message content. For example
in figure 1, the tag value 38 occurs twice although the
message content is different.

The time field is the time the message was recorded by
the syslog facility. Finally, the message is the text portion
of the entry that describes the event that has occurred.
The message is created by the application and is a free-
form field. This makes analysis more difficult requiring
complex natural-language parsers. However, recent re-
search has been successful in associating certain words
that appear in the log file messages with critical future
events [11].

2.1 SMART Messages

Although a wide variety of log file messages exist,
Self-Monitoring Analysis and Reporting Technology
(SMART) messages are of interest since they provide in-
formation specific to disk drive health. SMART boards
are becoming a standard component of ATA and SCSI
hard disks. SMART disk drives internally monitor their
health and warn of impending hard disk drive problems.
In many cases, the disk itself provides advance warning
that something is wrong long before actual disk failure.
Most implementations of SMART also allow administra-
tors to perform self-tests and monitor performance and
reliability attributes.

The smartd daemon regularly monitors the disk’s
SMART data for signs of problems. When smartd is
started, it registers the system’s disks then checks their
status every 30 minutes for attributes indicating failure.
If there is a failing health status or an increased number
of errors or failed self-tests, the daemon sends this infor-
mation to the system log file. Pinheiro ef al. found that
while some SMART parameters do correlate with drive
failure, these messages alone are insufficient for predic-
tion [9].

Host Facility = Level Tag Time

Message

using maximum available idle IO bandwidth

1171061733 crond 2500 (root) CMD (/usr/lib/sa/sal 1 1)
1171062445 rsh(pamunix) 2215 session opened for user by (uid=0)
1171062445 in.rshd 2216 root@hpcs2.cs.edu as root:

cmd=/root/temps
/dev/twe0 SMART Prefailure Attribute

1171062590 sshd(pamunix) 12430 auth failure; logname=el-fork-o

using 512k, over a total of 12287936 blocks.

1171062601 crond 2500 (root) CMD (/usr/lib/sa/fork-it 1 1)

198.129.8.6 local7 notice 189 1171061732 sysstat
198.129.8.6 kern info 6 1171061732 kernel md:
198.129.8.6 cron info 78

198.129.8.6 auth info 38

198.129.8.6 auth info 38

198.129.8.6 daemon info 30 1171062590 smartd 88 Device:
198.129.8.6 auth notice 37

198.129.8.6 kern info 6 1171062590 kernel md:
198.129.8.6 cron info 78

198.129.8.6 kern alert 1 1171062692 kernel raid5:

Disk failure on sdel, disabling device

Figure 1: Example syslog messages, each consisting of six fields (host, facility, level, tag, time, and message).

3 SVM Event Prediction

As described in the introduction, a Support Vector Ma-
chine (SVM) is a supervised machine-learning method
that can be used for binary classification: associating a
non-labeled sample to one class or another. Given a set
of labeled training data (features) the SVM finds the best
plane that separates the two classes. If the data is not
linearly separable, then it is possible to translate the data
into a higher-dimensional space to find a separator, re-
ferred to as the kernel-trick. Once the plane has been
found, the SVM can associate new non-label data to a
specific class. Furthermore SVMs allow the inspection
of weight functions, making it possible to identify which
features are most responsible for classification.

The SVM can be used for predicting system failure by
concluding that a series of messages are or are not asso-
ciated with failure in the future. Let M represent a time-
ordered set of log file messages for a single computer.
Therefore, the sequence of messages that appear in M
form a time-series representation of events that occurred.
For this paper let each message in M be represented by
its tag value, which provides an indication of message
criticality. For the messages given in figure 1, the set M
would be {189, 6, 78, 38, 38, 30, 37,6, 78, 1}.

Using M it is possible to collect various aggregate fea-
tures, such as the frequency of tag values. For the mes-
sages in figure 1: the tags 189, 30, 37, and 1 occur once;
and the tags 78, 38, and 6 occur twice. This forms a
vector describing M as (1:1, 6:2, 30:1, 37:1, 38:2, 78:2,
189:1), where each value is the tag:count. This vector
can then be used to classify M as belonging to a fail or
non-fail system.

3.1 Spectrum Representation

The frequency of tag values in M can help predict sys-
tem events, however, additional valuable information is
found in the sequence of messages. Identifying certain
sequences of messages, represented by tag values, that
are a prelude to a certain system events is one specific

example. The spectrum kernel representation of the log
messages will provide this ability for SVM classifiers.

The spectrum kernel representation of data was devel-
oped by Leslie et al. for determining protein sequence
similarity [6]. This representation used a k-length se-
quence of amino acids as a feature for proteins. The
proteins representation was then the number of times se-
quences occurred as a k-length window is passed over
the sequence of amino acids. The spectrum-kernel rep-
resentation has also been used for network connection
classification [13] and intrusion detection systems [2]. In
this paper we apply this approach to sequences of system
log messages, specifically the tag values.

The spectrum representation of M will consist of the
frequency of the different possible k-length sequences.
The number of possible sequences is b*, where b is the
number of different tag values. Given the finite amount
of memory available to store information, limiting either
the window size &k and/or the tag range b may be nec-
essary. For example, assume there are 65536 possible
tag values and the window length is 5, then there are
1.2x10%* possible tag sequences. Therefore, limiting the
tag range allows the consideration of longer sequences
and vice versa.

Assume M consists of the 10 tag values given in figure
2. Let the window size be 5, which is also the sequence
length, k. Furthermore, associate each tag with one of
three levels, high (tag < 10), medium (10 <tag< 140),
low (tag> 140). In this example b is three which results
in 243 possible sequences, substantially lower than if no
levels are used. Let the level representation of a tag, or
encoding, be denoted as e. Assign the high level tag the
encoding value 0, the medium level 1, and low level 2.

To find the sequences in M, pass a k-length window
over M and record the sequence occurrences. For ex-
ample consider again the messages in figure 2. The se-
quence {22212} (which corresponds to three low level
messages, one medium message, followed by one low
level message) occurs twice. Similarly, the the se-
quence {21222} twice, while the sequences {22122},
and {22122} occur only once. All other possible se-

quences do not occur in this example.

Let each sequence be represented by a unique value,
f. For example, the feature value 239 identifies the se-
quence {21222}. As described in [13], this can be done
using a process that only requires storing the previous
feature value f and the new tag number encoding. The
n + 1 feature value can be determined using the n'" fea-
ture and tag number encoding, the feature value for the
n + 1 feature is

fn+1 = mOd(b ' fnv bk) + en+1

Determining the frequency of the different sequences ob-
served in M creates the vector that represents the mes-
sages. The vector for the example given in figure 2 is
(160:1, 215:2, 233:1, 239:2), where each value is the
sequence-value:count. Again, the vector can be used to
classify the system to be a member of the fail or non-fail

group.

4 Experimental Results

The SVM approach to predicting system events was eval-
uated experimentally using actual system log files. The
log files were collected over approximately 24 months
from a 1024 node Linux-based compute cluster. Each
computer was similarly configured and consisted of mul-
tiple processors and disks. The system event predicted
was hard disk failure, since it is easy to identify in the
log file, for example the last message in figure 1 is a disk
failure.

The log files contained over 120 disk failure events.
For a single computer it is possible to have multiple disk
failures within a relatively short period of time, since
each computer has multiple disks. In this case only disk
failures that were separated by at least one day were con-
sidered. This was done to eliminate any messages that
may have been due the previous failure. As a result, only
100 of the 120 failures were usable for the experiments.

The log files averaged 3.24 messages per hour per sys-
tem. Therefore each machine averaged approximately
78 messages per day. The distribution of tag values are
given in figure 4. There were 61 unique tag values, rang-
ing from O (the most critical message) to 189 (least im-
portant message). As seen in the histogram certain tag
values appear more frequently, a fact that we use to deter-
mine the appropriate tag ranges as described in the pre-
vious section.

A set of 1200 messages (approximately 15 days of
data) was collected from systems that did and did not
experience a disk drive failure. For computers that expe-
rienced a failure, the last message of the 1200 is a disk
failure message. Starting at the first message in the set,
a sub-set of messages, M, was used to make a predic-
tion. The length of M equaled 400, 600, 800, 1000 or

Message Tags for a Single Computer
200 : ; . :

@

G O O (S OGO @ 000 @000 O MOEEE——
000

150

tag value
I}
o

0000000000000000000 C00000000000000000000000000000

5070ooooooooooooooooo(lwooooooooooooooooooooooooooooo’

o

b e o MW o 3
o

0 o o 88 o) 00 ,©o o©

0 10 20 30 40 50
time (days)

Figure 3: An example of the logged messages for a single
computer over a 50 day period. Each circle is a message
and the tag value for each message is plotted on the y-
axis.

Distribution of Tag Values

percent of all messages
o o o o o
N w » (4] [«2]

©
o

0 I.I. paadl L . L .
0 50 100 150 200
tag value

Figure 4: Distribution of tag values for the system log
files used in the experiments.

tag Encoding (¢) Sequence f (base 10)
148 2 2

148 2 22

158 2 222

40 1 2221

158 2 22212 239
188 2 22122 233
188 2 21222 215
88 1 12221 160
158 2 22212 239
188 2 22122 215

Figure 2: Example spectrum representation of 10 tag values.

1100 messages. Therefore when M equals 1000 mes-
sages, only 200 messages remain before the failure event.
Larger values of M should result in better predictions
since more data is available.

Hold-out was used to partition the samples, where half
of the disk failure sets are randomly selected for training
and the other half is used for testing. An equal number of
fail and non-fail sets were used per experiment. Hold-out
was repeated 100 times per experiment and the average
performance was recorded.

4.1 Performance Measurements

As described in the introduction, the objective of event
prediction is to accurately predict disk failure as far as
possible in the future. Given a binary classifier and an
input, four outcomes are possible [3]. Assume the input
is in the positive class. If the classifier predicts positive
then the outcome is a true positive. If the classifier pre-
dicts negative then the outcome is a false negative. If the
input is negative and the outcome is negative, then it is a
true negative. If the input is negative and the outcome is
positive, then it is a false positive. For this paper let the
positive class represent drives that do not fail. Therefore
a false positive is a drive predicted not to fail but does,
in contrast a false negative is a drive predicted to fail but
does not.

The percent accuracy, precision, and recall was
recorded for each experiment. Accuracy is the total num-
ber of correct predictions (fail and non-fail) divided by
the total number of inputs. Precision is the number of
true positive divided by the number of true positives and
false positives. Recall is the number of true positives di-
vided by the number of positive inputs. A predictor with
a high precision has fewer false positive errors (predicted
good but actually fails), while a predictor with a high re-
call has fewer false negative errors (predicted to fail but
is good).

Another measure of classifier performance is the Re-
ceiver Operating Characteristics (ROC) curve [3]. As
seen in figure 5(b), false positive rate is plotted against
the true positive rate. The graph shows the trade-off ben-
efits (true positives) and costs (false positives). For ex-
ample, the point (0, 0) represents a classifier that never
generates a positive classification. This classifier would
not have any false positives but would not have any true
positives either. The opposite is true for the point (1, 1),
which is a classifier that never generate a negative clas-
sification. The point (1, 0) represents a perfect classifier
since the true positive rate is maximized and the false
positive rate is minimized. Therefore, an ROC curve that
is close to the top left-hand corner of the graph is con-
sidered a good classifier. In contrast, the line between
points (0,0) and (1, 0) represents a random classification
outcome for any given input.

Finally, the Area Under the Curve (AUC) for an ROC
is often used to measure classifier performance. The area
for the perfect classifier is 1 while a random classifier
is 0.5 (area below the diagonal), therefore a classifier
should have an AUC between 1 and 0.5.

4.2 SVM Features and Results

Two different SVM classifiers were used for each experi-
ment, differing only in the features used. One SVM used
only those aggregate features which occured in the logs,
which is similar to the approach taken by [8]. Since only
190 tag values occurred, only 190 features are possible.
The second classifier used aggregate and a spectrum rep-
resentation of the messages, will be referred to a com-
bined features. The spectrum representation considered
sequences of 5 messages. Tag values were associated
with one of 19 ranges. The range values were determined
from the tag histogram and group the most popular tag
values together. As a result, 2,476,289 features are pos-
sible.

As previously described, given 1200 messages, the

Percent Accuracy as Number of Messages Increases

1001 \
—e—combined features !
——aggregate features |

9oL~ -failure event !

I

- |
g |
5 80r i
Q |
5] I
© I
€ |
8 7or /J i
[0} |
Q. |
i

I

60f !

I

|

I

50 v

400 600 800 1000 1200
number of messages processed (M)

(a) Percent accuracy as the number of messages processed increases,
for two different SVM feature sets.

ROC for Different SVM Classifiers

o
©
T
+

N
N

g
[}
:
N

I
IS
.
+

true positive rate

4 —e—combined at 1000 msg
-7 ——aggregate at 1000 msg
o 7 o combined at 400 msg |]
+ aggregate at 400 msg
. - - -random guess

0 0.2 0.4 0.6 0.8 1
false positive rate

o
[N}
N

(b) ROC curves for different SVM feature sets and number of mes-
sages (400 or 1000).

Figure 5: Percent accuracy and ROC curves for predicting hard disk failure. SVM features consisted of either aggregate
message information only, or a combination of aggregate and sequence information. SVM with combined features

consistently performed better.

first 400, 600, 1000, and 1100 messages were used to
make a prediction. Figures 5 and 6 show the perfor-
mance as the messages are processed. As seen in figure
5(a), the accuracy of the aggregate features ranged from
64% to 70% as the number of messages increased from
400 to 1100. These values are commensurate with other
SVM based approaches. The increase in accuracy is ex-
pected since more messages provide a more information
to make a prediction. The precision and recall percent-
ages were similar to the accuracy.

The performance of the SVM using the combined
features (aggregate and spectrum representations) was
higher than the SVM using only aggregate features. The
accuracy ranged from 67% using only 400 messages to
73% using 1000 messages and 74% using 1100 mes-
sages. Therefore at 200 messages before the failure event
(approximately 60 hours before failure), the SVM can
predict failure with 73%. The precision and recall had
similar values. This increase in performance indicated
the addition of sequence information can improve per-
formance.

The ROC curves, given in figure 5(b), show the same
performance benefits. At 400 messages the combined
features has an advantage over aggregate features only.
The AUC was 0.72 for the combined features and 0.65
for the aggregate features. Aggregate features are only
slightly better than a random classification. However
when the number of messages processed is 1100, there
is an increase in performance. The AUC is 0.79 for the
combined features and only 0.72 for the aggregate. The
small linear portion of the combined feature ROC curves
indicate classifier generated false positives for certain

sets of messages. Regardless, the combined features con-
sistently performed better.

The importance of certain features can be considered
by analyzing the feature weights and is possible since the
linear kernel was used. Figure 7 shows the weights of the
aggregate and sequence features. Of the 2,476,289 possi-
ble combined features, only 2,251 had a non-zero weight
when used for failure classification. A positive weight
indicates the feature is useful for classifying a disk fail-
ure, while a negative weight is useful for classifying a
non-failure. Larger values (positive or negative) indicate
a better feature.

As seen in figure 7(a), only 22 aggregate features were
used for classification. Of these features 9 were for non-
failure and 13 were for disk failure. The remaining 2,232
features, seen in figure 7(b) represented the occurrence of
different message sequences. As noted from the experi-
mental results, the message sequences play an important
role in failure prediction.

S Summary and Conclusions

Computer system failures result in the loss of productiv-
ity and increased operation cost [7]. Better management
of computer resources, applications, and services is pos-
sible given accurate predictions of system failures.

Log files typically contain useful information about
system failures. These files record the history of the sys-
tem’s state which provides administrators information to
determine the causes of critical events. Although log file
analysis has been primarily performed after an event has
occurred, increasingly this information is being used to

Precision as Number of Messages Increases

Recall as Number of Messages Increases

100 | 100 |
—e—combined features ! —e—combined features !
——aggregate features | ——aggregate features |

9oL~ -failure event ! 90k~ -failure event !

| |

| |

c 80 | 80| !
o | = |
i<} i B i
3 | 8 |
Q 70r /// ! 70l :
I I

| M 1

I I

60r ! 60~ !

I I

i i

I I

50 L 50 L

600 800 1000
number of messages processed (M)

600 800 1000 400
number of messages processed (M)

400 1200 1200

(a) Precision for two different SVM feature sets. (b) Precision for two different SVM feature sets.

Figure 6: Precision and recall for predicting hard disk failure. SVM features consisted of either aggregate message
information only, or a combination of aggregate and sequence information. SVM with combined features consistently
performed better.

Feature Weights for Failure Prediction Feature Weights for Failure Prediction

0.03f ° . 0.03
0.021 b 0.02
[9)
o
0.01r b 0.01
o o
= e & ° =
9 O ~®- - g ------ - R it - s Ol
s o H
-0.01r . -0.01
o o
-0.02- b -0.02
-0.03r b -0.03
0 50 100 150 0.5 1 1.5 2 25 3
feature feature x 10°

(a) Aggregate feature weights. (b) Message sequence feature weights.

Figure 7: Feature weights for the SVM classifiers. Each feature has a unique number, where 0 through 160 are ag-
gregate features (frequency of a certain tag number) and the remaining numbers represent certain message sequences.
Positive weights indicate the feature classifies a failure, while negative weights classify a non-failure.

predict events.

This paper introduced a new system failure prediction
method using Support Vector Machines (SVM) based on
the information contained in log files. The proposed ap-
proach takes advantage of the sequential nature of log
messages and determines which sequence of messages
are precursors to failure. Messages were represented
using the tag value, which offers an indication of mes-
sage criticality. A spectrum kernel representation of the
tag values was then used to describe a set of messages,
which measures the frequency of k-length message se-
quences. Experimental results using log files from a large
1024 node Linux-based compute cluster indicate the the
spectrum-representation of messages combined with a
SVM classifier can achieve an accuracy of 73% and a
two day lead (amount of time before the event). Results
also show that more log messages consistently provide
better predictions.

Although the results indicate the spectrum-
representation has promise, there are several open
questions. Additional features, such as message interar-
rival times [8], should be considered. The performance
of the system could also be improved by leveraging
the message content, instead of solely relying on the
tag value. For example, the information provided by
SMART messages could be used as a feature. However
adding more message information must be balanced
with the sequence length, since the number of features
grows exponentially. Finally, more research is needed to
study the impact of message diversity, which can be the
result of machine purpose and log generation rates.

References

[1] ADIGA, N., AND ET AL. An overview of

the bluegene/l supercomputer. Supercomputing,
ACMI/IEEE 2002 Conference (Nov. 2002), 60-60.

[2] CHUANHUAN YIN, S. T., AND MU, S. Using gap-
insensitive string kernel to detect masquerading.
In Proceedings of the First International Confer-
ence on Advanced Data Mining and Applications
(2005).

[3] FAWCETT, T. An introduction to roc analysis. Pat-
tern Recognition Letters 7 (2006).

[4] Fu, S., AND XU, C.-Z. Exploring event corre-
lation for failure prediction in coalitions of clus-
ters. In Proceedings of the IEEE/ACM Interna-
tional Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC) 2007
(Reno, NV, USA, Nov. 15-21, 2007), pp. 1-12.

[5] GARFINKEL, S. Practical UNIX and Internet Se-
curity. O’Reilly, 2003.

[6] LESLIE, C., ESKIN, E., AND NOBLE, W. S. The
spectrum kernel: A string kernel for svm protein
classification. In Proceedings of the Pacific Sympo-
sium on Biocomputing (2002), pp. 566-576.

[7]1 L1, Y., GUIRATI, P., LAN, Z., AND HE SUN, X.
Fault-driven re-scheduling for improving system-
level fault resilience. In Proceedings of the IEEE
International Conference on Parallel Processing
(2007).

[8] LIANG, Y., ZHANG, Y., XIONG, H., AND SA-
HOO, R. Failure prediction in ibm bluegene/l event
logs. In Proceedings of the IEEE International
Conference on Data Mining (2007).

[9] PINHEIRO, E., WEBER, W.-D., AND BARROSO,
L. A. Failure trends in a large disk drive popula-
tion. In Proceedings of the USENIX Conference on
File and Storage Technologies (2007), pp. 17-29.

[10] SCHROEDER, B., AND GIBSON, G. A. Under-
standing failures in petascale computers. Journal
of Physics 78 (2007).

[11] STEARLEY, J., AND OLINER, A. J. Bad words:
Finding faults in Spirit‘s syslogs. In Proceedings
of the 8" IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid) 2008: Work-
shop on Resiliency in High Performance Comput-
ing (Resilience) 2008 (Lyon, France, May 19-22,
2008).

[12] TANTAWI, A. N., AND RUSCHITZKA, M. Perfor-
mance analysis of checkpointing strategies. ACM
Trans. Comput. Syst. 2,2 (1984), 123—-144.

[13] WILLIAM H. TURKETT, J., KARODE, A. V., AND
FuLp, E. W. In-the-dark network traffic classifica-
tion using support vector machines. In Proceedings
of the AAAI Conference on Artificial Intelligence
(2008).

[14] XUE, Z., DONG, X., MA, S., AND DONG, W.
A survey on failure prediction of large-scale server
clusters. In Proceedings of the International Con-
ference on Software Engineering, Artificial Intelli-
gence, Networking, and Parallel/Distributed Com-
puting (2007), pp. 733-738.

[15] YAMANISHI, K., AND MARUYAMA, Y. Dynamic
syslog mining for network failure monitoring. In
Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery in
Data Mining (2005), pp. 499-508.

