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ABSTRACT
Predictive maintenance strives to anticipate equipment fail-
ures to allow for advance scheduling of corrective mainte-
nance, thereby preventing unexpected equipment downtime
and improving service quality for the customers. We present
a data-driven approach based on multiple-instance learning
for predicting equipment failures by mining equipment event
logs which, while usually not designed for predicting failures,
contain rich operational information. We discuss problem
domain and formulation, evaluation metrics and predictive
maintenance work flow. We experimentally compare our ap-
proach to competing methods. For evaluation, we use real
life datasets with billions of log messages from two large
fleets of medical equipment. We share insights gained from
mining such data. Our predictive maintenance approach,
deployed by a major medical device provider over the past
several months, learns and evaluates predictive models from
terabytes of log data, and actively monitors thousands of
medical scanners.

1. INTRODUCTION
Success of manufacturing companies largely depends on

reliability of their products. Scheduled maintenance is widely
used to ensure that equipment is operating correctly so as
to avoid unexpected breakdowns. Such maintenance is of-
ten carried out separately for every component, based on its
usage or simply on some fixed schedule. However, scheduled
maintenance is labor-intensive and ineffective in identifying
problems that develop between technician’s visits. Unfore-
seen failures still frequently occur. In contrast, predictive
maintenance techniques help determine the condition of in-
service equipment in order to predict when and what repairs
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should be performed. The main goal of predictive mainte-
nance is to enable pro-active scheduling of corrective work,
and thus prevent unexpected equipment failures.

Predictive maintenance requires insight into the running
condition of equipment. This can be gained by adding sen-
sors to the equipment for recording and monitoring of signals
of interest (such as temperature and voltage). The predic-
tive maintenance module can then send alerts when sensor
values deviate from normal ranges. Though sometimes an
effective solution, it is impractical for in-service equipment,
since major hardware upgrades, such as adding sensors, are
often infeasible, especially on large fleets, due to cost, effort
and potential regulatory hurdles. Alternatively, one can gain
insight into the workings of a piece of equipment by studying
its logs. Modern equipment is usually operated via software
applications. For example, in case of medical scanners, all
device operations, from warming up to scanning a patient
and from generating a medical report to calibration, are con-
trolled by various applications. These applications produce
logs of their operation. These logs reflect the developers’
original ideas about what are the valuable events to report,
and contain informational or error messages, internal states,
or exceptions. Theoretically, one can trace back how a piece
of equipment was used by analyzing its logs. Mining such
rich information can help in detecting potential issues in ad-
vance.

The use of equipment logs to predict failures poses many
challenges and has not yet been fully explored. Since logs
are mainly used for debugging purposes, they (i) rarely con-
tain explicit information for failure prediction; (ii) contain
heterogeneous data including symbolic sequence, numeric
time series, categorical variables and unstructured text; and
(iii) contain massive amounts of data, posing computational
challenges. To make use of log data, we first have to interpret
the logs, filter out a large amount of noise (i.e. data irrele-
vant to our goal) and extract predictive features. Next, we
have to collect known failure cases for learning/evaluating
models, transform the problem into an appropriate learning
scenario and determine a performance measure that reflects
real-world needs. Then, we have to apply machine learning
techniques to effectively and efficiently solve the learning
problem. Moreover, we have to take into account specifics
of the domain. In the following sections we discuss these
points in more detail with the focus on the data and do-
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Figure 1: Predictive maintenance workflow.

main description, the problem formulation and a case study,
which serve as our main contributions.

2. PROBLEM DESCRIPTION
In this section, we describe our data and application.

2.1 Data Description
A typical service life cycle looks as follows: equipment

operates normally at first. When a problem occurs, the cus-
tomer calls the service center for support, a “notification”
is opened and repair service is scheduled. Then a techni-
cian comes on-site to resolve the problem. After resolution,
the technician updates the notification with repair details
such as component consumption information, hours spent,
trouble-shooting or repair description, and closes the noti-
fication. Throughout the whole process, during both nor-
mal and abnormal operation, the equipment automatically
records all events into log files. This cycle (illustrated in
the bottom part of Figure 1) gets repeated over and over in
a fleet of thousands of equipment units. The log files from
such a fleet collected over the past several years form our
data in this study. 1

Log data is a collection of events recorded by various
applications running on the equipment (see Figure 2). An
event consists of a timestamp (indicating when the event
occurred), a message text (either fully unstructured or gen-
erated from a template) describing the event, an event code
(representing the category of a group of similar message
text) and event severity. Events reflect the developers’ origi-
nal idea about what are the valuable states to report. In our
application, we have thousands of unique event codes and
a theoretically unlimited number of distinct messages texts.

1Although we use the data from medical devices to demon-
strate our approach, our approach is also applicable to other
domains, such as IT infrastructure or industrial equipment
in which equipment logs are recorded.

Figure 2: A piece of a real log file (with renamed
event codes and messages) from a medical scanner.

An equipment log is usually broken into day-long pieces. A
daily log can contain tens of thousands of events since their
time resolution can be as small as a few seconds.

Log data is unique in several aspects. It is temporal, and
can be viewed both as symbolic sequences (over event codes)
and as numeric time series, with variables extracted from
messages or with event frequencies over some window, e.g.
days. It can additionally include categorical features (event
codes, and categorical variables in text) and fully unstruc-
tured data such as message text (some text similarity be-
tween message text may make sense, in particular in the
absence of event code categories).

An experienced domain expert can scan equipment logs to
identify abnormal conditions. The old-fashioned predictive
maintenance approach in this domain is to manually create
predictive patterns for a particular component based on the
boolean combination of a few relevant event codes. Such an
approach is heavily experience-based and very time consum-
ing, but it illustrates an important concept - that component
failure can be predicted by checking daily logs for patterns
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consisting of multiple event codes. This concept motivates
us and serves as the basis for our problem formulation.

Service data is another crucial data type in predictive
maintenance applications. Service notifications (or tickets)
are used by the service center to record details of performed
services such as the notification open date (i.e. the date cus-
tomer reports a problem), the equipment involved, the com-
ponent consumption and so on. Under a reasonable, though
not always correct, assumption that component replacement
is the consequence of a failure of that particular component,
we can use this information to correlate a known component
failure with its corresponding equipment, time and relevant
logs.

However, service data is noisy and often includes incor-
rect information. A replacement of a component might be
ordered but not used and later sent back to the factory; or a
component may be exchanged but the repair may not have
been appropriate for the problem at hand. Also, some failure
modes do not involve component exchanges and need to be
identified by matching certain keywords in the notification
text such as “greasing” or “recalibrating”. We formulate the
problem using a robust learning approach (described in Sec-
tion 3), which also serves to reduce the impact of low-quality
data.

Figure 3: An ER diagram for predictive mainte-
nance.

Figure 3 shows logical relationships between entities in
predictive maintenance domains.

Given a target component and a collection of historical
equipment log and service data, we can formulate a pre-
dictive maintenance problem for the target component. It
consists of constructing a binary classifier for predicting fail-
ures, where training examples contain predictive features ex-
tracted from an interval of equipment’s log, and the label is
determined by the occurrence of the component replacement
in the service data after that interval. Note that our ap-
proach is not specific to certain failure types, but targets all
hardware failures (within business needs) that can be recti-
fied by replacing or repairing the failing component and can
be detected via logged data caused by aberrant or inoper-
able behavior. We give a more formal problem formulation
in Section 3.

2.2 Predictive Maintenance Workflow
The predictive maintenance workflow is illustrated in the

top part of Figure 1. A central database is at the core of
a predictive maintenance platform. Data from in-service
equipment and the Support Centers is collected and inte-
grated there. The analytic module processes data from the
central database. Analysis consists of the following stages:
data preparation, model building, model evaluation, and
monitoring. To build a model for a target component, the
analytic module first pulls the relevant data from the central
database, extracts predictive features (see Section 3), trans-
forms and represents the data in a matrix format for learn-

ing algorithms. Learning algorithms build models and then
pass them on for evaluation. A model is evaluated against
historical data and scored by several key performance indi-
cators. After evaluation, domain experts review the model’s
performance and decide whether to deploy the model into
the system. In the monitoring module, the system pulls the
new daily log data from monitored equipments and predict a
component failure using a model. If predicted score exceeds
a predefined threshold, an alert will be sent to the service
center for further review.

2.3 Requirements
We worked closely with domain experts to come up with

requirements that would make a log-based predictive main-
tenance solution practical and useful. These requirements,
summarized below, served as a guideline for our design.

The timing of an alert is important for the evaluation of
the quality of a model in predictive maintenance:

• Predictive Interval: a pre-defined time interval right
before a failure. An alert occurring in this interval
gives enough time for the support center to act and is
considered successful.

• Infected Interval: a pre-defined time interval right
after a failure. The equipment is breaking down or
under repair. Data from this interval should not be
used for modeling/evaluation.

• Responsive Duration: a pre-defined time length re-
flecting real-life action time for an alert.

True and false positives are then defined as:

• True Positive: an alert that occurs in the predictive
interval. Note that multiple alerts in the same predic-
tive interval only count as one true positive.

• False Positive: an alert that occurs outside the pre-
dictive/infected interval. Note that multiple such alerts
within a responsive duration only count as one false
positive.

Finally, using the definitions above, we can evaluate the
performance of a model using precision and recall:

• Precision: True Positive / (True Positive + False Pos-
itive).

• Recall: True Positive / All failures.

The maintenance strategy is determined separately for dif-
ferent components and is influenced by many factors such
as the repair cost, failure severity and the business model.
Learning algorithms should balance Precision and Recall
and provide user flexibility in trading these off. Without
knowledge of the specific maintenance strategy, we can eval-
uate a model with Predictive-Maintenance-based Area Un-
der precision-recall Curve (PM-AUC) score as a simple
measurement. PM-AUC is computed like regular AUC but
using the above definitions of Recall and Precision.

Other requirements are not defined as formally, but are
present nonetheless, so we discuss them briefly.

Interpretability: It is preferable to have an interpretable
model so that experts are able to review it. This allows for
incorporation of expert feedback into the modeling process.
We use methods with L1 regularization to build sparse linear
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model which the domain experts can easily review. Such a
model consists of a weighted sum of a relatively small num-
bers of predictive features, with the weights specifying their
precise contributions to the decision. Furthermore, known
noisy or irrelevant features specified by experts can be easily
excluded from the new modeling process. In some cases just
knowing that the model is “interpretable” and understand-
ing which features affect model performance makes experts
more comfortable in adopting it.

Efficiency: The learning algorithm should be fast and
capable of handling hundreds of thousands of training ex-
amples in a space of tens of thousands features. We use the
state-of-the-art sparse linear classifier package Liblinear [9]
to achieve this.

Handling Class Imbalance: The number of known fail-
ures is usually small. We have to be able to learn models
with only tens of known failure cases. To deal with such ex-
tremely imbalanced labeled data, we apply a combination of
stratified sampling, stable feature selection and large margin
techniques to prevent over-fitting and learn a robust model.

3. METHODOLOGY
We view our problem as an example of Multi-Instance

Learning (MIL) [8] because it is a good fit for our setting.
In MIL, instead of receiving a set of independent labeled in-
stances as in standard classification, the learner receives a
set of bags which are labeled positive or negative. Each bag
may contain multiple instances (equipment daily logs). A
bag (all the logs from an interval, e.g. one week) is labeled
negative if all the instances in it are negative (no failures
according to the service notifications), and positive if it con-
tains at least one positive. Given bags obtained from dif-
ferent equipment and at different dates, the goal is to build
a classifier that will label either unseen bags or unseen in-
stances correctly. The accuracy of models is here measured
at the bag level.

MIL formulation captures several important aspects of our
problem:

• It is more realistic to assume that at least one daily
log within a short interval before a failure carries a
failure signature than to assume that all the daily logs
within a short interval before a failure carry a failure
signature. More likely, equipment continues working
irregularly, switching between normal and abnormal
conditions, before a final breakdown. Therefore we
should not label all instances in a pre-failure interval
as positive (as we would in a non-MIL setting).

• All the daily logs are normal within a non-failure in-
terval

• The goal is to correctly label a bag rather than every
instance. This is strictly consistent with the domain-
based evaluation metric.

We formally define the learning task as follows. Let D
be a set of B labeled bags, D = {bagj , j = 1, ..., B}, where
bagj = ({xij , i = 1, ..., bj}, yj), xij ∈ Rd is a feature vector
of the i-th instance from the j-th bag, yj ∈ {+1,−1} is the
binary label of the j-th bag and bj is the number of instances
in the j-th bag. The objective2 is to learn a model f whose

2Actually, this 0-1-error-based objective is a surrogate as
directly maximizing PM-AUC is difficult.

decision function sgn(f(bag)) accurately predicts the label
of a bag.

One of the major challenges in our problem domain comes
from the label imbalance and the low quality of positive
labels. Since labeling is based on service notifications which
are not entirely reliable, even slightly inaccurate notification
dates would significantly change the identification of positive
bags, if we did not take this into account. Moreover, as the
known failure cases are very rare, any noisy positive bags
would significantly downgrade the model quality. Recent
advances in MIL resulted in many successful algorithms for
learning f , but most of them are not robust to label noise
in the situations with imbalanced data. Below we describe
a simple algorithm which is robust to label noise for the
rare class and is a more effective solution than alternatives,
as evidenced by our experimental evaluation described in
Section 4.

Training. Many different ways of solving MIL exist[10];
our approach combines instance-to-example, meta-examples
and instance-based supervised learning.

We first transform the MIL dataset as follows: if the j-
th bag is negative, we create multiple negative examples
(xij ,−1) by an instance-to-example approach (i.e. each in-
stance in a negative bag becomes one negative example),
because all instances in negative bags are part of normal
operation and not indicative of failure. If the j-th bag is
positive, we create s positive example by averaging all its in-
stances into a single positive meta example (xj ,+1), where
xj = mean({xij}, i = 1, ..., bj) (i.e. each positive bag be-
comes one positive example). One rationale for this is that
the new positive meta-example (i.e. average over all in-
stances in a positive bag) is guaranteed to be positive since
we know there is at least one positive instance in the bag.
Although it compromises some level of the discriminative
power of positive examples due to inclusion of features from
negative instances, the averaging strategy improves the la-
bel quality of positive examples which is more critical for
imbalanced data.

Joining all the newly created examples from all the bags
into a single training dataset D′ = {(xj , yj), j = 1, ...,M},
we formulate the learning problem as a L1-regularized SVM
optimization, minw

λ
2
||w||21 +

P
j max{1−yjwTxj , 0}, where

λ > 0 is a user-specified regularization parameter. The op-
timization can be efficiently solved by Liblinear [9].

Prediction. In MIL, how to apply the learned model on
new instances / bags depends on the application require-
ment. It is not uncommon to apply different prediction
strategy in training/testing phase. In our real-life deploy-
ment phase, new log data (i.e. instance) arrives on a daily
base. We apply the learned model to individual instances
as they arrive and trigger an alert if the prediction is be-
yond a pre-defined threshold (which is selected during the
testing phase based on a desired precision/recall point on
the PM-AUC curve). To be aligned with this setup, in the
testing phase, we do not transform bags. Instead, we pre-
dict every instance of a bag and predict the bag as posi-
tive if the prediction score of a bag instance hits a given
threshold3, otherwise as negative. In the case of true pos-

3We increment the threshold and repeat the process to cal-
culate PM-AUC.
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Figure 4: Our methodology.

itive prediction, our model gives an alert between one4 to
length-of-predictive-interval days in advance.

Feature Representation We use a bag-of-features ap-
proach to create feature vectors. The features that can be
extracted from logs include:

• Keywords: bag-of-keyword is a fine-grained feature
representation which can easily blow up the feature
space to millions of dimensions. Since it poses compu-
tational challenges and is usually difficult to interpret
in the final model, we do not use keywords in this pa-
per.

• Numerical values: Numerical values are often used to
record important physical or mechanical conditions.
Extracting such values from text is a highly domain-
dependent task because the values are often encoded
to hide sensitive information. Given the high cost of
domain effort for decoding, we only extract a limited
number of numerical values and represent each with
several statistic-based features.

• Event codes: an event code is the developer-specified
category of a group of similar message texts. It is a
high-level summary of the event content. Since event
codes are domain-friendly (as they are widely used in
traditional pattern creation process) and the extrac-
tion is fully domain-independent, we use them as basic
features.

• Event code variations: textually similar messages from
the same event code might be logically different. For
example, “the scanning button is on” and “the scan-
ning button is off” come from the same event code but
record two opposite operations. To distinguish seman-
tically different messages from the same event code,
we decompose event codes into event code variations.
For all the message text from the same event code,
we first filter out embedded numerical values and then
identify each distinct message template as a new event
code variation. This type of feature is highly desirable
by domain experts.

4In the worst case the alert would be raised based on the
last daily log before the failure.

• Sequences: sequential features capture the logical or-
der of events and enhance the interpretability of the fi-
nal model. We have also conducted initial experiments
with event-code-based sequence features generated by
a novel sequential pattern-mining algorithm designed
for MIL. We do not discuss details here due to space
constraints and leave it for future work.

Feature Selection We use a bootstrapped feature se-
lection algorithm to select a subset of relevant features for
building robust learning models with imbalanced labels. In
the spirit of [4], we perform stable feature selection by train-
ing multiple sparse linear classifiers under stratified subsam-
pling. We create each sample of data by including all the
positive bags and a set of randomly picked negative bags.
We train a sparse linear classifier on the sample and learn
the model weights wi, where i is the index of a sample of
data. After repeating this process multiple times, we calcu-
late |

P
i wi|, rank features by these values and then select

the features by retaining only those with the highest rank-
ings. Afterwards, the selected features are used for another
sparse linear classification on all the training data to learn
the final model.

Our methodology is summarized on Figure 4. Creating
the dataset, training of the model and how we test the model
are described in Algorithm 1.

4. EXPERIMENTS
Our data has been collected over the several years from

two large fleets of medical equipments from a major medical
device provider. For each type of equipment we choose a
target component of high practical interest and with a suffi-
cient number of known failure cases. We use 7 days for the
Predictive Interval, 20 days for the Infected Internal and 7
days for the Responsive Duration for both predictive mainte-
nance tasks. All these values were agreed upon with domain
experts (and we did not find significant differences in per-
formance by slightly changing bag sizes). For each data set
we create positive bags from the the daily logs of [-7 day,
-1 day] interval before each failure, where day 0 is the no-
tification open date (i.e. the noted day of the failure), and
negative bags by randomly selecting about 20% of all the
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Algorithm 1

Build the MIL dataset:

1. Parse daily event logs to extract features.

2. Parse service notifications to extract known failure in-
formation.

3. Create bags for MIL learning.

(a) Group daily instances into bags using desired in-
terval lengths.

(b) Label bags with known failures as positive and
the rest as negative.

Train the model:

1. In the training phase, transform the MIL dataset.

(a) Each instance in a negative bag is transformed
into a negative example.

(b) For each positive bag we create a positive meta
example using the average of all bag’s instances.

2. Feature selection.

(a) Create multiple subsets by randomly subsampling
transformed negative bags and including all pos-
itive meta examples.

(b) Learn a sparse linear classifier on each subset.

(c) Average weights from all runs and select features
with the highest absolute weights.

3. Train the final model.

(a) Use the subset of features obtained in the previous
step.

(b) Learn the final model by using all the data.

Test/Apply the model:

1. In evaluation, predict a bag as positive if the prediction
score of a bag instance hits a given threshold.

2. In deployment, trigger an alert if the prediction score
of a new daily log hits the pre-defined threshold.

C A description
16389 75552 #instances
3073 11238 #features

88 108 #known failures
6664 14367 #bags

Figure 5: Dataset summary.

C A
random 0.037 (0.004) 0.017 (0.003)
AllInst. 0.293 (0.014) 0.620 (0.013)
Agg. 0.174 (0.013) 0.498 (0.016)
MILES 0.170 (0.011) 0.427 (0.117)
MI-SVM 0.216 (0.038) 0.700 (0.014)
Ours 0.319 (0.015) 0.730 (0.011)

Figure 6: PM-AUC comparison.

remaining weekly intervals. The resulting datasets A and C
are summarized in Figure 5.

Domain-based Evaluation We compare our algorithm
against the following methods:

• AllInstances: A baseline wrapper algorithm that trans-
forms MIL into standard supervised learning by assign-
ing the bag label to its instances (i.e. a pure instance-
to-example way of solving MIL). It was reported to
work well in some cases [18].

• Aggregated[23]: Another baseline wrapper algorithm
that aggregates each bag into a meta-example by aver-
aging (i.e. a pure meta-example way of solving MIL).

• MILES[6]: A popular MIL wrapper algorithm that
embeds each bag into a new feature space defined by
distances to training instances.

• MI-SVM[2]: An iterative algorithm that solves the
optimization formulation of MIL as a maximum mar-
gin problem.

The PM-AUC scores of these methods are shown in Ta-
ble 6. For the wrapper algorithms, L1-regularized Linear
SVM with the bootstrapped feature selection is used for su-
pervised learning5. Experimental results (mean and stan-
dard deviation) are reported based on bag-level 5-fold cross
validation with stratified sampling for imbalanced positive
labels. All hyper-parameters were selected using cross vali-
dation. These results show that our approach significantly
outperforms other methods in terms of PM-AUC.

The maintenance strategy is determined by business units
separately for different equipment or component, which is
why predictive models have to allow trading-off between pre-
cision and recall according to the specific strategy. Figure 7
contains the PM-ROC curves (showing the mean and 90%
confidence interval from 5-fold cross validation) of the mod-
els with different complexity (controlled by adjusting the L-1
regularization parameter) learned by our algorithm. In both
figures, we can observe that the pink curves, representing
models composed of 300 to 400 predictive features, achieve
the best performance. If the business requirements are for
70% precision then our best models can cover 25% and 80%

5We also explored kernel SVM but did not observe signifi-
cant performance improvement.
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(a) Dataset C

(b) Dataset A

Figure 7: PM-ROC plots with different model complexity learned by our algorithm.
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of failures (i.e. recall at that precision point) within the 7-
day Predictive Interval for each dataset, respectively. Con-
sidering that no existing predictive rules/models are avail-
able for these two components, our method is highly success-
ful. Simpler models, with fewer features, are also desirable
from both the machine learning and the domain points of
view. Though the most complicated models (with 300 to 400
features) achieve the best PM-AUC scores on both datasets,
the simpler models with less than ten features and subop-
timal scores are still useful. Their simplicity, together with
relatively high performance (high precision and reasonable
recall), enable domain experts to understand them and thus
help detect root causes of failures or identify specific failure
modes.

Figure 8: A plot of average (over the fleet) relative
frequency of a positive feature vs. time to failure.

On Utility of Single Features An interesting question
is whether the effects of an impending failure can be ob-
served over time by looking at only a few features. Our ex-
periments suggest that while the frequencies of some features
are in aggregate correlated with approaching failures, they
are not strong predictors of failures in individual instances.
A plot of the relation between the (relative) frequency of one
highly positive feature and the time to a failure is shown in
Figure 8. There is a clear upward trend close to the fail-
ure date. However, this plot is an aggregate over multiple
machines. It turns out that many positive instances do not
contain this feature, and the value usually does not change
smoothly or in the same direction between consequent days
on the same machine. This could be an artifact of how events
are logged or it could be related to utilization, which varies
from day to day. In either case, we lack additional knowl-
edge to correct for these factors. Thus this feature alone is
inadequate for failure prediction. This example illustrated
why simple handcrafted rules utilizing only a handful of fea-
tures do not work well, while machine learning approaches
that can use combined even weak signals result in decent
performance.

Global vs Local Models Some types of equipment may
be configured differently due to specific customer needs. The
equipment with the same setup belongs to the same family.
Do the equipment logs from different families behave differ-

ently? Is the model learned from one family valid for the
other ones?

I II III
I 0.43 0.70 0.59
II 0.45 0.87 0.70
III 0.32 0.77 0.71

Figure 9: PM-AUC of cross-testing of family-specific
models. E.g. the score on the coordinate (I,II) cor-
responds to the model that is trained on the data
from family I and tested on the data from family II.

To explore similarities between families, we performed hi-
erarchical clustering on the equipment daily bag-of-events
features and found that some families behave more similarly
to each other than the others. By labeling the same features
with their family types and feeding them into a multi-class
classifier, we can correctly predict the family of a daily log
with more than 80% accuracy on dataset A, which has 28
families. This indicates that there are noticeable differences
between families. To explore the predictability of family-
specific models on other families, we train a “local” classi-
fier on each family and test on the others. The results (in
terms of PM-AUCs) of this experiment on the three largest
families in dataset A are summarized in Figure 9. Most of
the family-specific models achieve comparable scores in the
cross-testing. The fact that the family-specific predictive
power is transferable and that known failure cases are very
rare suggests that training a global predictive model on data
from all the families make sense in our problem domain.

5. INFUSION AND IMPACT
Our approach is currently used to monitor several world-

wide fleets of medical equipment. It was implemented and
deployed on a SAS platform of a major medical equipment
provider. The workflows were built with SAS Enterprise
Miner to automate the process of model building and eval-
uation. Since SAS Enterprise Miner does not include L1-
regularized classifiers for feature selection, we ran the pro-
posed algorithm in our development environment to pre-
select the features which provide the highest PM-AUC score.
Only the selected features (usually a few hundred) are used
in the SAS Enterprise Miner workflows. Based on the model
performance on the held-out historical data, an alert thresh-
old is selected to balance Precision and Recall according to
business requirement for a target component. When a prob-
lem is identified, an alert is sent to the user. Alerts are re-
viewed by domain experts to determine the next steps. The
system has been deployed in early 2012 and has not been
retrained in order to allow a long term real-life performance
evaluation. However, it makes sense to retrain the models
periodically with the new data, e.g. on a time interval basis
or after a number of new failure cases are accumulated.

A real-world evaluation proceeds as follows: no corrective
action is taken after receiving an alert during the evalua-
tion period. After that, true positives, false positives and
total failures are determined by the component replacement
information from the Service Center. Our workflow for pre-
dicting a key medical scanner component failure was eval-
uated over several months on a subset of one fleet (several
hundred scanners). The performance was similar to that on
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the experimental data (Dataset C): it successfully predicted
12 out of 31 failures within 1 week predictive interval and
only generated a few (between 0 and 5) false alarms6

The business success cannot be measured as easily as the
technical one. Evaluation would have to take into account
multiple factors, such as cost saving in both spare parts and
labor, improved customer satisfaction (e.g. customer return
rate) and new business opportunities (e.g. the profit by sell-
ing such a service). Evaluating these factors would require
intensive involvement of project stakeholders and additional
time and resources which is beyond the scope of this data
mining project.

6. RELATED WORK
Some recently published research focuses on using log data

for anomaly detection. The main advantage is using already
existing functionality to improve and better understand sys-
tems. Because many systems already include logging func-
tionality exploiting this source of data presents a low cost
alternative to augmentation with additional sensors.

Logs can be used to further the understanding of how the
system behaves and what are the common patterns. The
approach of [15] is aimed at discovering and understanding
what the common patterns are, but does not touch upon
proactive prevention of errors. In addition to understanding
the normal behavior we can also try and detect anomalies.
The authors of [26, 25, 24, 27] parse textual log messages and
then use PCA to detect anomalies. In our data, however, the
changes signaling approaching failure are weaker and noisier
(we tried using PCA but did not obtain useful results). Cre-
ating event descriptions based on text messages in our logs
could be done by clustering [1, 21, 22, 16, 20] but interpret-
ing them requires unavailable domain knowledge. Another
option is to use NLP and semantic web techniques to ana-
lyze text-based maintenance logs and/or problem ticket data
[7, 19] to understand future events or rank events to priori-
tize repair. Predicting failures on a data stream processing
system [13] can be done by observing system’s status. This
approach uses an ensemble of decision tree classifiers and is
applicable in an online setting (i.e. triggering proactive ac-
tions when necessary). Taking into account the sequence of
logged messages is also possible (we have explored sequence
mining, but do not focus on it in this paper). For exam-
ple, one can use time series of hard drive status messages in
Multiple Instance Learning (MIL) setting [17] to predict fail-
ures. Finite state automata can be used to model sequential
dependencies between messages and detect anomalies [11].
Moreover, temporal information can be incorporated to fur-
ther improve the detection ability: for example, one could
include information about bursts of events [14]. We, on the
other hand, use daily aggregates and discard the possibility
of fine temporal patterns to simplify the model and reduce
the amount of data.

Our data bears some similarities with text represented
in bag-of-words format. Machine days can be viewed as
documents and events as words describing that day (with
their own occurrence frequencies). We can therefore consider
some research from the text mining fields as potentially rele-
vant. In many cases, SVMs work well with text derived data
which is usually high dimensional and very sparse. Special

6The precise number was not recorded by the customer.

care has to be taken when dealing with highly imbalanced
datasets [5].

Because we can not assign positive label to a specific day
before the failure we use multi-instance learning [28, 3, 10]
setting to deal with this problem. Training on all individ-
ual instances using bag labels works well in many cases
[18] but not on our data. Another simple approach is us-
ing distance based approaches such as k nearest neighbors
(kNN). A more sophisticated approach built on top of kNN
is MILES [6] which obtains state-of-the-art performance on
many MIL problems by transforming the feature space using
distances and then learning a supervised classifier on top of
it. Performance of kNN is very poor on our data and MILES
suffers from computational complexity while still achieving
only mediocre performance. A very successful approach is
building ensembles of classifiers [29] which can in many cases
improve the results of the base classifier. This idea is par-
tially reflected in our way of doing feature selection, but does
not noticeably improve the the performance of the final clas-
sifier. MILIS [12] is an approach to MIL that similarly to
our non-convex formulation formulation of selecting positive
representatives selects prototype instances for positive bags
and solves the optimization problem by iterating between
instance selection and classifier learning.

7. CONCLUSION AND LESSONS LEARNED
We presented an approach for log-based predictive main-

tenance. It utilizes state-of-the-art machine learning tech-
niques to build predictive models from log data. Our ap-
proach was developed with active involvement from domain
experts and was evaluated and shown to be effective by both
machine learning and domain standards. It has been de-
ployed by a major medical equipment provider, learning and
evaluating predictive models from terabytes of log data, and
actively monitoring thousands of medical scanners around
the world.

Appropriately formulating the problem by considering the
nature of the data and incorporating the domain-based eval-
uation metrics are the key lessons we learned. Using MIL
setting allows us to obtain a good match between data mod-
eling and practical constraints. Data availability and quality
determine the quality of the learning process and analytical
results. When improving data quality is infeasible, robust-
ness of learning algorithms becomes critical. Additionally,
for the domain experts to understand and trust the machine
learning algorithms and results, the learned models must be
interpretable. We achieve this by building a sparse linear
model with L1 regularization. We also notice that using a
very small number of features is not sufficient to achieve high
performance due to noise and sparsity in data. Thus hand-
constructed models do not achieve our level of performance.
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