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Abstract — In large-scale IPTV systems, it is essential to main-

tain high service quality while providing a wider varietys#rvice

features than typical traditional TV. Thus service qualgsess-

1. INTRODUCTION

IPTV technologies are transforming the global televisiodis-
try, enabling new operators to provide TV services whilsbatn-

ment systems are of paramount importance as they monitor theaping a wealth of innovative new IP-based services integravith

user-perceived service quality and alert when issues sccor
IPTV systems, however, there is no simple metric to reprtasssr-
perceived service quality and Quality of Experience (QoH)re-
over, there is only limited user feedback, often in the fofmaisy
and delayed customer calls. Therefore, we aim to approxifnet

QOE through a selected set of performance indicators in acpro

more traditional TV. However, there is a pressing need taens
that the IPTV services being deployed deliver a Quality opéhi
ence (QoE) that is equal to or better than traditional TV ises:
The traditional approach to assessing quality of expeei¢QoE)
has been through subjective evaluation in controlled latooy en-
vironments. Unfortunately, subjective evaluation is exgiee, error-

tive (i.e., detect issues before customers reports to call centetls) an prone and unreliable. A complementary approach is throwsgh u

scalable fashion.

In this paper, we present a service quality assessmentyirarkge
Q-score, which accurately learns a small set of performantiea-
tors most relevant to user-perceived service quality, aodqtively
infers service quality in a single score. We evaluate Qecsing
network data collected from a commercial IPTV service mlevi

and show that Q-score is able to predict 60% of the servick-pro

feedback. Itis, in general, collected by the call centedsiapro-
vides a direct measure of the service performance problgpesie
enced by the users. However, user feedback is not alwaysletamp
(not all users report service quality issues) and delayseréuhave
already been negatively affected by the time they call custacare
center to report their service quality issues).

What operators lack today is a proactive approach to olpigini

lems that are reported by customers with 0.1% false positive comprehensive views of user's quality of experience. Stietvs

Through Q-score, we have (i) gained insight into variougsypf
service problems causing user dissatisfaction, includihg users
tend to react promptly to sound issues while late to videoess
(ii) identified and quantified the opportunity to proactiveletect
the service quality degradation of individual customer®oizese-
vere performance impact occurs; and (iii) observed pd#gittd
allocate customer care workforce to potentially troublgegvice
areas before issues break out.

Categories and Subject Descriptors

C.4 [Computer-Performance of Systemp Reliability, available-
ity, and serviceability

General Terms
Management, Reliability
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are critical to proactively detecting service issues thatten to cus-
tomers, so that operators can rapidly respond to them taermsu
high-quality customer experience. Without such visigjlipera-
tors risk being unaware of service degradations - insteagllgarn
about issues only when customers reach frustration pontse
port to customer care call centers. Thus, proactive assegsh
quality of experience is crucial to providing operatorshwitsights
into the ultimate metric - what customers are experiencism that
they can effectively manage their service offerings aneéateind
ideally respond to issudsefore customers report issues. Proactive
assessment of quality of experience can also help openatafs
fectively dimension the customer care workforce in angtign of
the large volume of user calls and customer-impacting ¢mmdi
can be avoided.

Although there is extensive monitoring of network elements
place today and operators rapidly react to issues whictepated

by the network elements - there is no technology which can di-

rectly measureustomer perception of TV service quality. Video
monitoring technologies exist, but itis still non-trivial relate such
measurements to customer perception. Deploying video tareni
ing to millions of customers is also prohibitively expergsivand
service providers are typically constrained by the tecbgyphvail-
able within the Set-Top Boxes.

In the absence of direct measurements, we instead focus-on us

ing network measurements to infer customer service expegie
However, such an approach is still challenging, due to Gpm-
plete knowledge about the relationship between user-petés-
sues and network performance metrics, and (ii) user feddidamut



quality of experience is biased towards the negative @Lestomer
calls on reporting issues) and is often delayed, noisy anitidd.

In this paper, we propose a new framework, which we refer to
as Q-score, for proactive assessment of user perceived quality of
experience. Q-score constructs a single quality of expegiscore
using performance metrics collected from the network. Qec
consists of two key components: (i) offline learning of theassa-
tion between the service quality of experience and the mitper-
formance metrics collected from the servers, routers afdtbime
equipment, and (ii) online computation of the score for viutlial
users or groups of users. Q-score captures the quality @riexp
ence by users in a timely fashion and can provide operatdis wi
rapid notification of service issues, often giving them allgane of
several hours before the user reports to the call center.

Q-score Design ChallengedDue to the interwoven server and net-
work system, as well as the sophisticated hardware and a@ftw
composition of home network devices, assessing servidéyoé
experience is a sophisticated task. The proposed Q-scpreah
uses customer reports (e.g., tickets) to provide feedbegrding
issues that customers are concerned about. Designing r@4sco
quired us to address the following key challenges:

1. Associating QoE with network performance. Because of
the inherent difference between network-level perforreanc
indicators and user-perceived quality of service, astiagia
the two does not occur naturally. Even for domain experts,
since there is no objective video quality metric, itis natiad
to identify key performance indicators that are closelpted
to quality of experience. Even if the metric were available,
it would require more finely grained monitoring of network
indicators, which in turn might introduce scalability igsu

. Lack of timely, high-quality user feedback. User feedback
is inherently noisy, incomplete and delayed. Depending on
situations such as the individual viewer’s living schedtie
severity of the issue, there are large variances betwedigethe
ginning of service quality issues and reporting times. Some
users issue a report immediately after they observe a ser-
vice quality degradation; others may wait hours before-call
ing customer service centers. Similarly, different usergeh
different tolerance levels to service quality issues - oseru
may report incessantly regarding issues that another usgr m
barely notice. This all makes it inherently challenging e u
such feedback to associate service quality of experienite wi
network performance.

. Large volume of diverse performance measurementgrom
a network perspective, service providers typically calfee-
grained measurements from the routers and sereersreal-
time syslogs, and regular polls of SNMP performance coun-
ters such as CPU, memory, packet counts, and losses). Som

grained é.g., residential gateway events), whereas others may
be coarse-grainede(., hourly or daily summaries of Set-
Top Box events). Set-Top Box (STB) data collection is in-
tentionally not fine-grained to minimize the potential of-se

Our Contributions.

1. We design and implement a prototype Q-score system for
proactively assessing quality of experience for IPTV users
Q-score uses a multi-scale spatio-temporal statisticaingi
technique for computing a single score capturing the gualit
of experience. By performing spatio-temporal aggregation
and multi-scale association of the user feedback with net-
work performance metrics, it identifies the right set of met-
rics useful for accurately quantifying the quality of exper
ence.

. We evaluate Q-score using data collected from a large com-
mercial IPTV service provider and show that Q-score is able
to predict 60% of customer service calls with 7L of false
positives.

. We create three applications above Q-scoreld@tifying
important Key Performance Indicators (KPIs) that are statis-
tically associated with the quality of experience , Hiedict-
ing bad quality of experienceto users and generating alerts to
the Operations team, and (i5ffective dimensioning of the
customer care workforce to dynamically allocate repair per-
sonnel to service regions as they experience issues for con-
ducting root-cause diagnosis and rapid repair.

Organization. The remainder of the paper is organized as follows.
In Section 2, we provide background information regarding t
IPTV network architecture and its data. We describe thegtesi
Q-score in Section 3, with details on its offline learning pament
and online monitoring component. We present performanakiev
ation results in Section 4. In Section 5, we explore threeoirgmt
applications of Q-score. We review related work in Sectican€él
offer conclusions in Section 7.

2. BACKGROUND

In this section, we give an overview of the IPTV service archi
tecture followed by a detailed description of the data seeslun
the paper.

2.1 IPTV Service Architecture

Figure 1 provides a schematic overview of an IPTV system. The
service network exhibits a hierarchical structure whedew@icon-
tent is delivered via IP multicast from servers in the previsicore
network to millions of Set-Top Boxes (STBs) within home net-
works. Specifically, either the Super Head-end Office (SHAILv
serves as the primary source of national content or Videal+éea
Offices (VHOSs) which governs local content at each metragoli
area encodes, packetizes and sends the content towardsessd u
Depending on the service provider, the video content gaesign
several routers and switches in Intermediate Offices (IOsh-
tral Offices (COs), a Digital Subscriber Line Access Mukier

performance measurements inside the home may be ﬁne_‘%DSLAM), and a Residential Gateway (RG) before reaching STB

where the packetized content gets decoded and displayekeon t
TV. All of the network entities comprising the IPTV serviaegs
Key Performance Indicators (KPIs) such as delivery statulata
and health diagnostics.

vice disruption due to measurements and due to the massive?2 2 Data Sets

scale of the measurement infrastructure that would be re-
quired. The diversity in the granularity of performance mea
surements poses interesting technical challenges irrimger
the quality of experience.

In the paper, we use data collected from a large commercial
IPTV service provider in the United States, which has cusiem
spread throughout four different time-zones. Our data cesists
of (i) network performance indicators, (ii) user behavians activ-
ities, and (ii) user feedback in the form of customer troulkets



. [ Data Set Type | Spatial Level | Description
Super VOD Servers STB audio quality indicators
Head-end Video Encoders STB video quality indicators
Office Video STB STB syslog
"""""""""""""""""""""""""""""""""""""""" F Network STB resets
) ) Contents Performance STB crashes
Video Local Video Encoders Indicators RG RG Reboois
I(-)Icf:;ti:nd Local VOD Servers [0 &CO SNMP MIBs of routers & switches
————————————————————————————————————————————————————————————————————————— SHO & VHO | SNMP MIBs of routers & switches
User STB power on/off log
Activity User STB Channel change Tog
Intermediate Indicators STB Stream control log
Office T NG [ User FeedbacH User [ Customer trouble tickets
Centeral | Network Table 1: Summary of data sets
Office /TN
STB audio and video lod,e., sampled data were polled by col-
Residential lection server in round robin fashion. Thirdly, we colletterash
G and reset events log from each STB. The crash events logsrefer
Home ateway . )
to unexpected rebooting of STBs due to software malfunstad
‘ the reset refers to intentional and scheduled reboots cowieca
| Set-Top-Box  Phone  Computer U by network operators due to, for instance, software updafes
‘ | — ser crash and reset log are periodically collected from all SVih
Action - - L
™v millisecond scale time stamps. Last performance indicttken
i from home network is the reboot log of RGs that are commanded

by operators remotely. RG reboot logs are collected in tineesa
way as STB reboot logs. The crash and reboot logs are callecte

Figure 1. IPTV service architecture from the entire seven million STBs.

as summarized in Table 1. We normalize timestamps in allskta User Activity Indicators. Because IPTV networks are highly user-
to GMT to accurately and effectively associate the usertfaekl interactive systems, certain user activity patterns oiteaan cre-
with performance metrics and user behaviors. The data hers be ate overload conditions on the STB and cause a service isgle (
collected for 45 days from August 1st to September 15th, 2010 a user changing channels too frequently may cause its apstre
Note that all the information related to the users are andrsuito device such as a DSLAM to be overwhelmed, leading to an in-
preserve their previcy. ability to handle all of the remaining STBs that it servesknide,
user activities are another important factor to be considleSim-
ilar to conventional TV users, IPTV users use a vendor/pl@wvi
customized remote controller to control the STB. For thipgra
we collected logs from every STB that captures four typessef u
activities performed: (i) power on/off: this is the resulttbe user
pressing the power button to turn on or off the STB; (ii) chan-
nel switch: this can be the result of one of the three actidass:
get switching by directly inputting the channel number,ussdial
scanning by pressing the Up/Down button, or pre-configueed f
vorite channel list; (i) video stream control: this indes actions
such as fast forward, rewind, pause and play that are pegfbon
either live TV streams, VoD, or DVR; and (iv) on-screen memu i
vocation: this log saves the user action of pulling up the &¥eBu
displayed on TV screen that lets the users to access thedeatu
provided by the IPTV system.

Network Performance Indicators. Network performance indica-
tors are categorized into two types: (i) provider networkfqe
mance indicators, which are collected from routers andche#
in SHO, VHO, 10, CO of the IPTV service provider as shown in
Figure 1 and (ii) home network performance indicators, Wwtdce
collected from components inside user’'s homes (i.e., RGSAr).
For the provider network performance data, we collected NM
MIBs from every router and switch in SHO, VHO, 10, and CO.
The SNMP MIBs report five minute average performance stegist
of CPU utilization and fifteen minute average summaries é&wkpt
count, packet delivery errors and discards.

From the home network side, we first collected data relevant t
each STB and RG. Each STB records audio and video streaming-
related information including video throughput, receitr@nsport
stream errors, codec errors, DRM errors, and viewing dumati
TV channels. The video streaming-related informationseta/hen
the TV tuner clears its buffer by switching channels. Whikelke User Feedback For user feedback, we used calls made to the cus-
STBlogs all the TV viewing information at all times, pollisgrvers tomer care center of an IPTV service. Customer care cases are

only take a subset of the STBs’ statistics at each pollingrirat records of user interactions at call centers. A customérceal
(due to the high volume of audio and video log and traffic over- be related to service provisioning, billing and accountiogser-
head during data delivery). As a result, only a sampled s8T&fs vice disruption. Since the focus of our paper is on qualitgxof
(i.e., 2% of all STBs) are used in our study. Secondly, wesotdd perience (QOE), we specifically examined users’ reporteovice

STB syslog information that contains a wide variety of haadsv disruptions that later involved technical support as owr tised-
and software information, such as hard disk usage and meamsery  back. Each customer call related to service disruptioruaies the
age, data delivery status such as packet error rate and hstige. anonymized user ID, report date and time, brief descriptibtine
The diagnostic information are collected in the same wayhas t problem, and resolution of the issue.
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Figure 2: Overview of Q-score design

3. Q-SCORE DESIGN

In this section, we introduce our proposed scheme, Q-sttre.
high level idea is to extract a useful association betweemtisy,
incomplete, and indeterminately-delayed user feedbadkreavar-
ious network (including the servers, transport and in-hdmeces)
performance indicators through an offline learning processl
then transform the knowledge into an online monitoringeysthat
estimates/predicts user-perceived service quality baséae avail-
able network KPIs. We start by giving an overview of the Qrsco
system architecture and then dive into details of each coeo

3.1 Overview

Figure 2 presents the system architecture of Q-score. Agrsho
in the figure, Q-score takes input from network (includingvees,
transport and in-home devices) performance indicators;iwive
refer to asfeatures, the user control activities, and the user feed-
back in the form of customer call service records. The ouiput
a series of Q-scores, one for each user of the service, fuanti
ing the received service quality. At a high level, our systiem
composed of two components: (i) an offline learning compbnen
and (ii) an online continuous monitoring component. Therove
all dataflow in Q-score system begins with the offline relagiup
learning between user feedback on service quality and thee me
surements from the network features and user activitiesally
if there had been any accurate and fine-grained user-lexétse
quality measure, we would use it to train a model for netweid- f
ture selection. However, as stated earlier, the best &aitmethod
for discovering user-level service quality issue is thitotlge lossy,

noisy and indeterminately-delayed calls to customer cargets.
Consequently, we need to carefully design the appropréatgo-
ral and spatial aggregations to remedy the inherent losse ramd
delay with user feedback. Furthermore, by applying stagikte-
gression over a large quantity of historical data betweeiova
network KPIs and the user feedback, we obtain a set of ragress
coefficients which quantitatively capture their relatioips These
regression coefficients are fed into the online monitoriompo-
nent.

With the regression coefficients, we can turn the up-to-date
work KPI measurements into a single numerical score for eaeh
or groups of them within a given spatial region. The numérica
score, which we refer to as tli@-score, captures the likelihood of
any on-going service quality problem. Tracking the Q-scorer
time enables many service management applications, asendé-
scribed in Section 5.

3.2 Spatio-Temporal Feature Extraction

In order to discover possible correlation between useraitu
of experience and IPTV system events, we apply a comprefeensi
set of performance indicators ranging from provider nekwoer-
formance indicators to home network component status lmgd,
to user interaction logs with IPTV. On each of the networkiqrer
mance indicators and user interaction indicators destiib&ec-
tion 2.2, we apply the following series of transformation®btain
a measurement matrix.

3.2.1 Transformations of Measurement Readings

Conversion to Fixed-Interval Time Bins. Network measurement
data collected from different sources and devices are btudd-
ferent time periods, posing challenge in correlating thedome
data sets, such as CPU level of routers in SNMP MIBs, contin p
riodically collected measurement data, and the value sepits the
average or total over the measurement interval. Some otitar d
sets, such as user activities to STB and STB crash logs, inonta
events that take place at a single point of time, hence asenit-
tent and have zero duration. Data sets such as STB audio @eal vi
quality indicators contain data polled either on demand areg-
ular intervals and represent the cumulative counters ovariable
time interval (e.g., due to channel switches clearing tlagmidstic
counter entries).

To unify the data representation, we define a data point
d(m,l, s,e) = v as composed in a four dimensional specification:
(i) metricm € M whereM is a set of metrics such as CPU level
of routers and count of video decoding errors at STBs. (@atmn
I € L whereL is a set of spatial location identifiers such as a set of
users, DSLAMSs, or COs. (iii) beginning time for the data himgd
interval s € T, whereT is the total time window, and (iv) end-
ing time of the data binding interval € T'. v is the measurement
value thatd contains. Note that for measurement data pertaining to
a single time points = e.

The above representation is comprehensive in capturingugr
cases of periodic/intermittent or fixed/variable duratimorasure-
ments. However, it requires a moderate amount of computétio
determine the overlaps among the time intervals, which ineso
prohibitively expensive for a large data set as in our casereT
duce the complexity, we convert al(m,, s, e) into a fixed-size
time interval data representatiotn, [, s, ¢) as follows:

b(m,1,s,8) = {v|v=d(m,l,35¢&), wherel =1
and|s, €] overlaps with[s, s + d]}

@)



whered is length of the feature time interval. Note that if there

exist two or morels with matching measurement time[tg s + 4],
there could also be multiple identical values for makingb not
well defined. We need to introduce the aggregation functams
below.

Conversion to Derived FeaturesTo deal with multipleds collid-
ing into the same (either due to time bin or spatial aggregation),
we define three types of aggregate data points, which wetcefer
the derived features. They contain (i) the minimum, (ii) the maxi-
mum, and (iii) the average of all the values torespectively. For-
mally,

fm(m,l,s,0) = min _(U(b(m,l,s,9))).
lechild()

fM(m,l,S,(S) = max_(U(b(m,Ls,(S))). 2
techitd(l)

fa(m,1,5,6) = avg (U(b(m,1,s,9))). (©)

1echild(T)

In this way we can limit the number of derived features to lreeh
regardless of the number of actual readingsé.itUnless specified
otherwise, all features referred in the rest of the papetheale-
rived features.

Feature Normalization. To identify a small set of network features
most relevant to customer feedback, we need to fairly coenpach
network feature to others. However, the network featuresove
sider typically take numerical values, potentially havitifferent
signs and across large range of scales. This makes it diffizul
assess the significance of their associated coefficient uadees-
sion.

To deal with the diverse data values, we further normalize fe
tures to be binary-valued by comparing to a threshold, wisch
determined depending on the metric and location.

Consider a vector of features of the same metric and location

over different time and interval combinations:
Fa(m, 1) = (fa(m,1,s,8) wherem = m, 1 = 1) (4)

We need to identify a threshold valuefor ﬁ To do so, we
bring in the user feedback in the form of user call logs. Wesaer
the conditional distribution function of the metric valukinterest
when (1) there is one or more entries of the user call log ba@g
sociated with the locatioh and when (2) there is no such entry.

3.2.2 Constructing Measurement Matrix

In order to support multi-scale analysis that accountsHerin-
determinate delay in user feedback, we construct the rgigres
input matrix X over all measurement metrics, location, and time
parameters as below.

[[frm(ma,l1,81,0) farfa]
fm(m17l173275)f]\{fa

fm(mlv'lhst,é)f]'\{f.a
fm(mai,l2,81,0) farfa
fm(mai,l2,52,0) farfa

f7rL(m171275t76)fA1fa

[fm(me2,l1,81,0) frsfa]
fm(m27l173275)f]\{fa

fm(m27'l173t75)f]'\{f.a
fm(maz,l2,51,0) far fa
fm(ma,l2,52,0) far fa

f7rL(m27l275t76)fA1fa

@

The columns oK represent different metrics of derived features.
Thus, each column haéwith a uniquem;, wherei is an instance
of time bins. The rows oKX represent all feature values during a
specific time §;, J) at a specific locatior;. Assuming there are
n locations,t different time bins, and: different KPI metrics and
feature aggregations, the number of rowsXnis n x ¢t and the
number of columns i&.

3.2.3 Multi-scale Temporal Level Aggregations

The time window parametef plays an important role in cap-
turing the extend of cause-effect delays. Ladgeould include
cause-effect relationship with long delay. However, lafgeould
make it insensitive to dense measurements with short cefteset-
delay, as the aggregation weakens the significance of atimel
Since differenty values have advantages over others, we adopt a
multi-scale analysis approach by including multiple timedow
parameters into our consideration. Our matrix represientat Eq
(7) is flexible enough to enable this — we append in columns the
X (6;)s with different time-intervalsd).

XTemp.Comb. = [X(d1) -+ X(dv)] (8)

wherew is the number of different values of the time window pa-
rameter.

3.2.4 Multi-scale Spatial Level Aggregation

Similarly to the temporal aggregation captured by the tine w
dow parameter, there can be multiple spatial aggregatieside
with an IPTV system architecture. Based on the hierarclsicat-
ture in Figure 1, we consider three different spatial agatieg lev-
els in Q-score, namely user, DSLAM, and CO levels.

Ideally, a threshold- can separate the instances between cases 1Single-Scale Spatial Level AggregationWe set the baseline spa-

and 2. When threshold is low, the chance of having instances in
case 1 passing the threshold increases, and when the tlirésho
high, the chance of having instances in case 2 failing trestiold
increases. So, we set the threshelsuch that the two factors bal-
ance out. Using empirical CDFs of the casé-1)(and case 2K>),
we can define- to be the intersecting point df; and1 — F5 such
that

Fi(1) =1— Fx(7). (5)

Oncer is determined, we can normalize ff as follows.

_ 1t fa(m,ls,0) >=1
fa(m, 1, s,0) = { 0 otherwise ©)

Features,, and fas can be normalized in the same way.

tial aggregation level to per-user aggregation. This isabse the
customer service report logs are associated with a housekbich

we loosely refer to as a user. Matching the network featuréiset
household/user level, one of the following process is regs (i)

for features at finer grained spatial level than user (su@iT&sre-
lated features since one household may have multiple ST&s),
take the maximum among different feature values for the more
specific locations as the representation fer, the minimum for
fm, and the average fof,, at the user level; (ii) for features with
coarser grained spatial level than user (such as DSLAM ang CO
we replicate the coarser grained feature values for eacitiassd
user within the hierarchy. In this way, we preserve the nunolfe
samples to be x ¢ in each row 0fX 4ser. The same spatial level
aggregation is applied for the DSLAM level and the CO level to
obtainXpsr.am andXco respectively.



Multi-Scale Spatial Level Aggregation.In parallel with the multi-
scale analysis with respect to time window parameter, idiffespa-
tial aggregation levels can be fed into regression altagetfihe
idea is that the most prominent feature would be at a suitgdzigal
aggregation level and would dominate the same featuresgajgd
at other spatial levels. We append in column the featureicestr
for different spatial levels to get t¥€spat. comb.

9)

Xspat.Comb. = [Xuserip XpsrLam Xco].

3.3 Feedback Aggregation

As outlined in Section 2.2, we use the customer service agd |
as the user feedback regarding service quality. This feddiza
inherently unreliable. It is incomplete as not all serviaelity
problems (e.g., video glitches) would be noticed and regblty
users. And there is an indeterminate delay ranging from tagu
to hours to even days between the service problem and thalérou
ticket log entry {.e., entries of customer reporting issues to call
centers). All of these require some denoise processingucn s
user feedback to be useful even in statistical sense.

We adopt the same principle applied in the spatio-tempayal a
gregation with respect to network features. Ldte the predicate
of the presence of a matching entry in the feedback g (

1 if 3b € Bduring[u, u + v];

0 otherwise (10)

et = {
wherewu is the beginning time for a feedback binding interval and
~ is the length of feedback time interval. Ong@, u, ) is defined,
we can use the same spatio-temporal aggregation methoteor t
network features on.

A network event or user activity is always a cause of user-feed
back but cannot be an effect. Thus weset s + ¢ so that when
we correlatez; to b;, we take account of the causal sequence be-
tween network (or user activity) events and user feedbaeky be
a vector of feedback for different users over time

y = le(li,ur, ), oy c(li, ue, ¥), e(la, ur, ), ..., c(l2, ue, ), ]T

The length of the vectay is determined by the number of locations
n and the number of time bins making it to ben x ¢ which is the
same as the row count k.

3.4 Regression

Given the measurements of network indicat®rand user feed-
backy, we now aim to find a coefficient vectat that provides
a compressed representation of the relationship bet@eeand
y. Note that, in the event of measurement or data collecticor er
which results in parts aK or y to have no values, we remove the
affected rows ofX andy from consideration to eliminate possible
false correlation.

Such an optimization can be performed ugiegression. A base-
line regression model of linear regression [9], howevemnnca pro-
vide the optimal solution as our system of equatidy = y is
over-constrainedi ., the equation has far smaller number of un-
knowns than the number of equatios< (m * n))). To prevent
8 from over-fitting due to high variance, we apply Ridge regres
sion [11] that imposes a penallyon the complexity of model by
minimizing a penalized residual sum of squafeSS as follows

in RSS(D, ) s.t. ? <. 11
minRSS(D, §) s 3B < s (11)
whereD is the set of observed data poil’s= x, yn.

We can state this optimization problem in Ridge regressfon a

P P
B =arg mﬁin Z(yz — Bo — Zwijﬂj)2 +A Zﬂf (12)
i j=1 Jj=1

The Ridge coefficien becomes
B=X"X+)"'X"y.
wherel is the identity matrix.

There are other regression methods we have explored ingudi
[1-norm minimization and logistic regression. However, assys-
tem of equation has tens of thousands of equations and thdsisa
of unknowns,/;-norm minimization and logistic regression either
took excessive amounts of time in computation or failed to-co

verge to an answer. The complexity and scale of our systene mak
these other techniques infeasible.

Finding Significant KPI Weights. From the3 coefficients, we can
identify key performance indicators (KPIs) that are moresely
related to user feedback. This involves sorting the regresso-
efficients by their absolute value and identifying the f§pKPIs
associated with them. Furthermore, by analyzing the conatron
ity and difference of the same metric across different tenalpemd
spatial aggregation configuration, we can gain insight om éach
of these KPIs impact the users’ quality of experience spetfthe
most significant spatio-temporal aggregation. The ar@dytesults
on the most significant KPIs in IPTV are presented in Sectidn 5

3.5 Compute Q-score in Runtime

Once the offline learning gf completes, we can compute from
the available key performance indicators the Q-scoreseftit in-
dividual users or groups of users aggregated spatiallyritpg on
the feedback aggregation scheme used.

Detecting Significant Q-score Changes.We apply 8 from the
offline learning to the current network measurement dadad ob-
tain Q-score that estimates per-user level service quatityning
continuously as network KPI data streaming into Q-scoretraek
the series of Q-scores over time. Since Q-scores are ramd/a
numbers, we need to identify the thresholds for alarminghen t
Q-scores to the operations. The alarms can be proactively tos
predict customer calls. We apply simple threshold-basethgé
detection on the time-series of Q-scores to generate thasla

False alarm rate of Q-score.As a prediction mechanism of pos-
sible outbreaks, it is very important to have a low falseralaate
in a service quality assessment. In Q-score, a multitudeoot-c
ponents prevent a single user, one end-user device, or anketw
device from raising false alarms for a large population adras
The feature normalization described in Section 3.2.1 edgalfea-
ture values, an exceptional feature value for an indivicizeinot
affect much to the entire population. The multi-scale aggtiens
(Section 3.2.3, 3.2.4) further reduces the possibilityabédly em-
phasizing rare events. In the case of spatial aggregatexguse
Q-score considers both individual users and spatial grofipsers,
the score is stable even when an individual’s feature valingh.
Similarly, temporal aggregation prevents the chance s&falarms
due to highly transient feature value changes. Additignadlprac-
tice, we carefully set the threshold of Q-scores to focus orimiz-
ing false positives, even with slight sacrifice to coveragedll).

13)



4. EVALUATION Aggregation methadP value in F-tegCorrelation coefficienf

. . . CcO 0.0Q 0.6824
In this section, we present the performance evaluatioritsesti Random 221e-3 0.7164
Q-score and show that the regression results are accurdtean
bust, and the multi-scale aggregation of spatio-tempaaluies Table 2: Accuracy analysis results of Q-score

has benefit over single scale, non aggregated cases.

4.1 Evaluation Methodology level'. By summing up individual users’ feedback within each CO

Metrics. We compare the number of predicted customer trouble MO @single value, we obtain an aggregation veBigjua of user

tickets and that of received customer trouble tickets andsme }‘eeggac::. .tS'nTSact“tal ISa _spgft_lo-ttehmpl)orall a?gregatlon qf user
the accuracy of prediction of service quality issues byefaksgative eedback, its element now signilies the level of user-p er-

rate (FNR) and false positive rate (FPR). The FNR and FPR are vice quality issues. Similarly, by summing up the indivitlusers’
computed per user basis Q-score inside each CO into a single value, we can obtaingmeag

gation vector of Q-scoreSestim that signifies our estimated level
of user-perceived service quality.

FNR = Foftime bins that Q-score fails to predicts a trouble ticket To evaluate the significance of the relation between theahctu
#of time bins that have received trouble tickets (Sactual) and estimatedSestim) USer perceived service quality
FPR #of time bins that Q-score incorrectly predicts a ticket level, we run an F-test between them. Let the null hypothesis
#of time bins that do not have any trouble tickets Ho : v = 0 whereSactual = 7 * Sestim. We find that for the

significance level of 0.1, the hypothesis test is rejectahlying

that the relation between the two vectors does exist. A Baars
correlation test also shows relatively high correlatioafticientR
betweerS,ctua1 aNdSestim, Proving that the relationship between
the two is linear. In other words, Q-score does follow theruse
perceived service quality.

Training and Testing Sets. In our evaluation of the Q—score SYys- Because CO level aggregation represents Spa’[ia| proxmity
tem, we use data sets collected from a commercial IPTV né&twor yser geographical locations, user feedback rates can fezeif
provider in US over two months time period from August 1s@0  across COs. To evaluate if CO aggregation introduce anydsias

to September 30th, 2010. Unless otherwise mentioned, w&iise  the results, we also conduct the same evaluation using @mand
days of data collected from August 15th, 2010 to August 22210 grouping with the same number of groups as the number of COs
as the training data set fgt and the subsequent 15 days of data and compute aggregation vectors. Table 2 summarizes thstF-t
collected from September 1st, 2010 to September 15th, 2610 a and Pearson’s correlation tests results for both CO legagtion

the testing data set. In addition, we use multi-scale teaip:g- and random grouping based aggregation_ The random grouping
gregation ofXremp.coms. COMbinings of 3-24 hours and multi-  pased aggregation generally shows the same results as te €O
scale spatial aggregation &fs;:.coms. COMbining spatial levels  aggregation, supporting that Q-score indeed follows wseafack

of user, DSLAM, CO, and VHO as the default setting. Lastly, we regardless of how we aggregate users in Q-score computation
set the default feedback time binto bey = 24 hours.

Note that due to the sparsity in the occurrence of user fexdba
(i.e., trouble tickets), the number of time bins without arser
feedback is orders of magnitude higher than the number of tim
bins with user feedback.

We assignm\ a small positive value withirf0, 0.05]. While dif- 4.2.2 Multi-scale Temporal Aggregation
ferent exhibit small differences in accuracy, the optimalaried In this section, we evaluate the impact of different time-ize
from data set to data set. Since the selepuoh lsfspepmc to Qata (5) on network indicators (single-scale temporal level aggtien).
setin eaph test, we present the results with the bastile omitting Then we show the performance benefits by using multi-scate te
to show its actual value. poral aggregation on network performance indicators (rsatile
temporal level aggregation).
4.2 Results Figure 3 shows the Q-score on FPR-FNR trade-off curves using
. variousds ranging from 3 hours to 24 hourisg, each curve corre-
4.2.1 Accuracy Analysis sponds to aiX with a givens). Note that FPR shown on theaxis
We begin our evaluation by assessing how well Q-score fallow is in log-scale and FNR shown on theaxis is in normal scale.
the ground truth of user-perceived service quality. In owale The figure shows that the prediction accuracy gets gendrathgr
ation, we use user feedback as an approximation of the groundas we shorten (i.e., the curve gets closer to the lower left corner of
truth of user-perceived service quality issues in trairang test- the plot). However, comparing= 3hours andd = 6hours, their
ing Q-score system. Recall that the user feedback is inampl  FNR overlaps over different range of FPR, indicating thatrehis
in reflecting user perceived service quality. In fact, therdsed- no single optimab to be chosen.
back captures a subset of user perceived service qualityssnd Figure 4 shows the results ®remp.comb. DY applying multi-
thus underestimates the actual occurrences of servicerpeiice scale temporal aggregation on network performance inalisat
degradations. Fortunately, major and/or long lastingiserper- There are three curves obtained by combining (i) shortez ins

formance degradations are likely to be captured by the esef-f of 3-12 hours, (ii) longer time bins of 15-24 hours, and (ifg
back [24]. Hence, it is likely that the computed Q-score uade entire range of 3-24 hours. We observe that (iii) provideshibst
timates the actual user perceived performance issuesxpeted performance among them. At the same time, (iii) is also thyric
to capture major outages and performance degradations.

) - - . -
While Q-score does not perfectly match with the user peeceiv e considered various levels of spatial granularity in &\

service quality at the individual user level, the changeseards in ?;'gr?é?,g?' é%‘glrjgég% g]silgAn'\fé sfgaggﬂ a\{g%r'ﬁ‘(,%'s'é cﬁﬂmg glﬂear}wy

the distribution of Q-score are expected to follow closelthvhat because it yields a statistically sound number of user |Dsaich

of the actual service quality degradation at certain spajigrega- ~ CO and enough number of COs to make meaningful comparisons

tion levels. In our evaluation, we choose CO as the agg@gati between aggregation vectses.
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Figure 4. Comparison of multi-scale temporal aggregationn Figure 6: Comparison of various time bin sizey on user feed-
features (performance indicators) back
better than any curves in Figure 3, proving that multi-s¢aepo- visioned. In addition to the single-scale spatial aggiegatthe
ral aggregation on network performance indicators doegawep first plot of Figure 5 (denoted as ‘USER + DSLAM + CO + VHO)
the accuracy of Q-score prediction on service quality issue shows multi-scale spatial aggregation (with measuremeattixn
Xspat.comb.). We observe that the multi-scale spatial aggrega-
4.2.3 Multi-scale Spatial Aggregation tion outperforms any single-scale aggregation in termsvefal

We now evaluate the impact of various levels of spacial aggre Prediction accuracy, proving that the regression algorithakes

gation on network performance indicators and the benefisivfy the most accurate selection of spatial level of features.
multi-scale spatial aggregation in Q-score. .

Figure 5 shows the trade-off curves Kf with various single- 4.2.4  Feedback Aggregation
scale spatial aggregation ranging from user IXufe:1p), To show the effect of user feedback duration being aggrdgate
to DSLAM (Xpsram), to CO Xco), and to VHO Xvo) together, Figure 6 compares various lengths.ofVe observe that
level. As the spatial aggregation level changes from usetolD ~ as7y gets longer, the regression performance gets better. Aa-exp
DSLAM (i.e, smaller-sized region to larger-sized region), we ob- nation for this is, as mentioned in Section 3.3, there is aiiggant
serve that the FNR increases from 35% to 100% when FPR is atdelay between the occurrence of a problem and the filing af use

0.1%. A possible explanation to this is that if the serviceliy is- feedback. Due to the elongated delay, time-bins with shernay
sues reported by users are more related to a home networleprob ~ fail to contain feedback correlated with significant netwindica-
rather than a provider network problem, spatial aggregaifmet- tor values.

work performance indicators can attenuate signals reteathe . .. .

individual users at home network side. As we will show in Sec- 4.2.5 Sensitivity to Training Duration

tion 5.1, by analyzing significant KPIs, we are able to conflniat Finally, we evaluate the sensitivity of testing accuracytioa
the significant KPIs are mostly related to STB and R&,(home duration of training. In this experiment, we fix the testingation
network devices) while backbone network appeared to bepre| and assess how accuracy changes by varying the trainingatura
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Figure 7: Comparison of accuracy with various training dura-
tions

Table 3 shows the dates of training and testing periods usedri
evaluation. Figure 7 shows the accuracy trade-off curvassiofg
different training durations. We observe that in genetad,testing
accuracy improves as we increase the training duration. every
the gain becomes marginal once the training duration isdotigan
15 days. This result suggests that using 15 days as traieingd
is a good choice.

A closer examination of the curves corresponding to the fise o
15 and 20 days of training duration reveals that the accuodcy
using 15 days training duration is marginally better. A [iass
reason for this is that in the month of August, there was a ordtw
wide STB firmware upgrade. The upgrade that took place betwee
08/10/2010 and 08/14/2010 could have obstructed measaterhe
STB logs (.e., STB audio and video quality measurement logs,
syslog, reset and crash logs) and caused learniddmbe affected.
Since this kind of glitches occurs in real data, we take samathunt
of noise as granted. In all, we observe that 15 days of trgiign
enough to lear®.

Summary. In this section, we evaluate the accuracy and robustness
of Q-score. The Q-score, combined with multi-scale temipaga
gregation and multi-scale spatial aggregation, succiggiedicts
60% of service problems reported by customers with only 0.1%
misclassificationi(e,, false positive rate). While an in-depth anal-
ysis is in order, our preliminary test shows that a portiorthef
remaining 40% of unpredicted issues are either (i) not cagtby

any of the network KPIs we measured;, remote controller mal-
function, wiring issues between STB and TV inside home) dr (i
fallacies that our regression does not captemg,(gradual and long
term changes in network KPIs). For (i), we are unable to com-
pletely ignore such issues as feedback is logged by human ope
ators in plain text. For (ii), we address with our previousrkgo
Giza [18] and Mercury [19] as they are specifically designed t
detect and mitigate recurring and persistent events iniGgin
service networks. In a future work, we plan to conduct anrexte
sive analysis on the false negatives to determine the piioperof

the issues in each of the categories and further improveuteess
rate.

Duration Dates

Testing duration | 15 daygq 09/01/2010 - 09/15/201|
5 dayq 08/25/2010 - 08/29/201]

10 dayg 08/20/2010 - 08/29/201

15 days{ 08/15/2010 - 08/29/201

20 dayg 08/10/2010 - 08/29/201

30 dayq 08/01/2010 - 08/30/201]

Training durationg

[cNeNeoNeoNeoNa)

Table 3: Training and testing durations

[KPI Type [KPI Label |3 Coef]
Network deliveryRTP payload error 0.6§4
Tuner fill 0.63
Hole Too Large 0.61
Decoder stall 0.42
Bytes processed per s¢c -0.32
Audio Audio decoder errors 0.84
Video Video DRM errors 0.73
Video decoder errors 0.53
Video frames decoded| -0.49
Video data throughput | -0.49

Table 4: Significant KPlIs for large § (15-24 hrs)

[KPI Type [KPI Label |3 Coef]
Network deliveryHole without session packgts 0.60
Tuner fill 0.57
Bytes processed per sec -0.34
ECM parse errors 0.32
Audio Audio decoder errors 1.03
Audio samples dropped 0.84
Audio crypto error 0.64
Audio data dropped 0.55
Audio DRM errors 0.34
Video Video DRM errors 0.63

Table 5: Significant KPIs for small § (3-9 hrs)

5. APPLICATION

In this section, we demonstrate the utility of Q-score byspre-
ing three applications on it. First, we present a set of netWd1s
that are closely related to user-perceived service qualigcond,
we illustrate how much Q-score can predict user calls. Thvirel
show the possibility of intelligently dimensioning the lceénter
workforce. In all applications, we successfully identifit@resting
results through online analysis of Q-score.

5.1 Identification of Significant KPIs

Today’s commercial IPTV services support up to millions séu
devices. If for every single device, few KPIs are monitoredtm-
uously, the measurement space can easily reach to the droiér o
lions. In addition, time-lapse analysis in the diagnosssni@any di-
agnosis schemes employs) is required to be conducted oiplault
data snapshots in short periods of time. Thus, in serviagraisse
of a large-scale IPTV system, it is infeasible to blindly @,
collect, and analyze such large volume of diverse KPIs frben t
entire network. In this application, we discuss our expergeon
identification of a small number of significant KPIs with respto
user-perceived quality of experience.

Significant KPIs. In the generation of Q-score, we relate the net-
work KPIs and user feedback by means of the fagtqs measures
the relevance of significant KPIs by its magnitude. The asialgf
the magnitude ofs for different temporal aggregation levels indi-
cates how KPIs correlate with user feedback. Tables 4 arst top
ten significant KPIs for relatively long history hours (18-Rours)
and short history hours (3-9 hours), respectively. Beirgyessed



[KPI Type [KPI Label |3 Coef]
Network delivery Tuner fill 0.67
Src unavailable received 0.5
Hole without session packgts 0.52
ECM parse errors 0.35
Bytes processed per sec -0.33
Audio Audio decoder errors 0.74
Audio data dropped 0.57]
Audio crypto error 0.44
Video Video DRM errors 0.68
Video frames dropped 0.65

Table 6: Significant KPIs for multi-scale temporal aggregaton
(0-24 hrs)

with individual users’ feedback, the significant KPIs exhgome
commonality (shown in bold) as well as differences.

From the KPIs relevant to network delivery statistics, wearke
that “tuner fill", “hole without session packets”, “hole téarge”,
“bytes processed per sec” are particularly interestingsKPluner
fill" logs the number of packets lost by STBs before they are re
quested for TCP retransmission. The lost packets are se@qos
be retransmitted by content distribution servers. Tunkcdilints
can be related with video quality in that they indicate theditton
of the delivery network and gives a sense of the average pldse
that would occur without any packet recovery scheme. A "hole
represents a time interval greater than a given thresheklaed
to affect video quality) in which no video packets have been r
ceived. 'Hole without session packets’ counts the numbesuch
holes occurred during a STB’s viewing session (since thesisest
channel change). And 'hole too large’ error is triggered mwitee
hole size is larger than the maximum end-to-end delay50fn.s
recommended by [2].

On the audio and video related KPIs, “decoder error” logs are
general types of errors that occurred during the decodiraudfo
data. Decoder errors can occur due to various situatiomsdimg,
but not limited to, out-of-order data packet reception,iadmliffer
underrun or overrun, and packet loss. ‘DRM errors’ and ‘twyp
error’ indicates errors caused by the video DRM decoder .s Thi
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Figure 8: Growth pattern of Q-score

Another finding from the KPI analysis is drawn from multi-kca
temporal aggregation. As shown in Table 6, by combining {ong
term and short-term event duratiéin regression, we observe both
video and audio related issues appear as the most signiKédat
This further confirms the effectiveness of letting the regien al-
gorithm to choose important KPIs among multiple temporglrag
gations.

Noticing that different KPIs have different degrees of valecy
to user feedback, we aim to guide monitoring of network KBis b
enlisting a small number of significant KPIs to user-perediger-
vice quality. This way, forthcoming fine-grained networkginosis
can focus on the significant KPIs rather than analyzing estees
amount of KPIs.

5.2 Predicting Bad Quality of Experience

In order for Q-score to be useful for alerting services, gt
have the capability to provide triggers well before useaist$o call.

error can occur when encoder packets containing DRM keys are Thus, there is a need to study how much into the future we dan in

lost. In IPTV, every video program is encoded with DRM, and
inability of decoding DRM blocks viewing of the programs. Ugh
the occurrence of this error blocks TV viewing until new eten
keys are received regardless of receipt of the data packassly,
the ‘video frames dropped’ error represents the number adovi

customer calls using Q-score. To understand the feasibdt ¢é
proactiveness in Q-score, we evaluated two charactevigicthe
growth pattern of Q-score over time and (ii) stability of Geee
with a time gap between network events and user feedback.

Growth of Q-score Over Time. Figure 8 shows the growth pattern

frames drops (below the normal frame rate of 29.97 frames per of Q-score for individual user IDs who filed trouble tickets.the

second) due to packet loss or decoder errors. When largeefram
drop occurs, viewers can notice choppy or skippy motions.

Observations. We observe an interesting finding by comparing
significant KPIs of long-term event durationse(, large §) and
short-term event durations.€., small 5). The finding is that the
former tend to have more video related KPIs as the most sigunifi
ones, whereas the latter has more KPIs related to audio. r&his
lates with the relevance that audio has with respect to vidéloe
user experience. Audio data is more susceptible to lossksraors
than the video data. The reason is because the total voluthe of
data in audio is much less than that of the video, thus the émpa
of lost or delayed audio data is relatively greater than dfiaideo
data. Naturally, the viewers of the programs have lessantar
to audio issues than to video issues, and report about asslies
much earlier than video issues. The contrasting finding eetw
long and short history hours has uncovered that, dependirigeo
characteristics of the issueise(, whether the issue is about audio
or video), there are differences in urgency.

figure, we align the time by the trouble ticket filing timeree = 0)
and observe how Q-score grows. The solid line representavthe
erage value of the scores and the upper and lower tips of learer
represent one standard deviation plus and minus the avefeqya
the graph, we observe that the increase of average Q-sotmses
to linear when it is greater tham05. The monotonic and grad-
ual increase of Q-score suggests a possibility of usingdpesas a
proactive trigger for alerting because (i) it keeps incie@snce it
becomes non-negligible level and (ii) its growth is not tdwugot.
However, due to great variance among different users’ @esco
we cannot use Q-score 6f05 as the significant value triggering
forthcoming actions. Instead, we seek a more realistictieae by
conducting a further study on the stability of Q-score.

Feasible Level of ProactivenessAs aforementioned in Section 3.3,
user feedback has indeterminate delay from the occurrerices-
work events. Here, we test the amount of lead time Q-score can
provide before customer calls by measuring the accuracydss
we increase the time gap between the occurrence times obrietw
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Figure 9: Comparison of accuracy of Q-scores with different
skip intervals A

eventsb; and user feedback. The default time gap (or skipping
interval) between; +§ andu; is 0 hour because we sef = s; +49

in Section 3.3. In this test, we add the skipping time gafo the
equationu; = s; + 0 + A. By increasingA in the online moni-
toring step of Q-score generation, we test the regressiolarfger
delays betweebh; andc;, in other words, we test for the stability of
Q-score in proactive, early warning.

With variousA ranging from 0 hours to 36 hours, Figure 9 ex-
hibits FPR-FNR of learne@ with different skipping times. As
we increase), the regression gets to rely on the user feedback of
longer time after the occurrences of network events. And ke o
serve that the FPR-FNR trade off gets worse as results. \Whele
choice of lead time should mainly be left to the discretiomet-
work administrators, we find 9 hours of lead time is at theifdas
level, as observing 9 hours of skip interval preserves 0.1%P&R
only sacrificing 10% of FNRi(e., FNR is 30% when skip interval
is 0 hours and 40% when skip interval is 9 hours).

5.3 Dimensioning Customer Care Workforce

If network problems occur locally to regional service anedker
than globally, an efficient management of field operateis,(cus-
tomer care representatives and repair men at customer gggmi
and servicing resourceg.§., devices for fine-grained monitoring
of network) would be to dynamically allocate them to chaljiery
service regions than assigning static work areas. Thusljgbireg
the volume of forecoming issues to a service region at a dinea
is beneficial in adaptively allocating workforce acrossvier re-
gions. In this application, we assess the possibility ofgitecating
a customer care workforce to potentially troubling sendoeas us-
ing Q-score. To begin, we first assess the volume of serviaktgu
issues per different spatial regions and see if the issiesar-
tained locally or spread out globally.

Spatial Distribution of User Feedback.Figure 10 shows the spa-
tial distribution of user feedback across different COse TFkaxis
shows indexes of different COs, theaxis shows temporal trend.
The y-axis shows the amount of customer calls normalized by the
peak valueé.g., a value of 1 represents that the corresponding CO
and time has the highest amount of calls shown in the figuret

a given time, we observe that high user feedback is local ¢b ea

To protect proprietary information, we normalize some infa-
tion in the results to the extent that the normalization dusob-
struct interpretation of results

Figure 10: Normalized amount of users with customer reports
over different spatial locations (COs) and times.

CO. And over time, the areas of high user feedback changes fro
one CO to another. From the fact that high feedback values gen
erally being uncorrelated across time and CO (or space),ane ¢
affirm that the issues are temporal rather than permaneribaat

to an area rather than being global.

Leveraging Q-score for Dimensioning Workforce. Now that we
have seen the possibility of dynamic resource allocaticar ohf-
ferent COs, we evaluate how closely Q-score follows useltfaek

in its magnitude when aggregated across individuals wiggich
COs. Note that, to focus on its similarity to user feedback, rae
ignored the lead time of Q-score in this test. Figure 11 shines
trend of Q-score and user feedback aggregated per-CO.rg doj
Q-scores of individual user ID are first computed, and theesco
corresponding to individuals within each CO are aggregated
gether to form per-CO Q-score. To compare three subfigurdsrun
the same scale factor, the plots are normalized by the pesadroer
call rate appearing in Figure 11(a), 22 hour time. Figureall(
shows the trend of per-CO Q-score and user feedback for a CO
with relatively high customer feedbacke,, customer report rates).
Over the course of 24 days, the percentage of users call pip@gu
center on they-axis gets as high as 11%. Despite that there are
some overestimations, the general trend of per-CO Q-stosely
follows that of user feedback with Pearson’s correlatioeficient

R = 0.8797. Figure 11(b) shows per-CO Q-score and user feed-
back for COs with moderately high customer feedback. Weragai
see that the Q-score follows feedback whenever feedbaokases
over 2%. HereR = 0.7478 Figure 11(c) shows the same fora CO
with few customer calls. Because there are only a small asae
(2% of users calling) in the user feedback, Q-score remdittsa
level of 0.17% on average witR = 0.5011. From the observa-
tions from three different COs with high, medium, and lowdleof
feedback, we confirmed that Q-score, when aggregated aicross
dividuals within each CO, closely follows the trend of ped-Qser
feedback. Since Q-score is confirmed to have several holesdf
time before users begin to report, we can leverage Q-scodé in
mensioning the workforce and prioritizing resources taareith
more upcoming issues ahead of time.

6. RELATED WORK

In this section, we introduce related works on the two imgairt
components of networked service assurance: quality ofrexpme
assessment and network diagnosis.
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Figure 11: Trend of customer trouble tickets and Q-score peiCO.

6.1 Quality of Experience Assessment

Controlled Performance AssessmentA traditional approach in
the performance assessment of network devices is to useltedt
lab environments. The code analysis, protocol analys&héel
tests, and debugging done in such controlled environmeamte s
to localize faults to each individual component of the systgb, 6]
apply principles of automated software fault diagnosis muodel-
based approaches. [21] outlines the methods of softwardauad
ware verification using formal logic theorem provers. Whikie-

distortion model based PSNR metric applied to video quation-
itoring. Recently, ITU and other standardizing organizasi began
to roll out video quality measures such as [22]. Besidesdbk |
of consensus in arriving at a single formula, video qualistmecs
may not be readily usable in the context of network servicityu
assessment as they require fine-grained measurements fidvper
network traffic which current services dismiss due to thescof
measurement and data collection. While our method usedaidie ¢
tomer trouble ticket as a proxy for user feedback, the canogp
our methodology is open to employing a variety of video gyali

orem prover-based service assessment can be extensive@nd ¢ metrics as the measure of user experience.

rect, the process of converting system operation to mattiesha
logic and inventing theorems thereafter restrict its aggpion to a
few specialized software and hardware systems such asfttret o
CPU and its microcodes. For validating network protocdigre
have been several proposals [8,12] based on simulationyatehs
modeling using finite state machine, traffic modeling, aneuiug
theory.

Controlled testing has been extremely successful in detgct
and preventing critical software bugs and hardware faluride-
spite their best efforts, however, they are simply unablepdicate
the immense scale and complexity of large operational systnd
networks. Thus, there is always the risk of issues creepitm i
operational settings when they are missed in controlledramyv
ments. In this paper, we focus on a data-oriented miningcambr
that analyzes the data collected from an operational né&twaie
believe a combination of data mining, lab reproduction, soft-
ware/hardware analysis is required to correctly identifgraalous
service quality.

Video Quality AssessmentSubjective evaluation is the most reli-
able way of assessing the quality of an image or video, as hsima
are the final judges of the video quality in great part of thiewi
related applications. The mean opinion score (MOS) [1] iaka s
jective quality measurement used in subjective tests wistbeen
regarded as the most reliable assessment for video. Hoveiler
jective video assessment method is very inconvenient, resipe

6.2 Reactive Performance Diagnosis

Bayesian network and graph analysis are among the mostywidel
used techniques in the diagnosis of network performancessand
troubleshooting [7, 10, 14, 16, 26, 29]. Kompe#taal. [16] model
the fault diagnosis problem using a bipartite graph and usé&s
modeling to map high-level failure notifications into lowlayer
root causes. WISE [29] presents a what-if analysis tool tionese
the effects of network configuration changes on serviceoresp
times. Recent systems [15, 25] have used information dlaila
to the OS to identify service quality issues using the depeog
structure between components.

[18-20] have shown the importance of focusing on recurring
and persistent events and enabling the detection and éshudbt-
ing of network behavior modes that have been previously flown
under the operations radar. NICE [20] focuses on detectimh a
troubleshooting undesirable chronic network conditiogsisg sta-
tistical correlations. Giza [18] applies multi-resolutitechniques
to localize regions in IPTV network with significant problerand
[1-norm minimization to discover causality between evemtese
Mercury [19] focuses on detecting the long-term, persisten
pact of network upgrades on key performance metrics vidsstat
tical mining. A work on proactive prediction of service igsuon
access network [13] focuses on capturing changes overtemg-
(e.g., weeks and months) and conduct prediction. The main differ-

and slow. Thus there is a field of research dedicated to the de-ence between the above methods and ours is in the proacts/ehe

sign and development of objective quality metrics. Ongaingl-
ies are both on standardizing the subjective measuremesided
quality [23] and on developing objective video quality netrthat
model and approximate the quality [3].

There are also video quality measurement studies in thexont
of networked systems [4]. The work includes discussionshen t
metrics of video quality measurable from various parts oe& n
work. [17] studies the viewers’ perception of video qualityder
packet loss-induced video impairments. [27, 28] proposess

assessing service quality of experience (QoE). The respgvfor-
mance diagnosis works mostly focus on network problems dut n
on service quality of experience. We believe, Q-score idfitise
work in using the network performance indicators to proatyi
construct the quality of experience scores for large sesvidBy
capturing the quality of experience for users in a timely acal-
able fashion, Q-score offers the operators with rapid ratifdn of
user-perceived issues and a lead time of several hoursebedigr
tomer reports.



7. CONCLUSION

In this paper, we develop Q-score, a novel framework for @roa
tive assessment of user perceived service quality in a lgpgea-
tional IPTV network. By associating coarse-grained nekworls
with imperfect user feedback, Q-score generates a singte $cat
represents user-perceived quality of experience (QoEJurscy
analysis of Q-score reveals that it is able to predict 60%eofise
problems reported by customers with only 0.1% of false pasit
rate. Applying Q-score to various application scenarios,have:
(i) identified a set of KPIs most relevant to user-perceiveality of
experience; (ii) quantified how early it can alert bad qyadit ex-
perience; (iii) observed the possibility to pre-allocdte tustomer
care workforce to potentially affected service areas.

As an improvement of our work, we consider the following two
methods aimed at increasing the successful prediction Fitst,
to filter out more noise from user feedback, we plan to ingesé
the trouble tickets that fell into false negatives. Collattimg with
video experts, we will conduct simulation based controtési-bed
experiments in conjunction with our current operationaheldriven
approach. Second, to make Q-score to be more resilient éoninc
pleteness of user feedback, we will further improve useugro
ing methods. In doing so, we plan on applying end-user aigte
techniques in relation to user-perceived QOE.

There are many other network services that are sensitiverto s
vice quality that lack objective measures of user-perckoygality
of experience. Our future work includes applying the privacier-
vice quality assessment beyond the specific context of IP& n
works. For example, we plan to apply Q-score to VoIP and reobil
networks so that operation teams can predict call drops aive v
quality degradation without having to wait for customerseport
them.
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