2009 Ninth IEEE International Conference on Data Mining

Online System Problem Detection by Mining Patterns of Console Logs

Wei Xu*, Ling Huang', Armando Fox*, David Patterson*, Michael Jordan*
*EECS Department, UC Berkeley, Berkeley, CA, USA
Email: {xuw,fox,pattrsn,jordan} @cs.berkeley.edu
tIntel Labs Berkeley, Berkeley, CA, USA
Email: ling.huang @intel.com

Abstract—We describe a novel application of using data min-
ing and statistical learning methods to automatically monitor
and detect abnormal execution traces from console logs in an
online setting. Different from existing solutions, we use a two
stage detection system. The first stage uses frequent pattern
mining and distribution estimation techniques to capture the
dominant patterns (both frequent sequences and time dura-
tion). The second stage use principal component analysis based
anomaly detection technique to identify actual problems. Using
real system data from a 203-node Hadoop [1] cluster, we show
that we can not only achieve highly accurate and fast problem
detection, but also help operators better understand execution
patterns in their system.

I. MOTIVATION AND OVERVIEW

Internet services today often run in data centers consisting
of thousands of servers. At these scales, non-failstop “perfor-
mance failures” are common and may even indicate serious
impending failures. Operators would therefore like to be
notified of such problems quickly. Despite the existence of a
variety of monitoring tools, the monitoring already available
in every application is often ignored: the humble console log.

Console logs are convenient to use (only printf is re-
quired) and reflect the developers’ original ideas about what
events are valuable to report, including errors, execution
tracing, or statistics about the program’s internal state.
But exploiting this information is difficult because console
logs are both machine-unfriendly (they usually consist of
unstructured text messages with no obvious schema or struc-
ture) and human-unfriendly (each developer logs information
useful for her own debugging, but large systems consist
of many software modules developed by different people,
and log messages from different modules must often be
correlated to identify a problem). These challenges make it
difficult for operators to understand log messages, let alone
analyze them usefully in an online setting.

Our previous work has shown promise in applying sta-
tistical machine learning and information retrieval to the
problem of console log analysis [28]. Specifically, source
code analysis recovers structure from console logs, and
anomaly detection techniques infer which sets of messages
may indicate operational problems. However, that work
presents an offline algorithm that examines the entire log
of a multi-day operational session, whereas operators need
to be informed of such problems as they occur.

1550-4786/09 $26.00 © 2009 IEEE
DOI 10.1109/ICDM.2009.19

588

To this end, our first contribution in this paper is a novel
two-stage online log processing approach that combines
frequent pattern mining with Principal Component Analysis
(PCA) based anomaly detection for system runtime problem
detection. In particular, we show how to trade off time-to-
detection vs. accuracy in the online setting by augmenting
frequent-sequence information with timestamp information.
Our method is completely automatic, and tuning its input
parameters requires no special knowledge of the machine
learning techniques we use. Our technique is general: [28]
surveyed 22 systems, most of which have logs that are
amenable to the approach described in this paper. As a
beneficial side effect, the pattern mining aspect of our
approach can potentially help operators better understand
system behavior even under normal conditions.

Our second contribution is an empirical re-evaluation of
our technique on the same labeled dataset used in [28]:
24 million lines of free-text logs from a 48-hour run
of a production open-source application, the Hadoop File
System (HDFS) [1] , running on a 203-machine cluster.
We successfully identify anomalous conditions indicative of
operational problems; in nearly all respects, we match or
exceed the detection accuracy of the offline approach with
small detection latencies that make our approach suitable for
online use.

The rest of the paper proceeds as follows. In Section IT we
review related work. Section III reviews some elements of
the offline approach of [28] that we also use in our online
approach, described in section IV. We show experimental
results in Section VII and comment on the limitations of
our approach and other noteworthy aspects of the results in
Section VIII, concluding in Section IX.

II. RELATED WORK

Online log analysis. The typical tools used by operators to
analyze console logs, security audit logs, etc. [20], [8], [18]
usually require rules (e.g., regular expressions to match logs)
to be manually written and maintained as software changes.
In contrast, we discover the “rules” automatically.

Sisyphus [23] provides some online analysis based on
relative ratio of different terms in logs. In order to counter
random interleavings in logs, it has to aggregate logs from
a long period (tens of minutes).

IEEE
computer
psoaety

[9], [17] use time-series analysis techniques to model the
time intervals of periodical events. These patterns model the
long term trend of event periodicity, while we monitor traces
on individual events.

Path-based analysis. Chen, Kiciman et al. used clus-
tering [2] and probabilistic context free grammars [3] to
analyze execution paths in server systems by manually in-
strumenting software components. X-Trace [6] now provides
a framework for cross-layer path-based instrumentation col-
lection across a distributed system. We collect the trace
information from console logs rather than instrumenting the
application, so we must deal with noisier data than would
be produced by instrumentation, but we believe our analysis
techniques would apply to path data too.

Using data mining techniques to solve computer system
problems. Within the vigorous research area of frequent
pattern mining [7], we are particularly interested in se-
quential pattern mining techniques, which mine frequently
occurring ordered subsequences as patterns. For example,
Generalized Sequential Patterns (GSP) [22] is a represen-
tative Apriori-based algorithm; SPADE [31] is a vertical
format-based mining method; PrefixSpan [19] is a pattern-
growth approach to sequential pattern mining. We extend the
techniques to address the unique challenges of our problem
described in Section V.

Frequent pattern mining techniques have also been used
to analyze words in messages to understand the structure
of console logs [24], [25] and to discover recurring runtime
execution patterns in the Linux kernel [14]. Our frequent
pattern analysis focuses on anomaly detection.

Data mining has been widely used for profiling end-hosts
and networks [27], [12], detecting anomalous events and
other intrusions [13], [30], detecting system and software
bugs [15], [32], as well as configuration problems [26].
These techniques analyze aggregate data while we use traces
from individual operations.

[23] uses information theory to find the words in logs
most likely to indicate actual problems. In contrast, we
consider message traces and detect anomalies of such traces.
[29] models sequence patterns with a mixture of Hidden
Markov Model (HMMs) from the original log traces. Due
to the interleaving nature of log messages, the model is very
complex.

III. CONSOLE LOG PREPROCESSING

In this section we review some log preprocessing tech-
niques described in [28] that we also use in this paper. The
necessary preprocessing steps are as follows: 1) parsing the
logs to recover the inherent structure in the log messages;
2) reconstructing traces (execution sequences of related
events) by automatically discovering which messages relate
to the same program object (data block, filename, etc.)
and putting them in order; and 3) constructing numerically-

589

valued feature vectors from these traces that can be subjected
to PCA-based anomaly detection.

Log parsing. The method presented in [28] can eliminate
most of the ad-hoc guessing in parsing free text logs.
The method first analyzes the source code of the program
generating the console log to discover the “schemas” of
all log messages. Specifically, it examines the printing
statements in the source code (e.g. printf) and perform
type analysis on the arguments to these statements. The
technique distinguishes the parts of each message that are
constant strings (the message type) from the parts that refer
to identifiers such as program variables or program objects
(the message variables) with high accuracy. The parsing
technique is stateless, so it is easy to implement it in a data
stream processor for our online setting.

Following conventions in system management work [9],
we use the term event to refer to the data structure containing
the elements of a parsed log message. Specifically, we define
an event to be a tuple consisting of a timestamp, the event
type (the message type of the parsed log message), and a
list of variable fields referred to in the parsed log message
(message variables). In an online setting, the streaming
console log becomes an event stream after the parsing step.

Identifying event traces. Our detection technique relies
on analyzing traces, which are sets of events related to
the same program object. For example, a set of messages
referring to the opening, positioning, writing, and closing of
the same file would constitute an event trace for that file.
Within the event stream, however, events of different types
and referring to different sets of variables are all interleaved.
One way to extract traces from the stream is to group by
certain field of the events, a typical operation for stream data
processing. The challenge is how to automatically determine
the grouping key. We use the method described in [28],
which automatically finds the grouping key from historical
log data by discovering which message variables correspond
to identifiers of objects manipulated by the program. All
events reporting the same identifier constitute an event
trace for that identifier. This “group-by” process also occurs
in a stream processor. With the grouping key discovered,
we implemented a trivial “group-by” stream processor that
converts the single interleaved event stream into many event
traces, one for each identifier. In particular, we assume the
event traces to be independent from each other.

Representing the event traces. Lastly, we need to convert
the event traces to a numerical representation suitable for
applying PCA detector, which occurs in the second phase of
our approach. In [28], each whole event trace is represented
by a message count vector (MCV), which has a structure
analogous to the bag of words model in information retrieval,
where the “document” is the group of messages in an event
trace. The MCV is an N-dimensional vector where N is
the size of the set of all useful message types across all

groups (analogous to all possible “terms”), and the value of
vector element y; is the number of times event ¢ appears in
a group (corresponding to “term frequency”). For example,
in a system consisting of four event types, opening, reading,
writing and closing, a trace of (opening, reading, closing)
will be represented in MCV as (1,1,0,1) while (opening,
writing, writing) can be represented as (1,0,2,0).

Message count vectors are a compact representation of
event traces, but two problems preclude their direct use
in our online scenario. First, they do not carry any time
information, so they cannot be used to detect operations
that are anomalous due to events being spaced too far
apart in time (i.e. slowness). Second, the original MCVs
are constructed based on the entire event traces which could
span arbitrarily long time. As we show later, this is usually
not possible in an online setting. We use the MCV to
represent a session, which we define as a subset events in
an event trace representing a single logical operation in the
system and have predictable bound in its duration. We show
in Section IV how sessions are automatically discovered.

IV. TWO-STAGE ONLINE ANOMALY DETECTION

Compared to offline approaches such as [28], the fun-
damental problem of online analysis is that we cannot see
the complete event trace at once. For example, in offline
detection, a trace may be marked as abnormal because an
event is missing; e.g. if a write operation to a file fails, its
trace may lack a “closing” message. In online analysis, there
is no way to know (other than waiting until the end of the
run) if the missing event will ever come, yet the whole point
of online detection is to make an assessment in a timely
manner. We emphasize that detection time is determined
only by how long the algorithm has to wait before making
a decision. The computation time of the detection algorithm
is negligible compared to this wait.

Effective online detection therefore requires striking a
balance between accuracy and time to detection. At one
extreme, if we wait to see the entire trace before attempting
any detection, our results should be as accurate as offline
detection but with excessive time to detection. At the other
extreme, if we try to make a determination of anomalous
behavior as soon as a single event appears, we lose the ability
to perform anomaly detection based on patterns (a group of
related events), yet [28] shows that analyzing patterns rather
than the individual events is key to accurate detection.

We make this tradeoff by designing a two-stage detection
method. The first stage uses frequent pattern mining to
capture the most common (i.e., normal) session, that is, those
traces with a high support level. The patterns include both
frequent-event set and time information. This information
can be used to determine when a trace is “probably com-
plete” and can be made available for anomaly detection.
The second stage considers only non-pattern events that
make it through the first stage, applying PCA-based anomaly

590

=

Middle ground

0 15 25 35 40 45 5

20 30
Trace types
Figure 2. Histogram of 50 most frequent traces. Some traces are extremely
frequent, and some are extremely rare, but there is a large “middle ground”
which is neither pattern nor anomaly for sure.

1

0

detection to them. In each stage, we build a model based
on archived history and update it periodically with new
data, and use it for online detection. Both model estimation
and online detection involves domain-specific considerations
about console logs.

Figure 2 shows clearly why a two-stage approach is
needed. The histogram of different event traces in our data
shows that some traces clearly occur extremely frequently
while others are extremely rare. It is reasonable to mark the
dominant traces as “normal” behavior and the rare outliers
as “anomalous”, but this leaves a large middle ground of
traces that are neither obviously dominant nor obviously
anomalous. These traces in the middle ground are sometimes
normal ones with added random noise such as interleavings.
We want our detection method to tolerate the random noise.
If we reduce the minimal support level to include more of
these middle-ground cases, random noise (e.g. overlapping
or incorrect ordering) will be introduced to the patterns,
reducing the quality of the patterns.

Instead we pass the middle-ground cases to a PCA-based
anomaly detector as non-pattern events. Since PCA is a
statistical method that is able to match “inexact” patterns,
it is more robust to random noise than the frequent-pattern
mining used in stage 1 and can detect rare events among the
middle-ground cases. Intuitively, the pattern-based method
provides timely detection for the majority of events, min-
imizing the time to wait for the complete trace, while
subsequent PCA-based detection handles the false alarms
generated by the first stage and greatly improves detection
accuracy. An additional benefit to the two-stage approach is
that the frequent patterns from stage 1 can help operators to
better understand the behavior of their systems and tune the
detection to include domain-specific knowledge.

Although PCA is more robust against random noises than
pattern mining and thus a suitable method for dealing with
the noisy middle-ground events, frequent pattern mining has
the advantage of being able to capture time information
among events and providing an intuitive representation of
dominant patterns. Our two-stage approach integrates the
advantages of both methods. We now describe each stage
in detail in the following two sections.

ASB ->B-> C Frequent pattern mining

A>B ->C->B

Pattern miner

Event traces Non-Pattern Eve

PCA model
estimation

PCA based detection
Model Estimation

Figure 1.

V. STAGE 1: FREQUENT PATTERN MINING

As defined in Section III, an event trace is a group of
events that reports the same identifier. We further define a
session to be a subset of closely-related events in the same
event trace that has a predictable duration. The duration of a
session is the time difference between the earliest and latest
timestamps of events in the session.

We define a frequent pattern to be a session and its
duration distribution such that: 1) the session is frequent
in many event traces; 2) most (e.g., 99.95th percentile) of
the session’s duration is less than T),,,, a user-specified
maximum allowable detection latency (the time between
an event occurring and the decision of whether the event
is normal or abnormal). Condition (1) guarantees that the
pattern covers common cases so it is likely to be a normal be-
havior. Condition (2) guarantees the pattern can be detected
in a short time. We mine the archived data periodically for
frequent patterns. These patterns are used to filter out normal
events in the online phase.

We cannot apply generic frequent sequence mining tech-
niques because 1) sessions many interleave in the event
traces (e.g. two reads happen at the same time) thus “trans-
action” boundaries are not clear. We need to simultaneously
segment an event trace into sessions and mine patterns.
However, because the durations of sessions can have large
variations, fixed time windows will not give satisfactory
segmentation, which suggest that we shall model the dis-
tribution of durations. 2) Events can be reordered in the
traces because of unsynchronized clock in a distributed
system, which preludes the use of techniques requiring total
ordering of events. In our algorithm described below, we use
frequent patterns to tolerate the poor time-based segmenta-
tion accuracy resulting from random session interleavings.
The frequent patterns, once discovered, can be used to de-
interleave the events to estimate a clean duration model.

A. Combining time and sequence information

Our novel approach combines time and event sequence
information for accurate pattern detection using a 3-step
iterative method. In a nutshell, we first use time information
to (inaccurately) segment an event trace into sessions and
then mine these inaccurate segments to identify the most
frequent pattern. We then go back to the original data and

{ABB} (5s)

nts

PCA Model

591

Grouping +
Pattern Match

Non-Pattern Events

PCA Detection

Online Detection

Overview of the two stage online detection systems.

find out the actual time distribution of the sessions of the
most frequent pattern. Finally we remove all events that
match this frequent pattern from original data and iterate on
the remaining data to find the next most frequent pattern.

1. Use time gaps to find first session in each execution
trace (coarsely). In this step, for each execution trace, we
first scan through each event until we find an event followed
by a time gap more than 10 times the duration since the start
of the execution sequence (the time gap size is a configurable
parameter). We treat all events preceding the gap as a session
(represented by an MCV). This segmentation can be very
inaccurate: Due to interleaving sessions, irrelevant events
might be included in the session and due to the randomness
in session duration, events may be missing from the session.
The inaccuracy is tolerated by the next step when finding
most frequent patterns.

2. Identify the dominant session. We prefer a pattern
that contains all events in a session. This is true in most
cases due to the way sessions get segmented: with high
probability (though not always), happening in a short time
often indicates that the events represent a single logical
operation, especially when the support level is high (recall
the definition of sessions at the beginning of this section).

We use two criteria to select the dominant pattern. (1) We
start with the medoid of all sessions considered (recall that
the sessions are represented by MCVs). By definition, the
medoid has the minimal aggregated distance from all other
data points, which indicates that it is a good representative of
all data points. Intuitively, a medoid is similar to the centroid
(or mean) in the space, except that the medoid must be an
actual data point. Criterion 1 guarantees that the selected
dominant session is a good representative of the sessions
examined. (2) We require the session to have a minimal
support of 0.2M from all M event traces. If the medoid
does not meet this minimal support, we choose the next
closest session (data point) that does. Criterion 2 guarantees
that the selected session is in fact dominant, in addition to
being a good representative. The selection criteria are robust
over a wide range of minimal support values because the
normal traces are indeed in the majority in the log. In fact,
in our experiments, various support values between 0.1M
and 0.5M all resulted in the same selection results.

3. Refine result using the frequent session and compute

duration statistics. Notice that the pattern from step 2 is
based on coarsely segmented sessions, and may not reflect
the correct duration distribution of all sessions of that type.
Now because we know the events we are expecting to
complete a session, we can go back to the original data
and find all events that match the frequent session and then
estimate the duration distribution from the matching sessions
(detailed in Section V-B). Using the duration distribution,
we can compute a cutoff time T, (represents the time
that most sessions of the pattern “should” complete) for the
pattern as the n'" percentile of the distribution. We show in
Section VII-B that this step significantly improved detection
results. We also remove all matching events from the original
traces, preparing the data for the next iteration. Notice that
T+ can be very long, due to large dispersion in durations in
some operations. In the case that Ti,; > T)nqz, the pattern
is discarded and not used in the detection stage.

We then return to step 1 and iterate until no patterns with
the minimal support level remain. Since Step 3 always re-
moves something from the dataset, the iteration is guaranteed
to terminate. The remaining events are used to construct the
PCA model.

The dominant patterns are expected to be stable; however,
in order to accommodate changes in the operation envi-
ronment, we update patterns used in detector as a periodic
(infrequent) offline process (i.e. the detector uses the patterns
discovered but never update them online). In this way,
we can both keep the online detector simple, and avoid
poisoning the patterns with transient abnormal periods.

B. Estimating distributions of session durations

To enable timely online detection, we need to know how
long any given pattern “should” take to complete. To this
end, we estimate the distribution of session durations for
each pattern. Based on this distribution, we compute the
cutoff time T, e.g., 09.95t" percentile of the distribution,
for each pattern, after which most sessions of this pattern
would complete.

To choose a distribution to fit our data, we observe
that within each pattern, the histogram of session durations
has both dominant values and fat tails, as shown by two
examples (Patterns 1 and 2 in Table I in Section VII-A) in
Figure 3 (a) and (b). Power-law distribution has been widely
used to model data with long tails for its nice mathematical
properties [5], [16]. We choose it to model our data, and a
log-log plot confirms that the tails of our data approximately
follow the power-law distribution (Figure 3 (c) and (d)).

To estimate the parameters of the distribution, we adopt
the approach proposed in [4], which combines maximum-
likelihood fitting methods with goodness-of-fit tests based
on the Kolmogorov-Smirnov (KS) statistics [10]. In real
applications, few datasets obey power-laws for all values.
More often the power-law applies only to values greater than
some minimum &,,;, > 0, i.e. to the tail of the distribution.

592

(a) Pattern1 4 (b) Pattern2

o N
[

Frequency

Frequency

25 30

15 20
Duration+1

6
Duration+1

(c) Pattern1

[} © Empirical Distr. o
o e = .
° Power-Law Fittint 107"
<107
A
g
a 10

o 1 2

Duration+1

(d) Pattern2

© Empirical Distr.
— Power-Law Fitting|

Duration+1

Figure 3. Tail of durations follow power-law distribution.

For samples below this threshold, we use the histogram as
its empirical distribution. So we essentially use a mixture
distribution with two components to model the duration
values: a power-law distribution for the tail (values above
ZTmin), Which has weight w, and a histogram for values
below %, which has weight (1 — w).

For durations that take only integer values, we consider
the case with a probability distribution of the form p(z) =

Pr(X = z) = Cz=P. It is not difficult to show that the
normalizing constant is given by:

-~ -1

i=0

Assuming x,,;, is known (the way for estimating x,,
is discussed afterward), the Maximum Likelihood Estimator
(MLE) of the scaling parameter 3 is approximately

n —1
z;
Ezmxmn—oJ :

i=1

Brl+n)

where x;,7 = 1...n are the observed duration values that

To estimate x,,;n,, wWe choose a value that makes the
probability distributions of the measured data and the best-
fit power-law model as similar as possible above zip.
We use KS statistics to measure the distance between two
distributions, and estimate Z,,;, as the value of x,,;, that
minimizes the KS statistics between the empirical CDF of
the data for the observations with value at least x,,;, and the
fitted power-law model that best fits the data in the region
with all z; > x,in.

Figure 3 (c¢) and (d) show the empirical distributions
(circles) and the fitted power-law models (solid lines) for
patterns 1 and 2, respectively. With the model, the CDF
P,(z) = Pr(X < x) of the power-law distribution is

where C'(0,) is defined in Eq. (1). Then, for n > 1.0 — w,

the n'" percentile of the mixture distribution is the value of

x, that satisfies the following equation:

Py(zy) = (n— (1.0 —w)) /w, (€]

where P,(z) is defined in Eq. (3). We show the estimated
99.90"", 99.95"" and 99.99" percentiles of the mixture
distributions of Patterns 1 and 2 and the improvements to
the detection precision in Section VII.

C. Implementation of Stage 1

The pattern based detector receives the event stream from
the log parser. If an event is part of some execution traces
we are monitoring (because it contains an identifier), the
detector groups it with other events with the same identifier
and checks if any subset of the event group matches a
frequent pattern. If a subset matches, all matching events
are removed from the detector’s memory (there might still
be some non-matching events left in the queue). Removing
matched events keeps the size of in-memory event history
small and greatly improves the efficiency of the detector.

Logically, we try matching all event sets to all patterns.
We used a naive method that attempts each. We believe the
naive method is good enough in many systems because the
number of patterns is usually small and the traces are short
(because developers only log the most important stages on
the execution path). However, in cases where many long
patterns are used, we can use more advanced data structures
such as suffix trees [21] to improve the matching efficiency.

If we do not find any matching pattern, the event is added
to the queue with a timeout number 7, based on the event
timestamp 7. If the event matches one or more patterns, we
choose the one with the largest cutoff time (7%,:) and set
T, = T + T.y; if the event does not match any pattern
(because the event is not frequent enough to be included in
any pattern), we set T, = 17" 4 T},4,. Notice that because
Tyt 1s usually much smaller than 7,,,,, we can achieve fast
detection on the majority of events.

The detector periodically checks all traces (currently the
period is set to 1 second— this parameter has a small effect
on detection time, but no effect on accuracy). When it finds
events that have reached their timeout, it constructs their
message count vectors (as described in Section III) and sends
them to the second stage PCA-based detector.

The intuition behind this approach is that an event is
passed through to the PCA-based detector as soon as we
can be reasonably sure that it does not “belong to” any of
the frequent patterns being monitored. We call these non-
pattern events.

VI. STAGE 2: PCA DETECTION

The vectors representing the non-pattern events emitted
from Stage 1 are significantly noisier than the frequent
patterns. The noise comes from uncaptured interleaving,
high variations in duration and the true anomalies. To

593

uncover the true anomalies from this noisy data, we use
a statistical anomaly detection method, the PCA detector,
which is shown to be accurate in offline problem detection
from console logs and from many other systems [28], [13].

As with frequent pattern mining, the goal of PCA is
to discover the statistically dominant patterns and thereby
identify anomalies inside data. PCA can capture patterns in
high-dimensional data by automatically choosing a (small)
set of coordinates—the principal components—that reflect
covariation among the original coordinates. Once we es-
timate these patterns from the archived and periodically
updated data, we use them to transform the incoming data
to make abnormal patterns easier to detect.

PCA detection also has a model estimation phase followed
by an online detection phase. In the modeling phase, PCA
captures the dominant pattern in a transformation matrix
PP”, where P is formed by the top principal components
chosen by PCA algorithm. Then in the online detection
phase, the abnormal component of each message count
vector y is computed as y, = (I — PPT)y, i.e., yq is the
projection of y onto the abnormal subspace. The squared
prediction error SPE = ||y,||? (squared length of vector
y.) is used for detecting abnormal events: We mark vector
y as abnormal if

SPE = ||yu[” > Qa, S)

where (), denotes the threshold statistic for the SPE
residual function at the (1 —«) confidence level [11]. Due to
limitations of space, we refer readers unfamiliar with these
techniques to [28], [13] for details.

In a real deployment, the model can be updated periodi-
cally. Note that because of the noisier data in this phase and
the workload-dependent nature of the non-pattern data, the
model update period for PCA is usually shorter than that for
frequent pattern mining.

VII. EVALUATION

We evaluate our approach with real logs from a 203-node
Hadoop [1] installation on Amazon’s EC2 cloud computing
environment. Hadoop is an open source implementation
of the MapReduce framework for large-scale parallel data
processing. Hadoop is gaining popularity in both data mining
and systems research, so it is important to understand
its runtime behaviors, detect its execution anomalies and
diagnose its performance degradation issues.

To compare our online approach directly against the of-
fline algorithm proposed in [28], we replayed the same set of
logs, containing over 24 million lines of log messages with
an uncompressed size of 2.4GB. The logs were generated
from 203 nodes running Hadoop for 48 hours, completing
many standard MapReduce jobs such as distributed sort and
text scan. The average machine load varies from fully uti-
lized to mostly idle. The log contains 575,319 event traces,
corresponding to 575,319 distinct file blocks in Hadoop File

Table 1
FREQUENT PATTERNS MINED.PATTERN 3°S DURATION CANNOT BE
ESTIMATED BECAUSE THE DURATIONS ARE TOO SMALL TO CAPTURE IN
TRAINING SET. PATTERNS 4—6 CONSIST OF ONLY A SINGLE EVENT
EACH AND THUS HAVE NO DURATIONS.

. Duration in sec (%ile)

#| Frequent sessions 99.90] 99.95] 99.99 Events
1| Allocated block, begin write 11 13 20 20.3%
2| Done write, update block map | 7 8 14 44.6%
3| Delete block - - - 12.5%
4| Serving block — 3.8%
5| Read Exception (see text) — 3.2%
6| Verify block — 1.1%

Total 85.6%

System (HDES). We believe this dataset is representative of
a production HDFS cluster.

In [28], all traces in the data set were labeled as normal
or abnormal, together with the categories/explanations of
most anomalies. This provides ground truth for evaluating
our results. Over half a million event traces can be labeled
because many traces are the same (and normal). Actually,
there are only 680 distinct traces in the data. Notice that the
labeling process does not take into account the durations of
any traces. We show the effects of this omission later in this
section.

To mimic how a system operator would use our technique,
we evaluate our method with the following 2-step approach.
First we randomly sample 10% of the execution traces,
on which we construct the detection model, including the
frequent patterns, the distributions of pattern durations, and
the PCA detector. Then we replayed the entire trace and
performed online problem detection using the derived model.
This whole procedure is unsupervised, since we use the
labels only for evaluation and not for building the model.
We varied the subset of sampled data for building the model
many times, and got identical detection results. This is
mainly because the patterns we identify are so frequent that
it is robust against random sampling.

There are two parameters that we need to set. The
maximum detection latency T, (defined in Section V)
was set to 60 seconds, meaning the operator wants to be
notified of a suspected anomaly at most 60 seconds after the
suspect event trace appears in the log. The PCA threshold
parameter « (described in Section VI). was set to 0.001,
meaning that we are accepting less than 0.1% of all data
points as abnormal (under certain assumptions [11]). These
baseline values are chosen to be the common settings of
such algorithms (or the most possible value to set without
no understanding of the data), but in Section VII-B we show
that our detection results are insensitive to these parameters
over a wide range of values.

A. Stage 1 Pattern mining results

Recall that the goal of Stage 1 is to remove frequent
patterns that presumably correspond to normal application
behavior. Table I summarizes the frequent patterns found in

594

the test data using our baseline parameter value 7},,,, = 60s.
Note first that the patterns identified encompass 85.6% of
all events in the trace, so at most 14.4% of all events must
be considered by Stage 2 (PCA anomaly detection).

The table shows, for example, that pattern 1 is the
sequence of events corresponding to “Allocate a block for
writing”. 20.3% of the events in the trace are classified as
belonging to an instance of this pattern and so will be filtered
out and not passed to Stage 2. The duration of this pattern
has a distribution whose 99.9, 99.95, and 99.99t" percentiles
are 11, 13 and 20 seconds respectively. We choose these high
percentile values because we want most normal sessions to
complete within these intervals. Notice that even the 99.99th
percentile of the pattern durations is significantly smaller
than 77,4.; this is important since detection latency is based
on the pattern duration or 7},,,, Whichever is less. Due to
space limitations, we only present detection results with T¢,¢
set to the 99.95'" percentile values for each pattern. Results
with other values are similar.

Patterns 1 and 2 are both related to writing a file block.
They logically belong to the same operation, but a write
session can be arbitrarily long: the application that writes
the file may wait an arbitrary amount of time after the
“begin write” before actually sending data. Since we are
trying to keep detection latency below a finite threshold, we
separate the beginning and ending sessions into two different
patterns for timely detection. Obviously, there are certain
limitations related to this separation, which we discuss in
detail in Section VIIL

Patterns 4 to 6 contain only individual events. These
events were used to report some numbers and do not
contribute to event trace based detection, so a single event
completes the operation (e.g., read, etc.).

Pattern 5 consists of an event that reports an exception,
but as we discussed in [28], this is indeed normal operation
and the message text represents a bad logging practice
that has confused many users. In contrast, because we use
pattern frequencies for detection, we easily recognize these
exception messages as normal operation.

B. Detection precision and recall

We obtained the label/abnormal labels of each event trace
from [28]. Since our technique is based on sessions (recall
that a session is a subset of a trace), we determine a trace
as abnormal if and only if it contains at least one abnormal
session, allowing direct comparison using the original labels.
We use the standard information-retrieval metrics of preci-
sion and recall to evaluate our approach. Let TP, FP, FN be
the number of true positives, false positives, and false neg-
atives, respectively. We have Precision = TP/(TP+FP) and
Recall = TP/(TP+FN). 100% recall means that no actual
problems were missed; 100% precision means there are no
false alarms among those events identified as problems. In

Table 11
DETECTION PRECISION AND RECALL.

(a) Varying « while holding T7qe = 60

e TP FP | FN | Precision Recall
0.0001 | 16,916 | 2,444 0 87.38% 100.00%
0.001 16,916 | 2,748 0 86.03% | 100.00%
0.005 16,916 | 2,914 0 85.31% 100.00%
0.01 16,916 | 2914 0 85.31% 100.00%
(b) Varying Tnao while holding o = 0.001
Traz TP FP FN | Precision Recall
15 2,870 129 | 14,046 95.70% 16.97%
30 16,916 | 2,748 0 86.03% 100.00%
60 16,916 | 2,748 0 86.03% | 100.00%
120 16,916 | 2,748 0 86.03% 100.00%
240 14,233 | 2,232 2,683 86.44% 84.14%

our data set, there are 575,319 event traces of which 16,916
are labeled as anomalies.

Table II(a) varies the PCA confidence level « to show its
effect on our precision and recall results, while Table II(b)
varies the maximum detection delay 7T),,,. The boldface
rows of each table represent the baseline values v = 0.001
and 1’4, = 60. The results show 100% recall over a wide
range of values of o and T),,,, meaning the algorithm
captures every anomaly in the manual labels. The good recall
is mainly due to strong patterns in the data: the event traces
are direct representations of the program execution logic
(which is likely to be deterministic and regular) as reflected
by log printing statements. The strong patterns allows better
tolerance to random noise, especially in the frequent pattern
mining stage, where we can use a high support requirement
to filter out random interleavings and reorderings.

The precision is not perfect due to false positives and
some ambiguous cases. We review the false positives in de-
tail when we compare with offline results in Section VII-D.

Furthermore, Table II(a) shows that precision and recall
are largely insensitive to the choice of o over a wide range
of values, consistent with the observations in both [28]
and [13]. Table II(b) shows that precision and recall are
insensitive to the maximum detection latency 7,4, Over a
certain range, but setting it outside this range (first and last
rows of Table II(b)) adversely affects recall or precision.
The intuition is that when 77,4, is too small, many logical
sessions (especially those not covered by the dominant
patterns) are cut off randomly, and when T,,,, is too
large, many unrelated sessions are combined into the same
message count vector, introducing too much noise for the
PCA detector. Either effect degrades precision and recall.

As we described in Section V-B, we used a fairly so-
phisticated model to estimate the duration of sessions. If
we had instead assumed a simple Gaussian distribution, the
99.95th percentile of T.,; would be estimated as 5.3s for
Pattern 1 and 4.0s for Pattern 2 in Table I—less than half
as long as the 7T;,; estimated by our distribution-fitting.
Using the Gaussian-derived cutoff time, the number of false
alarms increases by 45%, and precision falls to 80% from
86%. Therefore the small added complexity for duration

595

1 1
0.8 0.8
I

L 0.6 L 0.6

a a
O 04 O o4
02 0.2)
0

%

10 20 30 40 50 0 2 4 [8 10
Detection Latency (sec) Number of events in memory

Figure 4. Detection latency and number of events kept in detector’s buffer

distribution estimation (Section V-B) results in much better
recall and precision.

C. Detection latency

Detection latency (defined in Section V) captures timeli-
ness of detection, a key goal of our online approach. Recall
that the difficulty of minimizing detection latency arises
from the fact that it is not always possible to mark a trace
“abnormal” until a specific event or set of events occurs. For
example, the “allocate block” message in Pattern 1 of Table I
simply indicates the start of a sequence of operations; the
detector has to buffer the event and wait for further events.
The final decision for this message is not reached until the
last event of Pattern 1 (e.g., the last of the three expected
“receiving” messages). Then the detection time for the trace
containing this “allocate block™ event is the time elapsed
from the “allocate block” event being emitted to the time
the detection result is made.

Figure 4 (Left) shows the cumulative distribution function
(CDF) of detection times over all events. As expected, over
80% of the events can be determined as normal or abnormal
within a couple of seconds. This is because we use the cutoff
time T.,: to stop waiting for more events instead of the
max latency T),,, for most events. A few events require
the maximum allowed detection latency: those that do not
match any pattern (7, defaults to (1'+71,,44))- By definition,
these events are rare, so the overall impact of their longer
detection time is limited.

Figure 4 (Right) shows the CDF of the number of events
buffered in detector at every second. Because the detection
time is low, most events are processed and removed from
the buffer quickly. Thus as expected, the typical number of
events in the buffer is small.

D. Comparison to offline results

Table III compares the offline detection results from [28]
to our online detection results using baseline parameter
values = 0.001 and 7},,; = 60. The error labels in the
first column of the table were obtained directly from [28].
Not only do we successfully capture all anomalies as the
offline method does, but we also get lower false negative
rates. The reason is that for online detection, we segment
an event trace into several sessions based on time duration,
and base the detection on individual sessions rather than
whole traces. Thus the data sent to the detector is free of
noise resulting from application-dependent interleaving of
multiple independent sessions (e.g., some blocks are read
more often than others).

Table IIT
DETECTION ACCURACY COMPARISON WITH OFFLINE DETECTION
RESULTS. ACTUAL IS THE NUMBER OF ANOMALIES LABELED
MANUALLY (LABELS OBTAINED FROM [28]). OFFLINE IS PCA
DETECTION RESULT PRESENTED IN [28] AND ONLINE IS OUR RESULT
USING OUR TWO STAGE DETECTION METHOD IN AN ONLINE SETTING,
WITH THE BASELINE PARAMETERS.

| Anomaly Description Actual | Offline | Online
1 | Namenode not updated after 4297 4297 4297
deleting block
2 | Write exception client give 3225 3225 3225
up
3 | Write failed at beginning 2950 2950 2950
4 | Replica immediately deleted 2809 2788 2809
5 | Received block that does not 1240 1228 1240
belong to any file
6 | Redundant addStoredBlock 953 953 953
7 | Delete a block that no longer 724 650 724
exists on data node
8 | Empty packet for block 476 476 476
9 | Receive block exception 89 89 89
10| Replication monitor timedout 45 45 45
11| Other anomalies 108 107 108
Total 16916 16808 16916
| False Positive Description Offline | Online
1 | Normal background migration 1397 1403
2 | Multiple replica (for task / job desc files) 349 368
Total 1746 1771
| Ambiguous Case Offline | Online
(see Section VII-D) 0 977

The two types of false positives in Table III are both
“rare but normal events”. For example, false positive #2
(over-replicating) is due to a special application request
rather than a system problem. These are indeed rare events
(only 368 occurrences across all traces) corresponding to
rare but normal operations. These cases are hard to handle
with a fully unsupervised detector. In order to handle these
cases, we allow operators to manually add patterns to encode
domain-specific knowledge about real problems and filter
out these cases.

Table III lists ambiguous cases arising from the unclear
definition of “anomaly”. For example, our online algorithm
marks some write sessions abnormal because one of the data
nodes takes far longer to respond than all others do, result-
ing an unusually long writing session'. From the system
administration point of view, these cases probably should
be marked as anomalies, because although these blocks
are eventually correctly written, this scenario effectively
slows down the entire system to the speed of the slowest-
responding node.

In [28], however, an event trace is labeled as normal if
it contains all the events of a given pattern, without regard
to when the events occur. Since they do not consider time
information such as the durations of sessions, a scenario
in which one data node takes a long time (but eventually

IThe shortest duration for write sessions in this subset is 13 seconds,
while the median duration for all sessions of this type is less than 1 second.

596

responds) is no different from a scenario in which all nodes
respond in about the same amount of time. We consider
session durations because we need to do so in order to
bound the time to detection, but here we see that this
additional information potentially improves the value of the
online approach for operators in another way as well—by
labeling as anomalous those event traces that are “correct but
slow.” If we consider slow operations problematic, at least
some of these false alarms would instead be counted as a
new type of anomaly not detected by the offline approach.
To determine how many of the 977 ambiguous cases fall
into this category, we would have to examine all event
traces manually to evaluate duration lengths, in contrast to
examining only distinct traces (without considering time
information) as was done in [28]. However, we did an
(informal) evaluation to estimate the number of cases that are
probably due to this problem. We forced Tv,; to 600 seconds
for all patterns, which forces the detector to wait a long time
for any incomplete patterns. Under these circumstances, the
detection results approximate the results achieved by [28]
when ignoring time information: the number of ambiguous
cases drops to 314, which suggests at least 2/3 of these
types of false alarms are fair to count as real anomalies.
Nonetheless, to keep a fair comparison with the offline
result, we stick to the original labels in all our evaluations.

VIII. DISCUSSION

Limitations of online detection. An obvious limitation
of online detection is that we cannot capture correlations
across events over very long time periods. For example, as
discussed in Section VII-A, there is a large and unpredictable
time gap between Patterns 1 and 2 in Table I, so we must
separate them into two patterns. However, a consequence of
this separation is that we lose the ability to observe corre-
lations between events in Pattern 1 and “matching” events
in Pattern 2, which would potentially allow us to capture a
new category of operational problems. For example, events
in Pattern 1 indicate how many data nodes begin a write;
each such node should have a corresponding “end write”
event in Pattern 2.

This is an inherent limitation of online detection because
of the detection latency requirement. This could be solved
by remembering a longer history (maybe in a more com-
pact/aggregated form), though that complicates the design
of the detector. Thus we propose a different approach:
by leveraging relatively cheap computing cycles, we can
perform offline detection periodically on archived data to
find anomalies violating such uncaptured constraints.

Use cases. In addition to showing individual anomaly
alarms, our technique lets operators link each alarm back to
the original logs and even the related source code segments,
using the parsing and visualization techniques described
in [28]. In addition, since we detect performance anomalies

quickly, operators have more time to prevent them from
causing more serious errors. Anomalies due to deterministic
bugs can recur frequently even over short timescales, as
occurs with Anomaly 1 in Table III, which is due to a deter-
ministic bug in the Hadoop source code. Since alarming on
each occurrence would overwhelm the operator’s attention,
we cluster the anomalies hierarchically and report the count
of each anomaly fype. Space limitations prevent a description
of our clustering method.

IX. CONCLUSIONS AND FUTURE WORK

We showed how to use a two-stage data mining technique
to identify and filter out common (normal) operational
patterns from free-text console logs, and then perform PCA-
based anomaly detection on the remaining patterns to iden-
tify operational problems within minutes of their occurrence
(as represented by information in the console logs). Our
approach, validated on real data, addresses a key need for
operators of such large systems, and matches or outperforms
current offline methods for free-text log analysis [28] that
could not be used in an online setting.

As future work, we plan to monitor console logs from
multiple components of the system (e.g. both the file system
and the application that uses it), and automatically determine
which component is responsible when a particular problem
is detected.

X. ACKNOWLEDGMENTS

The authors thank Daniel Ting, Ariel Rabkin and Archana
Ganapathi for their suggestions on an early draft, and the
anonymous ICDM reviewers for their invaluable feedback.

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Services,
Cisco Systems, Facebook, Hewlett-Packard, Network Appli-
ance, and VMWare, and by matching funds from the Univer-
sity of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240.

REFERENCES

[1] D. Borthakur. The hadoop distributed file system: Architec-
ture and design. Hadoop Project Website, 2007.

[2] M. Y. Chen and et al. Pinpoint: Problem determination in
large, dynamic internet services. In Proc. IEEE DSN 02,

Washington, DC, 2002.

M. Y. Chen and et al. Path-based failure and evolution
management. In Proc. NSDI’04, San Francisco, CA, 2004.

A. Clauset, C. Shalizi, and M. Newman. Power-law distribu-
tions in empirical data. SIAM Review, 2009.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
re918t9ionships of the internet. In Proceedings of SIGCOMM,
1999.

R. Fonseca and et al. Xtrace: A pervasive network tracing
framework. In In Proc. NSDI, 2007.

J. Han, H. Cheng, D. Xin, and XifengYan. Frequent pattern
minin;: current status and future directions. Data Mining and
Knowledge Discovery, 15(1), 2007.

S. E. Hansen and E. T. Atkins. Automated system monitorin,
and notification with Swatch. In Proc. USENIX LISA 93,
pages 145-152, 1993.

(3]
(4]
(3]

(6l
(71

(8]

597

(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]
(31]

(32]

J. Hellerstein, S. Ma, and C. Perng. Discovering actionable
patterns in event data. /BM Sys. Jour, 41(3), 2002.

J. R. LM. Chakravarti, R.G. Laha. Handbook of Methods of
Applied Statistic, volume 1. John Wiley and Sons, 1967.

J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component analysis.
Technometrics, 21(3):341-349, 1979.

T. Karagiannis, K. Papagiannaki, N. Taft, and M. Faloutsos.
Profiling the end hos. In Proceedings of Passive and Active
Measurement Workshop (PAM), Belgium, 2007.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-
wide traffic anomalies. In Proc. ACM SIGCOMM, 2004.

C. LaRosa and et al. Frequent Spattern mining for kernel trace
data. In Proc. of ACM SAC’08, 2008.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool
for finding copy-paste and related bugs in operating system
code. In Proceedings OSDI’04, 2004.

P. Louridas, D. Spinellis, and V. Vlachos. Power laws in
software. In ACM Transactions on Software Engineering and
Methodology (TOSEM), volume 18, 2008.

S. Ma and J. L. Hellerstein. Mining partially periodic
event patterns with unknown periods. In Proc. IEEE ICDE,
Washington, DC, 2001.

OSSEC.org. OSSEC Manual, 2008.

J. Pei and et al. PrefixSpan: mining sequential patterns
efficiently bg bpreﬁxl—_f)ro'ected pattern growth. In Proceeding
of IEEE ICDE’01, Heidelberg, Germany.

J. E. Prewett. Analyzing cluster log files using logsurfer. In
Proc. Annual Conf. on Linux Clusters, 2003.

K. Rieck and et al. Computation of similarity measures for
sequential data using generalized suffix trees. In NIPS’2007.
MIT Press, Cambridge, MA, 2007.

R. Srikant and R. Afgrawa. Mining sequential patterns: gen-
eralizations and performance improvements. In Proceeding
of EDBT’96, Avignon, France, 1996.

J. Stearley. Towards informatic analﬁlsis of syslogs. In Proc.
IEEE CLUSTER, Washington, DC, 2004.

R. Vaarandi. A data clustering algorithm for mining patterns
from event logs. Proc. IPOM, 2003.

R. Vaarandi. A breadth-first algorithm for mining frequent
patterns from event logs. In INTELLCOMM, volume 3283,
pages 293-308. Springer, 2004.

H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peerpres-
sure. In Proceedings of OSDI’04, 2004.

K. Xu, Z.-L.. Zhang, and S. Bhattacharyya. Profiling internet
backbonetraffic: Behavior models and applications. In Pro-
ceedings of ACM SIGCOMM, 2005.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Large-
scale system problems detection by mining console logs. In
Proceedings of SOSP’09, Oct. 2009.

K. Yamanishi and et al. Dynamic syslog mining for network
failure monitoring. In Proc. KDD’05, New York, NY, 2005.

Y. Ye and et al. IMDS: Intelligent malware detection system.
In Proceedings of ACM SIGKDD’07, 2007.

M. J. Zaki. Spade: an efficient algorithm for mining frequent
sequences. Machine Learning, 42:31-60, 2004.

A. Zheng and et al. Statistical debugging: Simultaneous
isolation of multiple bugs. In Proceedings of ICML’06, 2006.

