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Abstract—With the growth of services in IP networks, network
operators are required to perform proactive operation that
quickly detects the signs of critical failures and prevents future
problems. Network log data, including router syslog, are rich
sources for such operations. However, it has become impossible
to find genuinely important logs that lead to serious problems
due to the large volume and complexity of log data. We propose
a log analysis system for proactive detection of failures. Our
key observation is that the abnormality of logs depends on not
just the keywords in the messages (e.g. ERROR, FAIL), but
generation patterns such as burstiness. Our system consists of
three functions: (i) extracting log templates automatically and
quickly from a massive amount of unstructured log data; (ii)
constructing log feature vectors to characterize the generation
patterns of logs; and (iii) using a supervised machine learning
approach to associate failures with the log data that appeared
before them. We validated our system using real log data collected
from a large network and determined its effectiveness.

I. INTRODUCTION

Various services (e.g. IPTV, video streaming, VoIP, and

internet gaming) have been deployed on recent large IP

networks, in which network operators are required to perform

proactive operations not current reactive operations. Service

providers in fierce competition demand higher quality and

reliability of the network than in previous decades. Network

operators need to detect even a slight temporal event, such

as a minute disconnection, because it may lead to a serious

problem and service providers may suffer significant loss.

Router syslogs and alert logs generated in Network Manage-

ment Systems (NMSs) are important information for current

network operation. Alert messages include Simple Network

Management Protocol (SNMP) trap messages Table I lists

examples of logs messages. These logs contain detailed infor-

mation of network elements: not only critical hardware failures

but also reports on the normal status of various protocols and

layers. Therefore, network log data can be considered as rich

sources for performing proactive operations.

However, it has become difficult to find genuinely important

log messages that are related to major network problems due

to the following two reasons. First, log messages are a large

number of text messages written in an unstructured format. In

a large production network, the total volume of log messages

may be more than tens of millions per day. In addition, since

the format of logs vary by vendors or services, the types of log

messages are also large in multi-vendor environment. Second,

log messages are highly diverse because they contain various

types of network events ranging critical hardware failures

to normal login events of operators. It thus requires great

experiences and previous knowledge to find meaning of log

messages and make use of them.

In this paper, we propose a log analysis system for proactive

failure detection. The system automatically learns the rela-

tionship between critical failures and log messages without

using any previous knowledge on logs. By noticing such

anomalies in advance, network operators can perform proac-

tive operations such as preventive maintenance or arrangement

of spares. For a given chunk of log messages that has appeared

recently, the system automatically characterizes the generation

patterns of log messages and classifies whether the current

state may lead to critical failures. To use the rich features of

log data, we developed an online template extraction method

for our system. It can automatically and quickly transforms log

messages into log templates by using a similarity score based

on the tendency of each word to belong to a log template.

The log templates are messages without parameters, such as

IP addressees, and hostnames, and enables us to characterize

the statistical features of log messages. Next, we create log

feature vectors that characterize the generation patterns of

log messages such as frequency, periodicity, and burstiness.

Our key observation is that the abnormality of logs depends

on not the keywords in log messages but these log generation

patterns. For example, there are log messages that can lead to

failures when they occur in sudden burst, although they do not

affect the network when they occur alone. To automatically

associate the log data with the critical failures in the past,

we take a supervised machine learning approach by using

trouble tickets as training datasets. We validated our system

using a massive number of log data collected from a large

production network. The experimental results show that our

system can detect future network problems and achieve much

better classification than current monitoring systems.

The rest of this paper is organized as follows. Section II

summarizes the work related to our research. In Section III,

we explain our proposed system in detail. In Section IV, we

discuss several experiments that we conducted for evaluating

our system. Finally, we conclude the paper in Section V.

II. RELATED WORK

There are many commercial products for recent complicated

network management and operations. NMSs, e.g., [1], [2], [3],
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TABLE I
EXAMPLES OF LOG MESSAGES

# timestamp host messages

1 2015/1/1T00:00:00 HOST X %TRACKING-5-STATE: 1 interface Fa0/0 line-protocol Up− >Down

2 2015/1/1T00:00:00 HOST X %LINK-3-UPDOWN: Interface FastEthernet 0/0, changed state to down

3 2015/1/1T00:00:05 10.1.1.2 %SYS-5-CONFIG I: Configured from console by vty0 (10.1.1.2)

4 2015/1/1T00:00:10 HOST Y 100 login : LOGIN INFORMATION : User XXX logged in from host HOST X on device X

5 2015/1/1T00:00:11 HOST Y chassisd [ 111 ] : CHASSISD BLOWERS SPEED : Fans and impellers are now running at normal speed

6 2015/1/1T00:00:15 10.1.1.3 SNMP trap: CPU utilization exceeds threshold ( 96.9 % > 90 %)

7 2015/1/1T00:01:00 10.1.1.3 Ping Timed Out ( 6 / 6 )

visualizes various metrics of network elements, such as traffic,

and CPU utilization, and raise alarms based on predefined

rules, e.g., keywords, severity. However, these rules often

indicate apparently critical statuses and cannot capture the

temporal abnormal statuses that may cause serious problems

in the future. Splunk [5] is a log analysis platform, which

collects, makes indexes, and visualizes logs. There are also

many similar services that helps in fast analysis of data such

as Logentries [4]. However, it requires great skills and domain

knowledge to make efficient use of these products such as alert

rule finding and log format definition.

Research of machine generated log data has increased in

recent years. Yamanishi et al. [21] proposed a technique to

detect system failure from server syslogs using a mixture of

hidden Markov models. A system log mining method using

only frequency was proposed [13]. Zheng et al. [22] introduced

a log preprocessing method of filtering important logs. Xu

et al. [20] analyzed console logs of large-scale hadoop systems

and proposed a PCA-based anomaly detection method. A

setwork IDS alerts classification method via a frequent item

set mining approach was proposed in [19]. Fu et al. [10]

introduced an anomaly detection technique by learning normal

system behavior with a finite state automaton. The above

studies focused on anomaly detection in an unsupervised

manner; however, we focused on finding the signs of failures

appeared in the past. Thus, we took a supervised machine

learning method and associated failures described in trouble

tickets and log messages occurred before them. SyslogDi-

gest [14] targets the router syslogs in a Tier 1 scale network;

however, it just constructs digest information by grouping log

messages within relevant routers. Kimura et al. [11] proposed

a modeling and event extraction method of network log data

using a tensor factorization approach; however, they did not

focus on detection of anomalies. The most closely related

work is that by Sipos et al. [17]. They presented a multiple-

instance learning approach for predicting equipment failures

by analyzing system log data. In contrast with our work, they

did not use the generation patterns of log data and automatic

template extraction. Similarly, Reidemeister et al. [16] also did

not use these features. They studied recurrent failure detection

from unstructured log based on a decision tree classifier.

III. PROPOSED SYSTEM

In this section, we explain the proposed proactive failure

detection system based on the generation patterns of logs data.

Fig. 1. System overview

A. System Overview

The main objective with our system is to automatically

learn the relationship between critical failures and log data

and to proactively detect an abnormal pattern of log messages

that leads to future problems by analyzing recent logs. Fig. 1

gives an overview of our system. It first splits log messages

by a certain time window (e.g. 15, 30 min.) and groups

them into chunks with the same hosts, called log chunks.

For a given log chunk, our system classifies whether current

status may lead to critical problems and reports it to network

operators. To achieve our goal, the system first preprocesses

unstructured logs and transforms each message into a log

template that enables us to characterize the log generation

patterns (Section III-B). It then creates log feature vectors that

characterize the generation patterns of log messages for each

log template in a log chunk (Section III-C), and the extracted

feature vectors are aggregated within a chunk (Section III-D).

Finally, machine learning classifier detects future failures for

the aggregated log feature vector (Section III-E). The classifier

model is trained offline using network trouble ticket data. We

now give detailed explanation for each component.

B. Online Log Template Extraction

Network logs include various types of messages ranging

from critical failure to normal console logs. We can see from

Table I that there is no unified rule for description of log

messages. Since messages with unique error IDs or process

IDs may never appear twice, it is unrealistic to statistically

analyze raw messages to extract features.Therefore, we need

to focus on not log messages but log templates, in which error

IDs or process IDs are removed. We give an example of log

template in Fig. 2. These log templates can be obtained from

vendors’ support pages or manuals; however, the formats may

change due to OS upgrades or maintenance.

Template extraction methods have been proposed e.g. [18],

[14], [11]; however, they are all offline batch schemes. The



Fig. 2. Examples of template clusters. Words in box represent parameter
words, and newly arriving one will be stacked in same positions.

TABLE II
CLASSES OF WORDS

class definition examples

1 only numbers or numbers

and symbols

1, 0/0, 10.1.1.1

2 numbers and letters host-01, IPv4, L2TP, vty0, Fa0/0

3 symbols and letters class-a, udp-port, aaa.cfg, line-protocol

4 only letters linkdown, state, interface

5 only symbols <, >, =, :

format of messages may dynamically change in the future;

in addition, we need to observe for a long period to capture

all templates. Therefore, we developed an online template

extraction method, which can learn templates in an incremental

manner. The main ideas of the method are: (i) classification of

each word based on the tendency to belong to a log template;

and (ii) online clustering of arriving messages by regarding

a log template as a cluster of messages and by using log

similarity between template clusters and messages based on

the classes of words. We explain the key features of our

method step by step below.

(a) Classification of words From the observation of log

messages, symbol words, such as “=” or “:”, are likely to

belong to log templates; and on the other hand, numerical

words, such as process IDs, can be considered as parameters.

According to this idea, we first classify the words in the sense

of tendency to belong to a log template. The detailed definition

of classification of words is described in Table II. Furthermore,

we define w = [wi] (i = 1, 2, . . . , 5) as a weight vector that

corresponds to the tendency to become log templates for each

class i. According to the definition, the value of w is typically

set as w1 ≤ w2 ≤ · · · ≤ w5.

(b) Online message clustering Next, for each arriving log

message, we perform online clustering so that the message is

assigned to the cluster with the highest similarity. To do this,

we define the following log similarity between a cluster C and

a message X as

LogSimilarity(C,X) = w
t
x/wt

cx,

where x = [xi] represents the number of class i words in

X and cx = [cx,i] represents the number of class i words

appeared in both C and X . If the highest log similarity is less

than a predefined threshold E, then we create a new template

cluster from X .

1: template cluster set C = ∅;

2: for each message X do

3: GetWordClass(X);
C := FindHighestLogSimilarity(C, X);

4: if LogSimilarity(C,X) ≥ E then

5: append X to cluster C;

6: else

7: create a new cluster from X;

C := C ∪ {X};

8: end if

9: end for

Fig. 3. Online template extraction pseudo-code

(c) Parameter optimization To obtain the most efficient

result from our method, we need to optimize the weight

parameter w and E. From the definition of log similarity, we

can consider the problem of assigning a log message to a

cluster as a linear classification problem such that

sign(wt[x− Ecx])

{
≥ 0, assign X to C,
< 0, create a new cluster.

Thus, by feed-backing the result of whether the message is

correctly assigned to the template cluster or separated, we

can update and optimize w. In our experiment discussed

in Section IV, we used PA-I [8] as the learning algorithm,

which is a well-known online supervised classifier. Roughly

speaking, it makes a minimum change to its weight vector

when its prediction is wrong.

Fig. 3 shows the pseudo-code of online template extraction.

Our method first extracts the classes of words of an arriving X .

It then searches the template cluster that achieves the highest

LogSimilarity with X . If the value is larger than E, X is

aggregated to the cluster; otherwise, a new cluster is created

from X . From the definition of E, if E takes a larger value,

our method tends to split clusters more aggressively.

C. Feature Extraction

After template extraction, the system attempts to capture the

features of log templates in each log chunk to characterize the

generation patterns. Suppose that templates in a log chunk at

a host h are {t1, . . . , tN}. We then create a log feature vector

xi (i = 1, . . . , N) for each log template ti. The simplest way

to construct a log feature vector is a bag-of-words expression

of words used in natural language processing area. In this

expression, each element of a feature vector represents the

existence or the number of words in a log template. However,

this approach has a similar problem to a keyword-based

monitoring such that seemingly abnormal words, e.g. ERROR,

DOWN, are not always related to problems. For example, a user

session disconnection event causes log templates; however,

this occurs throughout the network on a daily basis. Therefore,

we focus on not words in log messages but the generation

patterns of log messages such as frequency, periodicity, or

burstiness. For instance, periodic log messages, e.g., those

induced by cron jobs and SNMP polling, can be considered



as normal. According to these observations, we select the

following features from log generation patterns:

(1) Frequency: First basic feature is the frequency of log

templates. Typically, frequent log messages, such as firewall

logs and user connection/disconnection messages, can be

considered as normal. On the other hand, operators need to

check infrequent messages.

(2) Periodicity: There are periodic log messages, such as

messages induced by cron jobs, Internet Control Message

Protocol and SNMP polling, and daily maintenance operations.

Although these periodic log message may be infrequent, they

are unlikely to be related to failures. Since a wide range of

granularity for the period can be considered, we define the

periodicity of log templates as the coefficient of variation of

the observed number of templates within each hour, day, and

week. Formally, for each log template t, let

Periodicity(t, ITVL) =
√

σ2

t,ITVL

/
Dt,ITVL,

where ITVL ∈ {hour, day, week} represents an interval and

Dt,ITVL and σt,ITVL are the mean and standard deviation of

the observed number of ts within the intervals. Although there

are many candidates for calculating periodicity, such as Fourier

transform, the reason we choose this simple metric is that

manual daily operation is not strictly periodic (e.g. some are

done in the morning and some are done in the evening).

(3) Burstiness: Some log messages become failures when

they occur in sudden burst, although the message itself is

not critical when it appears alone. For example, a single bit

error at a certain module will be fixed by its error correction

circuit and will not affect the network. However, if the bit

error occurs more frequently than before, the module has the

potential to crash and should be replaced (see e.g. Cisco’s

support page [7]). Therefore, burstiness of log messages is an

important feature for discovering the signs of future failures.

To calculate bursty features, we simply adopt Kleinberg’s

burst detection algorithm [12]. Briefly, this method models

the occurrence of an event using a finite state hidden Markov

model, in which each hidden state corresponds to a different

Poisson process with a different parameter. The state with a

higher Poisson parameter indicates the burst state. Thus, we

use this ‘burst level’ as a bursty feature. Note that we apply

Kleinberg’s algorithm to the log templates in a log chunk

combined with dummy log messages, which are artificially

generated using the mean value of the interval time of each

log template. By adding this, the algorithm can detect the base

line of interval time.

(4) Correlation with maintenance and failures: In an actual

production network, numerous maintenance operations occur

throughout the network daily. These operations cause various

log messages and sometimes confuse network operators be-

cause it is difficult to determine which log message is caused

by maintenance. To take into account the tendency to appear

during maintenance, we add the following feature:

(#of observed templates during maintenance)

(#of template observed in a whole period)
.

To calculate the above value, we use maintenance procedure

data, which describe what kind of maintenance is performed

when and which host. Similarly, we calculate the correlation

to failures by using trouble ticket data. This feature represents

the tendency to appear during the failures.

We calculate the above features (1)–(4) for each log tem-

plate {ti; i = 1, . . . , N}. Features (1) and (2) are also counted

for each tuple (host, log template), i.e., {(h, ti)}, to take into

account the host-specific information. By combining them, we

finally create a log feature vector xti for each log template.

D. Feature Aggregation

Next, our system aggregates log feature vectors and ob-

tains a single vector that fully characterizes the log chunk.

After feature extraction, we obtain the set of log feature

vectors {xt1 , . . . ,xtN } corresponding to log templates ti (i =
1, . . . , N) in a log chunk. To apply a binary classification

problem, the log feature vectors at host h are aggregated into

an aggregated log feature vector xh that has the same dimen-

sions as {xti}. Since each element of a log feature vector

has a different character, we apply a different aggregation

scheme for each element of a feature vector: More specifically,

our system calculate the mean values for (1) frequency, (2)

periodicity, and (4) correlation to failures; the max values for

(3) burstiness; and the minimum values for (4) correlation to

maintenance features, respectively.

E. Machine-Learning-Based Proactive Failure Detection

As a final component of our system, the system determines

whether the current status leads to a future problem for

each aggregated feature vector xh. To detect future failures

accurately, we adopt a supervised machine learning technique

using network trouble ticket data. More precisely, we consider

a binary classification problem in which given h-th failure

label yh ∈ {1,−1} (1 represents failure state, called positive

and −1 is normal state, called negative) and corresponding

feature vectors xh, we classify an unlabeled feature vector into

binaries. In our research, we adopt a support vector machine

(SVM) with the Gaussian kernel [9] for supervised machine

learning. An SVM is a well-known powerful tool for binary

classification. It constructs a hyperplane that maximizes the

margin between two classes corresponding to the labels. By

using the kernel, the input feature space is mapped into a

certain high dimensional space by non linear transformation;

and thus, the model can learn linearly non-separable dataset.

IV. EXPERIMENTS

In this section, we discuss our experimental results for both

online template extraction and future failure detection.

A. Online template extraction evaluation

We first explain the evaluation results for the online template

extraction part presented in Section III-B. Due to the lack

of ground truth data for log templates, we used the data in

another domain: Blue Gene/P data from Intrepid obtained

from the computer failure data repository (CFDR) hosted



TABLE III
ACCURACY OF TEMPLATE EXTRACTION

clustering threshold E Rand index # of templates

0.70 0.93159 172

0.90 0.93188 432

0.93 0.93190 437

0.95 0.90611 524

0.99 0.90245 538

0.999 0.78480 625

by USENIX [6]. We refer to this as the ‘BlueGene’ data.

BlueGene data consist of RAS log messages collected over

a period of 6 months on the Blue Gene/P Intrepid system

with 11, 054, 588 lines. Each message contains MSG_ID that

represents the types of messages, e.g., KERN_080B and

CARD_0206. Thus, we used this field as the true ‘label’ for

the log template of each message. To quantitatively evaluate

accuracy of log templates, we chose the Rand index [15],

which is a well-known measure for evaluating two different

clustering results. More precisely, for two arbitrary selected

messages X and Y from the data, we first set the following:

• True Positive (TP ): X and Y have the same MSG_ID and

our system classifies them into the same template.

• True Negative (TN ): X and Y have different MSG_IDs and

our system classifies them as different templates.

• False Positive (FP ): X and Y have different MSG_IDs and

our system classifies them into the same template.

• False Negative (TN ): X and Y have the same MSG_ID and

our system classifies them as different templates.

Using the above notations, the Rand index is defined as

RAND INDEX =
TP + TN

TP + TN + FN + FP
.

From the definition, the Rand index has a value between 0

and 1, with 0 indicating that the two datatests do not agree

on any pair of points and 1 indicating that the datasets are

exactly the same. In other words, the Rand index can be

considered as an accuracy of clustering. In Table. III, we

show the Rand index for different E. The table indicates

that in all cases, our template extraction method achieve high

Rand index values. Furthermore, we can see from the table

that the maximum score of Rand index was 0.93190 when

E = 0.93 and when E is greater than or less than 0.93, the

result worsened. These results come from the definition of E;

if E is large, then our method tends to split messages and

create more template clusters; otherwise, template clusters are

likely to be aggregated1.

B. Proactive failure detection evaluation

Next, we explain the evaluation results from the proactive

failure detection part of our system (presented in Subsec-

1The performance of our algorithm also depends on w determined by a
supervised classifier (see Section III-B). In this experiment, we chose w as
[0.1, 0.2, 1.0, 2.0, 3.0]. We conducted several experiments with different w
and fixed E, however, we found that E has more impact than varying w.
Thus, we do not discuss in detail here due to space limitations.

tions III-C, III-D, and III-E). We used several months of log

data captured from a certain working network with roughly

300 million lines. We also used 7,000 lines of maintenance

procedures to obtain the ‘correlation to maintenance’ feature.

Furthermore, to create training and test data, we selected

400 trouble ticket data sets. The trouble ticket data describes

when failures occur at which host and when they recover. We

excluded the cases in which network operators did not perform

any recovery from failure (e.g. auto-recovered case). We also

ignored the case when the templates that occurred both before

and after the failures are the same, because they were the out

of the scope of our research. To obtain labeled log chunks,

we extracted log messages in certain time windows before

each failure in the trouble ticket data set. For negative data

sets, we randomly cut certain time window with no failures

or maintenance and extracted log messages within that period.

Finally, we obtained 350 positive and negative samples.

Evaluation metrics: To compare the performance of proac-

tive detection system with different parameter settings, we

calculated AUC as an evaluation metrics. AUC is equal to

the probability that a classifier will rank a randomly chosen

positive vector higher than a randomly chosen negative one.

In other words, it represents how well feature spaces are

separated for given positive and negative instances. We also

calculated Recall, Precision, and F1-score to evaluate the

accuracy of the classification. Note that F1-score is the

harmonic mean of precision and recall, i.e.,

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
,

F1-score =
2Recall · Precision

Recall + Precision
.

For given labeled data sets, we conducted 10-fold cross

validation.

Comparison across different feature selections: Fig. 4 and

5 show the F1-score, AUC, precision, and recall when se-

lected features are varied. We adopted template-based feature

creation method as our baseline of validation. Sipos et al. [17]

took the similar approach to this feature creation, in which we

created feature vectors using a bag-of-words expression (see

Section III-C) of log templates in a log chunk, while they

used message types described in their data. In the figures, ‘f’

denotes frequency, ‘p’ denotes periodicity, ‘c’ denotes correla-

tion with maintenance or failures, and ‘b’ denotes burstiness.

Furthermore, ‘template’ represents the template-based feature

creation. We can see from the figure that the feature space of

the proposed system achieved higher values than the template-

based feature space. The result indicates that the bag of words

expression is insufficient for detecting the anomalies, although

log templates have much richer information than keywords.

Finally, from Fig. 5, it can be said that the proposed system

improved succeeded in improving both precision (+5.8%) and

recall (+9.5%) simultaneously.

Log generation feature space vs. keyword feature space:

We next compare the feature spaces of the proposed method

with the keyword-based feature spaces. To construct a



Fig. 4. F1-Scores and AUC results
for different features selected

Fig. 5. Precision and recall results
for different features selected

keyword-based feature space, we used a bag-of-words ex-

pression of selected keywords. To do this, we calculate term

frequency and inverse template frequency (tf-itf) as the im-

portance measure of a keyword, and select top-M words. The

tf-itf for a keyword w is defined as the minor modified version

of the well-known tf-idf:

tf -itf(w) =
1

|Tw|

∑
t∈Tw

freq(w)

freq(t)
· log

(
|T |

|Tw|
+ 1

)
,

where T and Tw represent the total set of templates and set of

templates that include w, and freq(·) shows the frequency of a

log template or a word. The tf-itf value increases proportionally

to the number of times a word appears in templates, but is

offset by the frequency of the word in the total set of log

templates. Fig. 6 shows the results of the proposed feature

space against keyword-based feature space when varying the

number of selected keywords. The graph shows that the

features of the proposed method achieve a higher value than

all cases. This result indicates that the abnormality of logs

is determined by their generation patterns, rather than the

keywords in messages.

Impact of size of log chunk: Finally, we investigated the

impact of the size of a log chunk. Since the detection timing of

future failures relies on it, a shorter time window is desirable.

Fig. 7 shows the F1-score and AUC results when varying the

size of log chunks. As we can observe from the graph, AUC
increased with the time window size. The reason for this is

that if the size of time window is larger, more log messages

are included in a chunk; thus, there would be more chance for

a log feature vector to absorb important features. Although

AUC takes the worst value when the time window size is 5

min., it is higher than the cases with keyword-based feature

selection with time window size of 60 min.

C. Example of proactive failure detection

We give an interesting example our system detected. In

Fig. 8, we plot the time series of log templates corresponding

to the detected host. The vertical line shows when a fault

alarm was raised. The figure shows that there are burst log

templates before the fault alarm; and thus, our system proac-

tively detected the future problems. The described message

on this log templates show a pair of link down and up

messages, i.e., a link flap. Since the messages can be caused by

daily maintenance or connecting new subscribers, the network

Fig. 6. Varying number of selected
keywords

Fig. 7. Comparison with different
time window sizes

Fig. 8. Example of proactively detected failure. Vertical axis represents log
template and horizontal axis represents time. Each point corresponds to
occurrence of log template and vertical line indicates time fault alarm
were raised.

operators did not monitor this messages and missed them. On

the other hand, our system detected them because operations

that causes them are all done manually; and thus they have

less burstiness. In addition, we can see frequent log templates

and periodic ones below the burst ones. These messages are

associated with cron jobs and do not affect the network. As

a result, our system could successfully detect the sign of a

network failure, which cannot be detected by current keyword-

based or template-based monitoring.

V. CONCLUSION

We proposed a proactive failure detection system from

the generation patterns of network log messages. To extract

features from log data, we developed an online template

extraction method. We also developed a future extraction

method that characterizes the abnormality of logs based on

the generation patterns of logs. We confirmed that our system

can detect failures with higher accuracy than keyword-based

or template-based monitoring.

Although our system currently learns and detects abnormal

logs in offline, automatic update of the features and the model

is important in production networks. Thus, online proactive

failure detection is our future work. Furthermore, from the

observation to log data, there are groups of log messages

because of network topology or layer dependencies (see [11]).

We believe that adding such a characteristic to our features

helps in improving the accuracy of future failure detection.
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