
Tale of Tails: Anomaly Avoidance in Data Centers

Ji Xue
College of William and Mary

Virginia, USA
xuejimic@cs.wm.edu

Robert Birke
IBM Research Zurich Lab
Ruschlikon, Switzerland

bir@zurich.ibm.com

Lydia Y. Chen
IBM Research Zurich Lab
Ruschlikon, Switzerland

yic@zurich.ibm.com

Evgenia Smirni
College of William and Mary

Virginia, USA
esmirni@cs.wm.edu

Abstract—It is a common practice that today’s cloud data
centers guard the performance by monitoring the resource usage,
e.g., CPU and RAM, and issuing anomaly tickets whenever
detecting usages exceeding predefined target values. Ensuring
free of such usage anomaly can be extremely challenging, while
catering to a large amount of virtual machines (VMs) showing
bursty workloads on a limited amount of physical resource. Using
resource usage data from production data centers that consist of
more than 6K physical machines hosting more than 80K VMs,
we identify statistic properties of anomaly instances (AIs) on
physical servers, highlighting their burst duration and potential
root causes. To strike a tradeoff between a strong performance
guarantee and resource provisions, we propose a tail-driven
anomaly avoidance policy for boxes, TailGuard, which allows a
small fraction of AIs, e.g., 5% of usages can be above the target
value, and still avoid severe performance degradation, typically
caused by a burst of continuous AI. Specifically, TailGuard
first introduces a novel usage tail prediction that explores the
similarity patterns across a great number of boxes within a very
recent history, and then redistributes the server load in an online
fashion by proactive VM cloning and reactive load balancing.
Evaluation results show that TailGuard can not only achieve
an accuracy comparable with prediction methodology that relies
on long history of usage data but also dramatically reduce the
number of CPU AIs by 60%, with a tenfold reduction of their
duration, from more than 25 time windows to only 2.

I. INTRODUCTION

Ticket issuing is widely used in today’s data centers for
performance anomaly detection [1], [2]. Performance tickets
are issued either automatically by the system (e.g., when high
resource usage is detected and signals potential deteriorated
user experience) or by the users themselves (e.g., after the
system is perceived slow or unresponsive). Ticket resolution
is an expensive process as it usually requires manual labor for
root-cause analysis [3]. Transient resource usage that grows
beyond a predefined target value is considered an anomaly
instance (AI) as it threatens user performance at tails and
signals unsteady system operation. Such usage fluctuations are
the result of aggressive multiplexing of multiple VMs across
physical servers, termed boxes, competing for limited physical
resources and the dynamic nature of each VM workload [4].

We analyze data center usage time series of a major vendor.
The trace data correspond to 6K physical boxes serving more
than 80K VMs over a time period of a week. Our analysis
shows that anomaly instances fall into two categories: single
AI where the duration of the anomaly is short and continuous
AI where the duration of the anomaly is long. Figure 1 gives
an overview of usage anomaly instances. Resource usage is
typically reported within discrete time windows (e.g., in our
trace each time window equals to 15 minutes). While the usage

Fig. 1: How to determine a usage anomaly instance. An
example on CPU usage.

series has fluctuations across time, it goes beyond the target
value three times. Twice the usage exceeds the target value
for a short time of a single time window (single AI). Once the
usage exceeds the target value for a long time, corresponding
to multiple consecutive time windows (continuous AI). The
trace characterization points to one more important factor that
distinguishes single and continuous AIs: we find that not only
the duration but also the magnitude of a continuous AI is
larger than the single AI. While single AIs may be consid-
ered relatively harmless, continuous AIs have the potential to
significantly undermine the user perceived performance.

In this paper, we develop a tail-driven anomaly avoidance
policy, termed TailGuard, which aims to ensure at most a
certain fraction of AIs and eliminate or at least drastically
reduce continuous AIs in physical servers. For example, Tail-
Guard tries to ensure that the box CPU usage is below the
predefined target (e.g., 60%) for 95 percent of the time,
meaning that the 95%ile of usage, the so-called tail usage,
is below the target. To motivate the design of TailGuard, we
first do a detailed, post-hoc workload characterization study
of usage time series (for both CPU and RAM) in production
data centers. TailGuard particularly consists of two steps: a
light-weight tail usage prediction method that explores the
power of vast number of last values of usages and a VM
cloning strategy that redistributes the box CPU and RAM loads
based on the prediction. Overall, this work makes three main
contributions: AI characterization, usage tail prediction, and
anomaly mitigation.

This characterization analysis allows us to view the sta-
tistical characteristics of usage time series and focuses on
the properties of their tails. The key findings are as follows:
1) the culprit of continuous CPU AIs is VM consolidation.

2016 IEEE 35th Symposium on Reliable Distributed Systems

1060-9857/16 $31.00 © 2016 IEEE
DOI 10.1109/SRDS.2016.19

91

2) CPU tail usage is highly correlated to the mean CPU
usage of physical servers and follows a Normal distribution.
3) RAM anomalies do not relate strongly to VM consolidation
in contrast to CPU anomalies.

Based on these observations, the proposed TailGuard
avoids AI, particularly CPU, by predicting the tail usage of box
CPU and redistributing VMs across boxes in an online fashion.
TailGuard first predicts the box CPU tail usage, e.g., 95%ile,
by capturing the steady state of tail distribution with respect
to different levels of mean usage. In contrast to conventional
time series prediction, TailGuard is not only very light-weight
using very recent data, e.g., past day, instead of long history
of usage series, but also aware of the resource availability at
the tenants. Secondly, based on tail predictions and the level
of resource availability for each tenant, TailGuard redistributes
box loads by proactively creating and placing VM clones so
as to ensure the box tail usage does not exceed the target
value. The VM cloning strategy combines the advantage of
VM migration and load balancing at the cost of duplicating
the VM memory footprint.

The proposed TailGuard is evaluated in detail using trace
driven simulation. Results are summarized as follows: 1) the
proposed prediction method of tail usages is computationally
much cheaper compared to accurate but expensive time-series
predictions (e.g., neural networks), while balancing tail usages
across boxes; 2) VM cloning achieves a ten percent higher
reduction in CPU tail target violations than classic VM mi-
gration. It is also noteworthy that, thanks to the reactive load
balancing, our method achieves CPU tail usage reduction with
minimal RAM usage violation increase (up to 3 percent),
which is lower than the one achieved by proactive VM
migration. Even by allowing target violations in up to 5 percent
of the time windows, TailGuard not only reduces the number
of CPU AIs by 60 percent, but also mitigates the duration of
continuous CPU AIs dramatically, from a maximum duration
of over 25 time windows to 2 time windows.

The outline of this work is as follows: Section II provides a
characterization study on the CPU and RAM AIs. We propose
TailGuard, describing tail usage prediction method and a VM
cloning strategy in Section III. An extensive evaluation of our
proposed method for CPU AI reduction on production traces
is discussed in Section IV. Section V presents related work,
followed by conclusions in Section VI.

II. CHARACTERIZATION

The trace considered here comes from production data
centers serving various industries, including banking, phar-
maceutical, IT, consulting, and retail, and contains CPU and
RAM utilization at a time granularity of 15 minutes for 6K
physical boxes hosting more than 80K VMs during a 7-day
period from April 3, 2015 to April 9, 2015. Naturally, the
level of consolidation is very high, i.e., on average 10 VMs
are consolidated within a single physical box [5].

A. Overview

We first look into daily statistics of anomaly instances,
assuming that an anomaly instance is triggered when a resource
usage exceeds a target [4]: 60% for CPU and 80% for RAM.
Figure 2(a) illustrates the empirical PDF of the daily average

number of CPU excesses per physical box. Note that each
excess corresponds to the mean utilization across 15-minute
time window being above the target value. 40% of the boxes
have a daily average number of excesses below one. After
that the fraction of boxes rapidly decays with only 3% of
boxes which experience over 32 excesses per day (i.e., for
more than 8 hours per day). Figure 2(b) focuses on whether
these excesses are single or continuous AIs. The boxplots in
this figure show the 25th, 50th, and 75th percentiles of the
anomaly duration, the whiskers correspond to extremes of the
distribution, and the dots represent the average. Note that the
y-axis is in logscale and in units of 15-minute time windows.
The figure clearly illustrates that most anomaly instances are
continuous, i.e., longer than one time window. Figure 2(c)
illustrates the relationship between the box mean CPU usage
across the excesses and the type of anomaly that it experiences.
Here, the CDFs of single and continuous anomaly instances
are presented: it is clear that continuous anomaly instances
have higher usages than single ones.

Figure 2(d)-(f) presents similar results as Figure 2(a)-(c)
but for RAM. Figure 2(d) illustrates the empirical PDF of
the average number of RAM excesses per box per day and
shows that RAM excesses seldom come alone: from at least
32 (26% of boxes) up to 96 (40% of boxes). Consequently,
the boxplots of Figure 2(e) illustrate that these anomalies
are mostly continuous. Finally, Figure 2(f) shows that the
CDF of single and continuous anomaly instances for different
box mean RAM usages across the anomaly instances. RAM
continuous anomaly instances have higher usages than single
ones and the difference is even larger comparing to CPU
anomalies. In summary, Figure 2 illustrates that for both CPU
and RAM anomaly instances, it is the continuous ones that
tend to exceed significantly the target value. Hence, continuous
anomalies have the potential to harm performance for a long
period of time. This motivates us to look in detail into the tail
usages for CPU and RAM.

B. Root Cause Analysis for Box Anomaly Instance

A natural question is whether there is any relationship
between the VM consolidation level and the number of
CPU/RAM anomaly instances. Figure 3(a) presents boxplots
that show the 25th, 50th, and 75th percentiles (boxes), the
extremes of the distributions (whiskers) and the means (dots)
of the number of CPU usage excesses for different ranges of
VM consolidation levels on the x-axis. Here we define con-
solidation level as the number of collocated VMs. Figure 3(b)
presents the same information but for RAM anomaly instances.
It is clear that higher VM consolidation levels result in more
CPU anomaly instances while RAM anomalies do not show a
strong relationship with the VM consolidation level.

Figures 3(c) and (d) illustrate the probability that at least
one excess is observed on a VM residing on a given box that is
also observed an excess for CPU and RAM usage, respectively.
Note that these probabilities are reported as a function of the
VM consolidation level. The figures illustrate that there is a
strong relationship among the box anomaly instances and a
VM anomaly instance for CPU, as shown by probabilities
higher than 0.9 for all the consolidation levels. For RAM, the
probabilities are less than 0.02 for all consolidation levels. The
figures illustrate that there is a clear relationship among the

92

Mean # of Usage Excesses per Box per Day

[0, 1
)

[1, 2
)

[2, 4
)

[4, 8
)
[8, 1

6)

[16, 3
2)

[32, 9
6)

[96, 9
6]

F
ra

ct
io

n
 o

f
B

o
xe

s

0

0.1

0.2

0.3

0.4

Mean # of Usage Excesses per Box per Day

[0, 1
)

[1, 2
)

[2, 4
)

[4, 8
)

[8, 1
6)

[16, 3
2)

[32, 9
6)

[96, 9
6]

D
u
ra

tio
n
 o

f
A

n
o
m

a
ly

 I
n
st

a
n
ce

 (
*1

5
m

in
)

100

101

102

Box Mean CPU Usage (%)

60 65 70 75 80 85 90 95 10
0

C
u
m

u
l.

F
ra

ct
io

n
 o

f
B

o
xe

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Single Anomaly Instance
Continuous Anomaly Instance

(a) CPU: Number of usage excesses (b) CPU: Duration of anomaly instances (c) CPU: Usage Comparison

Mean # of Usage Excesses per Box per Day

[0, 1
)

[1, 2
)

[2, 4
)

[4, 8
)
[8, 1

6)

[16, 3
2)

[32, 9
6)

[96, 9
6]

F
ra

ct
io

n
 o

f
B

o
xe

s

0

0.1

0.2

0.3

0.4

Mean # of Usage Excesses per Box per Day

[0, 1
)

[1, 2
)

[2, 4
)

[4, 8
)

[8, 1
6)

[16, 3
2)

[32, 9
6)

[96, 9
6]

D
u
ra

tio
n
 o

f
A

n
o
m

a
ly

 I
n
st

a
n
ce

 (
*1

5
m

in
)

100

101

102

Box Mean RAM Usage (%)

80 84 88 92 96 10
0

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Single Anomaly Instance
Continuous Anomaly Instance

(d) RAM: Number of usage excesses (e) RAM: Duration of anomaly instances (f) RAM: Usage Comparison

Fig. 2: CPU and RAM: overview of anomaly instances.

hosted VM anomalies and the box anomalies for CPU; this
relationship is clearly not present for RAM.

To summarize, the above two figures illustrate that CPU
anomaly instances in boxes strongly depend on the VM CPU
usage within these boxes, while this is not the case for RAM
anomaly instances which are triggered mainly because of
boxes themselves and not necessarily their residing VMs. This
motivates us to focus on CPU AIs rather than RAM ones.

C. Is CPU Usage Balanced?

In a private cloud data center, which is a single tenant
environment, the hardware, storage and network are dedicated
to a single client or company. A tenant can be seen as a cluster
of boxes, which allows customized placement of VMs and
assignment of resources. Figure 4(a) plots the CDF of box
mean CPU usage across tenants. For selected means, we also
plot the standard deviation. The figure shows that the average
usage of boxes for the majority of tenants is low: 90% of
tenants have an average CPU usage less than 35%. Yet, the
standard deviation is large, suggesting that there is significant
load imbalance across boxes. The same imbalance is observed
for the CPU tail usages as shown in Figure 4(b) that plots the
CDF of the 95%ile of box CPU usage across tenants. If we are
able to predict the tail usages, then based on this information
we can devise a balancing algorithm that reduces tail usage
and consequently anomaly instances.

A simple common approach for predicting moments of
time series makes use of the last value prediction, which
predicts the future using the most recent observations. In

Figure 5, we demonstrate that the last value prediction works
well for predicting the mean usage, but not for the tail based on
their coefficient of variation (C.V.), which is equal to standard
deviation divided by mean. The C.V. allows us to combine
the information on the mean and standard deviation into a
single value. Figure 5(a) shows the CDF of the C.V. of the
daily box mean and 95%ile usage computed over one week
across all boxes. It is clear that the box tail usages show
higher C.V. values, on average 0.5, than the box mean usages,
on average 0.12, indicating that the mean usages are more
constant over time. This is why applying simple last value
prediction results in low prediction errors for the mean usages
and high prediction errors for the tail usages. This is clearly
shown in Figure 5(b) reporting the CDF of absolute percentage
error (APE)1 of the predictions. This observation motivates us
to look at the relationship between the mean (rather constant)
and tail (highly variable) usages, as to predict the tail usage
via the mean usage predicted accurately using the last value.

To achieve this goal we divide the boxes into bins based
on their mean CPU usage and compute within each bin the
distribution of the CPU tail usages across all boxes falling into
the same bin. Figure 6 illustrates the resulting PDFs for the
95%ile of CPU usages with a bin width of ±3%. The figure
shows that for each bin the tail usage distribution resembles
a Normal distribution. For example, for the bin corresponding
to a mean CPU usage equal to (60±3)%, we see that average
and standard deviation of a fitted Normal distribution of the
95%ile CPU usages are 79.9% and 8.2%, respectively. This
allows us to propose an anomaly instance reduction method

1APE = |Actual−Prediction|
Actual

93

Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

N
u

m
b

e
r

o
f

U
sa

g
e

 E
xc

e
ss

e
s

0

5

10

15

20

25

Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

N
u

m
b

e
r

o
f

U
sa

g
e

 E
xc

e
ss

e
s

0

10

20

30

40

50

60

70

80

90

100

Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

P
ro

b
(A

t
le

a
st

 1
 V

M
 |
 B

O
X

)

0.8

0.85

0.9

0.95

1

Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

P
ro

b
(A

t
le

a
st

 1
 V

M
 |
 B

O
X

)

0

0.02

0.04

0.06

0.08

(a) CPU: Consolidation level (b) RAM: Consolidation level (c) CPU: Prob(VM|Box) (d) RAM: Prob(VM|Box)

Fig. 3: CPU and RAM: root cause analysis for the box anomaly instance.

Mean Usage per Tenant (%)
0 10 20 30 40 50 60

C
u

m
u

l.
F

ra
ct

io
n

 o
f

T
e

n
a

n
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

95%ile Usage per Tenant (%)
0 10 20 30 40 50 60 70 80 90

C
u

m
u

l.
F

ra
ct

io
n

 o
f

T
e

n
a

n
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Mean (b) Tail

Fig. 4: CDF of box CPU usage per tenant: mean and tail.

C.V. of Usage within 1 Week
0 0.3 0.6 0.9 1.2 1.5

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Usage
Tail (95%ile) Usage

Absolute PCT Error(%)
0 50 100 150 200

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Usage
Tail (95%ile) Usage

(a) C.V. (b) Prediction Error

Fig. 5: Predict box CPU mean and tail usages using the most
recent day’s observation.

based on the mean usage and the (already known) distribution
of the tail usages that correspond to this mean usage level.

III. TailGuard POLICY

In this section, we present TailGuard, a tail-driven anomaly
avoidance policy, that aims to enhance datacenter tenants’
dependability by continuously ensuring their box CPU tail
usages are below a predefined target value. To avoid suffering
from continuous AIs and over-reacting to spontaneous single
CPU AIs, TailGuard focuses on bounding the CPU tail usages
for each tenant. TailGuard proactively manages the CPU and
RAM usages of the boxes by intelligently distributing their
load, i.e., learning from the past, predicting the future, and
actuating at the present. TailGuard is composed of two key
steps: (i) CPU tail usage prediction and (ii) box load redis-
tribution via VM cloning and online monitoring for workload
management. The workflow of the proposed approach for box
CPU tail usage reduction is shown in Figure 7. The focus of
the tail prediction module is three-fold: prediction accuracy,
computational efficiency, and awareness of the overall resource

95%ile of CPU Usage (%)

0
20

40
60

80
1006050

Bin Mean CPU Usage (%)

403020100

0.16

0.12

0.08

0.04

0

F
ra

ct
io

n
 o

f
B

o
xe

s

Fig. 6: PDF of box tail usages for different mean usage bins.

Fig. 7: Overview of TailGuard to avoid box CPU tail violation.

availability of tenants. To achieve good accuracy with low
computation overhead and also low requirement of data of the
immediate past of a single tenant, TailGuard leverages trace
data across all tenants’ boxes, by constructing the empirical
distribution of tail usages. We advocate to use simple statistics
related to such a distribution, e.g., the mean and standard
deviation, to predict the future tail usage of each box. In
addition, TailGuard determines the prediction scheme, i.e.,
the specific statistics related to the distribution of tail usages,
depending on the resource availability of each tenant.

The tail prediction is used as input for redistributing CPU
and RAM loads across boxes in each tenant such that their box
CPU AIs, particularly the continuous ones, are mitigated and
avoided, with no or only few additional RAM usage violations
happening. We propose a tail redistribution policy via VM
cloning, essentially by combining the ideas of migration and
load dispatching. Based on the CPU tail usage prediction for
all boxes belonging to a tenant, TailGuard first proactively
creates VM clones for boxes that need to reduce their loads,

94

Fig. 8: Overview of VM cloning and workload distribution.

and places clones on boxes with spare capacity. TailGuard then
dispatches the CPU loads across original and cloned VMs,
while assuming memory loads are replicated on both original
and cloned ones. The overview of the proposed VM cloning
strategy is presented in Figure 8.

After VM cloning, TailGuard enables online monitoring of
CPU and RAM usage for each box. When unexpected CPU
or RAM usages are detected in the boxes with VM clones,
TailGuard reactively redistributes the workloads between the
cloned and original VMs, such that the boxes with VM clones
stay with as few CPU AIs or RAM violations as possible.

A. Predicting Box CPU Tail Usage

First we illustrate how TailGuard predicts individual box
CPU tail usage, based on the distribution of tails observed
from a large population of boxes. Our solution is motivated
by the findings in Section II: CPU tail usages are variable
across time, while mean CPU usages remain constant, see
Figure 5. In addition, CPU tail usages appear to follow Normal
distributions after binning boxes based on their mean usages as
reported in Figure 6. We incorporate the resource availability
of each tenant, as an indicator that determines whether the tail
prediction should be aggressive or conservative, i.e., the best
safety margin to use.

Our objective is to predict the tail usage, L, for a given
box by the mean and standard deviation of the tail distribution
it belongs to. As such, we can write

L = T + αST (1)

where T and ST denote the mean and standard deviation of tail
distribution where the box belongs to, and α is a safety margin
for the tail prediction based on the resource availability of the
tenant. For tenants with abundant resources, higher α values
allow to over-estimate the VM resources. This allows the use of
more spare resources from boxes without tail target violations
and a stronger tail target violation avoidance. For tenants with
scarce resources, lower α values allow for more conservative
estimates of the VM resources. This results in less requests
of spare capacity from boxes without tail target violations
protecting such boxes from potential tail target violations.
We first explain how to obtain the box tail distributions by
binning, and then extract the mean and standard deviation
of the tail distribution per bin, to finally derive the tenant-
resource-aware (TRA) tail prediction based on the properties
of tail distribution.

1) Finding the Tail Distribution: Here, we describe how
to bin boxes by their mean usages such that we can obtain T
and ST (of the tail distributions) as a function of their mean
usages. Figure 6 shows how binning tail usages from all boxes
by their mean usages can result into empirical distributions
that resemble the Normal distribution. We experiment with
different bin widths of mean usages, e.g., ±1%, ±2%, ±3%
(as used in Figure 6) or higher. Different bin widths result in
different number of samples in each bin. On the one hand our
objective is to find a bin width that is big enough to contain
a sufficient number of samples in each bin to be statistically
significant, such that the box tails in the majority of bins follow
a Normal distribution. On the other hand we want the bin
width to be small to have a stronger relationship between the
mean and tail usages. Specifically, we compute a pair (M,T)
for each box and for all tenants, where M represents the
mean usage and T is the tail usage, and we bin them by
their M values. From the data set considered in this work, we
empirically conclude that using a bin width of ±1% is already
sufficient such that all bins contain at least 30 tail samples [6],
and more than 90% of the bins follow a Normal distribution
as verified by the Kolmogorov-Smirnov test [7].

We then use the tail binning results to answer the following
question: can we find a compact representation to describe
the relationship among the bins, regarding to statistics of tail
usages. For each bin, we extract two sets of pairs: (i) (M,T)
– the average of M , namely bin mean, and average of T , and
(ii) (M,ST) – the average of M , and standard deviation of T .
We plot these two sets of pairs for all bins in Figure 9(a) and
(b), respectively. Visual inspection of Figure 9 indicates that
there exists a linear dependency between the bin mean and
the average tail usage across bins and a quadratic dependency
between the bin mean and the standard deviation of tails across
bins. Given T and ST for each bin mean M , we fit the two
curves using Eq. 2-3. Here a0 and a1 are the coefficients of the
linear fitting for T , whereas b0, b1, and b2 are the coefficients
of the quadratic fitting for ST .

T = f1(M) = a0 + a1(M) (2)
ST = f2(M) = b0 + b1(M) + b2(M)2 (3)

Substituting Eq. 2-3 into Eq. 1, one can thus obtain the
closed-form expression for the estimates of the tail usages as a
function of its mean usages. Essentially, to predict the CPU tail
usage for a box, we need to “learn” the fitting coefficients of
functions Eq. 2-3 from the empirical distributons of historical
data and then use simple last value prediction of M , as argued
in Section II-C. The final step is to decide the value of α in
Eq. 1, which is addressed in the next subsection in the light
of the overall resource availability of tenants.

2) TRA Tail Prediction: When considering Eq 1, the most
accurate prediction is achieved by setting α = 0, i.e., L = T ,
whereas higher values of α will tend to over-estimate L
providing increasing safety margins. As one of the ultimate
goals is to mitigate anomaly instances of tail usages ex-
ceeding the target value, we determine the α value for all
boxes belonging to the same tenant, based on the tenant’s
resource availability. Low-CPU-utilized tenants have abundant
resources for tail usage reductions, therefore conservatively

95

Bin Mean CPU Usage (%)
0 10 20 30 40 50 60

M
e

a
n

 o
f

F
itt

e
d

 N
o

rm
.

D
is

t.

0

10

20

30

40

50

60

70

80

90

100

T

Fitted Curve

Bin Mean CPU Usage (%)
0 10 20 30 40 50 60

S
T

D
 o

f
F

itt
e
d
 N

o
rm

.
D

is
t.

0

5

10

15

20

ST

Fitted Curve

(a) Fitting of T (b) Fitting of ST

Fig. 9: Fit mean and standard deviation of tail (95%ile)
distributions for different bins, using bin mean usages.

predicting tail usages (i.e., higher α safety margins), and
aggressively re-allocating resources reduce the tail usage below
the target value, but do no harm to the original boxes with no
tail target violations. High-CPU-utilized tenants have relatively
scarce resources, therefore aggressively predicting tail usages
(i.e., lower α safety margins), and conservatively re-allocating
resources result in less resource re-allocation for tail usage
reduction, but guarantee that the original boxes without tail
target violation remain in the ‘safe zone’.

The above illustration suggests that α should be customized
based on the CPU availability of tenants. We propose to
compute αi for tenant i by considering the target value TG
equal to the average tail usage obtained under an optimal case,
where all boxes of tenant i undergo perfect load balancing,
i.e., every box is equally utilized at the optimal mean value,
M∗

i . Basically, one can compute the maximum value of αi by
solving the following equation,

TG = f1(M
∗
i) + αif2(M

∗
i). (4)

where f1 and f2 represent the fitted functions of Eq. 2-3.

Additionally, we impose a lower bound on αi, i.e., αi ≥ 0,
to ensure that the tail prediction is at least equal to T . All in
all, the TRA tail prediction L̂j for box j belonging to tenant
i is

L̂j = f1(M̂j) + αif2(M̂j), (5)

where M̂j denotes the predicted mean usage for box j. Com-
paring the predicted tail, L̂j , with the target value indicates if
box j is expected to have a tail target violation or not.

B. VM Cloning

Here, we explain how TailGuard redistributes the box
CPU and RAM loads by VM cloning strategy, such that
the probability of boxes in each tenant with CPU tail target
violation is minimized. It consists of two steps: (i) proactively
create VM clones on boxes at the beginning of the optimization
horizon, e.g., one day ahead, and (ii) online monitor the
resource usage and reactively redistribute loads among original
and cloned VMs. The intention of additional VM clones is
to redirect the load from the original box host to the box
host of the cloned VM at the cost of duplicated memory
footprint. We redistribute incoming requests to the original
and cloned VMs via simple Domain Name Server (DNS) based
load balancing [8]. This scheme is simple and compatible with
a large set of applications.

1) Creating VM Clones: The TRA tail prediction provides
two key pieces of information for cloning VMs for each
tenant i: the predicted tail usage for each box j, L̂j , and
the optimal box mean usage under perfect load balancing,
M∗

i . Based on the comparison of the target value and the
predicted box tail usage, TailGuard decides which boxes need
to migrate some workloads through additional VM clones,
these boxes constitute the reduction set, and which boxes have
spare capacity to receive VM clones on top of their existing
VMs, so-called increasing set.

Creating VM clones: The VM configuration that can ben-
efit most from cloning is the one with large CPU usage and low
RAM usage, as cloning has the advantage of distributing CPU
load but at the cost of replicating memory usage. Consequently,
for each box in the reduction set, TailGuard ranks their VMs
(indexed by k) by the VM’s cloning benefit ratio, ρk, defined as
the mean VM CPU usage Ck divided by the mean VM RAM
usage Rk computed over all CPU AI points in the training
window W , e.g., W = 1 day, ρk = Ck

Rk
. The top ranked VMs

have heavy CPU loads but low memory footprints.

For each box in the reduction set of tenant i, starting from
the highest ranked VM, TailGuard clones VMs to reduce the
box mean CPU usage from its the latest value to M∗

i . We
aggressively assume that upon cloning of VM k, the box CPU
usage can be reduced by Ck, except for the last cloned VM
from this box. When cloning the last VM from box j, removing
all the CPU workloads on this VM may reduce the box CPU
mean usage to less than M∗

i . As a result, for the last VM to be
cloned, we only redistribute part of the CPU workload to the
cloned one, such that the mean CPU usage of box j is exactly
reduced to M∗

i . At each iteration we update the reduction set,
as soon as the resulting box mean usage is equal to M∗

i .

Placing VM clones: TailGuard ranks the boxes in the in-
creasing set of each tenant i by the amount of spare resources,
i.e., CPU and RAM, in a descending order with priority first
to CPU and then to RAM. The spare CPU is defined as the
difference between the current CPU usage and M∗

i , while spare
RAM refers to the difference between current RAM usage and
RAM target value. When placing the VM clones, TailGuard
starts from the top-ranked box regarding CPU and RAM spare
resources, as long as it has sufficient amount of spare resources
to cater to the demands of cloned VMs. Whenever the clone is
placed we update the spare resources and the box rank in the
increasing set. We terminate the cloning strategy when either
the reduction set or the increasing set exhausts.

2) Maintaining Safety Margins: We advocate the use of on-
line monitoring on allocating CPU loads across the original and
cloned VMs and terminating clones upon observing RAM vio-
lation, to control that cloning does not inadvertently introduce
more violations. The focus is to protect the performance of
boxes that receive VM clones. TailGuard monitors online the
CPU and RAM AIs for each box receiving VM clones. Upon
detecting a box CPU tail target violation, e.g., accumulating
more than 5 CPU excesses given a tail target metric of 95%ile
and 96 observation points per day, we reduce the workload
of the hosted cloned VMs proportionally to the intensity of
the past observed excesses. On the contrary, if a box RAM
violation is detected, we directly terminate the cloned VMs,
based on the RAM usage rank in a descending order, till RAM
usage is less than the RAM target value.

96

Fig. 10: Dynamic method for tail prediction and VM cloning.

We note that the online workload distribution scheme
proposed here can be implemented via DNS-based load bal-
ancing. When a user wants to send a request to a VM, it
has to first resolve the hostname to the IP address via a DNS
lookup. DNS-based load balancing allows to associate multiple
IP addresses to the same hostname so that different DNS
lookups for the same hostname return different IP addresses.
By updating the entries one can control the workload sent
to the original and cloned VM. Since most applications use
hostnames rather than IP addresses, DNS-based load balancing
is compatible with a large set of applications.

C. Putting All Together

Lastly, we illustrate how TailGuard puts the proposed
TRA tail prediction, and VM cloning strategy together. The
optimization period is one day and the training period of the
model is past W days. Past work [2] has shown that most
VM migrations in corporate data centers occur once a day
and around midnight. We propose implementation for VM
cloning to follow this same time frame. Figure 10 illustrates
the schematics of the proposed scheme. Particularly, TailGuard
uses historical data of W days to learn the tail distribution, and
derive the closed-form solution of tail estimates in Eq. 5. The
higher the value of W is, the longer the historical data used.
TailGuard then makes VM cloning decisions for the next day.
Prior to moving into the next optimization period, TailGuard
terminates all clones generated in the current period.

We experiment with prediction accuracy of the proposed
scheme with two different lengths of W . Specifically, we
present the CDF of absolute percentage errors to predict the
95%ile and 98%ile, using one and three days, see Figure 11.
As the focus here is to see the impact of the training window
length, we set all αi to 0. We can see that there is no obvious
difference in the CPU tail usage predictions between three-
day and one-day training. Thanks to large amount of tail
data collected from 6K boxes, one-day training already shows
robust prediction results. We leverage many box observations
(spatial observations), rather than long-historical observations
(temporal observations) for each box.

IV. EVALUATION

In this section, we evaluate TailGuard for mitigating per-
formance anomalies for 80 datacenter tenants, using more
than 1K boxes and 10K VMs. Our focus is on the following
metrics of interest: (1) reduced CPU tail target violations for
boxes, (2) reduced CPU anomaly instances, and (3) reduced
anomaly durations. Since accurate tail prediction is central to
the effectiveness of the proposed strategy, we also compare
the tail prediction accuracy presented in Section III with the

Absolute PCT Error (%)
0 10 20 30 40 50 60 70 80 90100

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Wind = 1 Day, Mean:26
Wind = 3 Days, Mean:28

Absolute PCT Error (%)
0 10 20 30 40 50 60 70 80 90100

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Wind = 1 Day, Mean:26
Wind = 3 Days, Mean:26

(a) 95%ile (b) 98%ile

Fig. 11: CDF of box CPU tail usage prediction error for
different training window sizes.

time series prediction based on neural networks that have been
shown very effective on the same trace [9]. In the following, we
first sketch the simulator design and present the effectiveness
of the proposed methodology in reducing (continuous) AIs.
We then highlight how two parts of TailGuard, i.e., the tail
prediction scheme and VM cloning, outperform alternative
approaches, i.e., time series prediction and VM migration.

A. Experimental Set Up

Simulator: We develop a trace-driven simulator that emu-
lates the system dynamics. The input data of the simulator are
CPU and RAM usages from VMs and boxes of 80 selected
tenants. The simulator computes the box CPU/RAM usages
as the sum of the hosted VM CPU/RAM usage plus the
original box-only usage. When cloning a VM, its CPU usage
is predicted and apportioned as described in Section III. For
RAM usage of each cloned VM, we use directly the VM value
from the trace as we assume that RAM is replicated. For all
statistics related to RAM usage we use the last value from
historical data as prediction since the traces show that RAM
usage for both boxes and VMs is stable across time.

Targets: Here, we consider the target usage values for box
CPU and RAM for triggering tickets for anomaly instances
at 60% and 80%, respectively. We experiment different tail
usages, such that different tolerances of CPU anomaly in-
stances are evaluated. This is customized to different system
requirements. The specific CPU tail usages evaluated here are
the 90th, 95th, and 98th percentiles. In the following, we focus
on presenting the reduction of CPU tail target violation per
tenant, as well as the reduction in the number of CPU AIs.

B. Big Picture

We first present an overview how TailGuard reduces tail
target violations for the box CPU of the 80 tenants, see
Figure 12. The usage tail considered here is 95%ile. Each point
in Figure 12 represents a tenant, whose reduction of tail target
violations is shown on the y-axis, while the average CPU usage
is depicted on the x-axis. The number of boxes of each tenant
is represented by the size of the bubble. A lower value on
the x-axis shows higher spare resource availability. The figure
clearly shows that for bigger tenants and for tenants that have
higher spare capacity, the reduction is significantly higher due
to the higher degrees of freedom in VM redistributing.

97

Overall Tenant CPU Usage (%)
0 10 20 30 40 50 60

T
a

il
T

a
rg

e
t

V
io

la
tio

n
 R

e
d

u
ct

io
n

 (
%

)

-20

0

20

40

60

80

100

Fig. 12: Reduction of CPU tail target violations for all tested
tenants: the tail is set as 95%ile.

C. Effectiveness of Tenant-Resource-Aware Tail Prediction

Here, we present how the proposed TailGuard can ac-
curately capture the box CPU tail dynamics and effectively
reduce the tail target violation when driving the VM cloning.
We compare three variations for tail estimation with a neural
network based time series prediction (NN) [9] that accurately
forecasts the entire trajectories of usages in the trace. In order
to build NN prediction models, we first need to use historical
data to train the model. We use the trace data that correspond
to the past three days, which is sufficiently long to capture the
time dependency within the series. We use the tail estimation
scheme proposed in Section III, i.e., L = T + αSt with
different values of α:

• α = 0, across all tenants, neutral prediction (NP), i.e., the
mean of the tail distribution is used as the predicted tail;

• α = 2, across all tenants, conservative prediction (CP), i.e.,
the predicted tail is the mean plus two standard deviations
which corresponds to the 97.5th percentile of the Normal
distribution ;

• αi, for tenant i, the proposed tenant-resource-aware tail
prediction (TRA).

Prediction Accuracy: Figure 13(a) and (b) summarize the
CDF of absolute and raw percentage of prediction errors for the
box CPU tail for the three tested days. The two key findings
are: (i) the proposed tail estimation scheme (of α = 0) is
almost as accurate as the time-consuming NN approach, and
(ii) the proposed TRA overestimates the CPU tail, but is still
less conservative than CP.

The lowest prediction errors are achieved by NN with av-
erage value of around 20%, but neural networks are computa-
tionally expensive and require long historical data for training.
Given shorter training data and much lower computational
complexity, NP can achieve very similar absolute prediction
errors as NN. When looking to the distribution of raw errors,
NP tends to overestimate the box CPU tails as more than 60%
of errors are positive. In contrast, NN tends to underestimate the
box CPU tail, since more than 70% of errors are negative. TRA
and CP have significant higher absolute and raw errors, due
to their conservativeness in estimation. In terms of raw errors,
only 15% of prediction errors from TRA are negative. As the
ultimate objective is to enable efficient resource management,

Absolute PCT Error (%)
0 50 100 150 200

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NN
NP
CP
TRA

PCT Error (%)
-100 -50 0 50 100 150 200

C
u

m
u

l.
F

ra
ct

io
n

 o
f

B
o

xe
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NN
NP
CP
TRA

(a) Absolute PCT Error (%) (b) PCT Error (%)

Fig. 13: CDF of CPU tail prediction errors using different
methods: the tail is set as 95%ile.

conservative prediction tends to resource over-provisioning,
which is more desirable than under-provisioning, which leads
to high risk for performance anomalies.

Reduction of Tail Target Violation: To see the impact
of the tail prediction schemes and to evaluate the proposed
TRA, we use the three tail prediction schemes to drive VM
cloning. Figure 14 summarizes the reduction of CPU tail
target violations for each tenant, for different considered tail
percentiles and prediction schemes. Each box in Figure 14
presents the distribution of tenants’ reduction of CPU tail target
violation, for different tail percentiles. Each rectangular box
contains three horizontal lines that correspond to the 25th, 50th
and 75th percentiles, the circles show the mean. The whiskers
show the extreme values in the distribution. We can see that
the proposed TRA achieves the highest average reduction per
tenant (shown by higher positions of circles), for all three tail
percentiles. Specifically, the average reduction of CPU tail tar-
get violation under the TRA prediction scheme is around 50%,
whereas CP and NP can only achieve average tail reduction
per tenant at around 30%− 40%. For all three tail prediction
methods, the increase in number of RAM AIs is negligible,
with all less than 3%. Another finding worth mentioning is
that, when increasing the tail percentiles, i.e., from 90%ile to
98%ile, the reduction drops slightly for all prediction schemes.
This is because a more stringent performance requirement
is applied, allowing only very few AIs, and the potential of
reducing violation by redistributing the loads across boxes
becomes lower. This also leads to the explanation why CP
outperforms NP in case of 90%ile, but NP results into better
reduction in the case of 95%ile and 98%ile.

To highlight the impact of different prediction schemes on
mitigating tail target violations, we zoom into the performance
of two tenants. One of the tenants has a lower CPU utilization,
meaning high resource availability, whereas the other tenant
has a higher CPU utilization. We list their reduction of CPU
tail target violation in Table I. CP is able to remove all
tail target violations for the tenant with a higher resource
availability but performs poorly for the second tenant. NP has
the opposite performance for these two tenants, arguing for
the need of a prediction scheme that can self-adapt to the
resource availability. This is what TRA consistently does: tail
prediction enables VM cloning to achieve the highest amount
of reduction for both tenants, as it uses different αi values
for box tail predictions, based on the resource availability of
different tenants.

98

90%ile 95%ile 98%ileR
e

d
u
ct

io
n

 in
 C

P
U

 T
a

il
T

a
rg

e
t

V
io

la
tio

n
 (

%
)

-40

-20

0

20

40

60

80

100

CP
NP
TRA

Fig. 14: Comprison of CPU tail target violation reduction: CP
v.s. NP v.s. TRA.

TABLE I: CPU tail target violation reduction: a case study
comparing CP, NP and TRA with the tail set as 95%ile.

Tenant with higher resource availability Tenant with lower resource availability
(mean CPU usage = 12%) (mean CPU usage = 42%)

CP 100 16.7
NP 75.0 50
TRA 100 50

D. Effectiveness of VM Cloning

Here, we highlight how TailGuard can reduce CPU tail
target violation and AIs by VM clonning strategy, with neg-
ligible impact on the RAM violations. We compare the VM
cloning with an alternative of VM migration only strategy,
which migrates VMs from boxes to boxes, without replicating
the memory. For a fair comparison, we provide the box tail
prediction obtained from the TRA prediction scheme to both
strategies. As both strategies aim to redistribute the box work-
loads, we use the same criteria to determine how many VMs
to be moved out of certain boxes and how many additional
VMs to be allocated to certain boxes, see Section III-B.

CPU Tail Target Violation: Figure 15 summarizes the
distribution of the reduction of CPU tail target violations per
tenant, when applying VM cloning and migration on different
tail percentiles. One can see that VM cloning is able to achieve
a slightly higher reduction of tail target violations for CPU
by roughly 10%, shown by the difference of mean values.
Moreover, with VM cloning, the range of reduction of tail
target violations for CPU across all tenants is much smaller,
supported by the shorter box. In addition, cloning guarantees
tail reduction while migration does not necessarily do so, see
the whiskers in the respective boxes. Indeed, when the tail
percentile is set to 98%ile, namely allowing only 2 CPU AIs
for the entire day, VM migration can result into undesirable
scenarios, i.e., certain tenants may experience a tremendous
increment of CPU tail target violation as shown by the negative
values of reduction, while VM cloning can ensure a more
consistent reduction in CPU tail target violations, and prevent
the aggravation of CPU tail target violation by online usage
monitoring and workload management.

Another advantage worth mentioning is that VM cloning
ensures RAM performance, compared to VM migration. Our
simulation results show that VM migration indeed results into
significant increment of number of RAM AIs, with roughly

90%ile 95%ile 98%ileR
e

d
u
ct

io
n

 in
 C

P
U

 T
a

il
T

a
rg

e
t

V
io

la
tio

n
 (

%
)

-40

-20

0

20

40

60

80

100

VM Cloning
VM Migration

Fig. 15: Comparison of CPU tail target violation reduction:
VM cloning v.s. VM migration.

Reduction in Number of CPU AI (%)
-60 -40 -20 0 20 40 60 80 100

C
u
m

u
l.

F
ra

ct
io

n
 o

f
T

e
n
a
n
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VM Cloning, Mean Reduction:57
VM Migration, Mean Reduction:43

Mean Duration of CPU AI (* 15 min)
0 5 10 15 20 25C

o
m

p
.
C

u
m

u
l.

F
ra

c.
 o

f
T

e
n
a
n
ts

10-2

10-1

100

Original
VM Cloning
VM Migration

(a) Reduction in CPU AI (%) (b) Duration of CPU AI

Fig. 16: Comparison of CPU AI for each tenant between VM
cloning and VM migration: the tail is set as 95%ile.

50% increment for each tenant on average. On the contrary, the
proposed VM cloning strategy is able to bound the increment
of RAM usage violation within 3%. This is thanks to the online
usage monitoring and workload management, which is able to
terminate clones upon detecting any RAM violation.

Occurrences and Duration of CPU AIs: Now, we present
the difference between VM cloning and VM migration from
the perspective of number of CPU AIs and their duration.
Figure 16(a) and (b) present the CDF of average reduction
in number of CPU AIs and the complementary CDF (CCDF)
of average duration of CPU AIs per tenant, respectively. We
could see that VM cloning can achieve a mean reduction of
57% in number of CPU AIs per tenant, while VM migration
only reduces CPU AIs per tenant by around 43%. Moreover,
similar to the case of reduction in CPU tail target violation,
VM cloning guarantees almost no increment in the number
of CPU AIs. However, there are 20% of tenants with an
increased number of CPU AIs after VM migration. In terms of
duration of CPU AIs summarized as CCDF in Figure 16(b),
VM cloning can bound the duration of continuous CPU AIs
below 2 time windows, whereas VM migration still results in
6 time windows of continuous CPU AIs in the worst case. We
note that in the original testing trace, there are some tenants
suffering from long-term continuous CPU AIs, as long as 25
time windows, i.e., CPU usage exceeds the target value of 60%
for more than 6 hours.

99

V. RELATED WORK

Performance anomaly detection has been the subject of
many workload characterization studies in recent years to
improve system reliability by better understanding the reasons
behind system failures and/or bugs [2], [10], [11], [12]. These
studies focus on statistical analysis of trace data ranging
from production data centers to large-scale storage systems.
Online performance anomaly detection methods have been
proposed [13], [14], [15] in order to detect anomalies in
the upcoming future using online behavior analysis via either
statistical methods or machine learning techniques. An online
performance anomaly prevention method for cloud computing
is proposed in [16], which integrates online anomaly predic-
tion, learning-based cause inference, with predictive prevention
actuation. The spatial-temporal dependencies in usage time-
series are explored in [4] for VM resizing, with an objective
to reduce all VM performance tickets in data centers, i.e., all
usages need to be below the target. In contrast, TailGuard
focuses on avoiding box tail violations and makes a conscious
tradeoff between resource requirement and anomaly avoidance,
based only on the last values of usages collected from a vast
number of boxes.

VM migration on a cluster of physical servers has long
been proposed to mitigate performance anomalies via load
balancing [17]. The main questions are determining when and
how to migrate VMs, aiming to optimize resource usage (e.g.,
network bandwidth [18]) and performance measures, including
non-traditional ones such as energy consumption [19]. Dy-
namic VM migration is an attractive solution to constantly
fluctuating user workloads in data center. Several migration
algorithms have been proposed including best-effort online
VM migration [20], [21] as well as several performance
models of online VM migration [22]. Yet, migration overhead
cannot be disregarded [23], especially in systems where service
availability and responsiveness are under Service Level Agree-
ments (SLAs). Different from VM migration, in this paper,
TailGuard makes use of VM cloning to handle excess load,
opportunistic job placement, and parallel processing [24]. VM
cloning enables VM management that is more flexible and of
finer-granularity control than VM migration.

VI. CONCLUSION

In this paper, we develop TailGuard, a tail-driven anomaly
avoidance policy, which can effectively reduce continuous
AIs for box CPU and avoid over-reacting to the spontaneous
single AI. The design of TailGuard is based on a large-scale
characterization study of production data centers. TailGuard
is composed of two novel steps: a light-weight tail usage
predictor simply leveraging the power of the vast amount of
usage data across boxes, and a VM cloning strategy com-
bining the advantage of migrating VMs and balancing the
loads between clones. Moreover, we incorporate the concept
of resource availability per tenant into the tail prediction,
such that TailGuard is able to adjust the conservativeness of
prediction based on the flexibility of redistributing CPU loads.
The extensive evaluation results on 80 tenants over 1K boxes
over 3 days show that TailGuard is able to accurately predict
the box tail usage, with an accuracy comparable to the neural
network based time series prediction. More importantly, while
TailGuard purposely allows a small fraction of AIs to avoid

excessive resource provisioning, TailGuard can still achieve a
significant reduction in CPU AIs and drastically reduce the
anomaly duration by 10 times.

ACKNOWLEDGMENT

The research presented in this paper has been supported
by NSF grant CCF-1218758, EU commission FP7 GENiC
project (Grant Agreement No.608826), and the Swiss National
Science Foundation (project 200021 141002, 200020 169089,
and 407540 167266).

REFERENCES

[1] I. Giurgiu, J. Bogojeska et al., “Analysis of Labor Efforts and their
Impact Factors to Solve Server Incidents in Datacenters,” in CCGrid,
2014.

[2] R. Birke, I. Giurgiu et al., “Failure analysis of virtual and physical
machines: patterns, causes and characteristics,” in DSN, 2014.

[3] I. Giurgiu, A. Almasi et al., “Do you know how to configure your
enterprise relational database to reduce incidents?” in IM, 2015.

[4] J. Xue, R. Birke et al., “Managing data center tickets: Prediction and
active sizing,” in DSN, 2016.

[5] R. Birke, A. Podzimek et al., “State-of-the-practice in data center
virtualization: Toward a better understanding of VM usage,” in DSN,
2013.

[6] R. Peck, C. Olsen et al., Introduction to statistics and data analysis.
Cengage Learning, 2015.

[7] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253, 1951.

[8] P. Membrey, E. Plugge et al., Practical Load Balancing. Apress, 2012.
[9] J. Xue, F. Yan et al., “Practise: Robust prediction of data center time

series,” in CNSM, 2015.
[10] A. Rosa, L. Y. Chen et al., “Understanding the dark side of big data

clusters: an analysis beyond failures,” in DSN, 2015.
[11] E. Chuah, A. Jhumka et al., “Linking resource usage anomalies with

system failures from cluster log data,” in SRDS, 2013.
[12] B. Schroeder, R. Lagisetty et al., “Flash reliability in production: The

expected and the unexpected,” in FAST, 2016.
[13] J. A. Cid-Fuentes, C. Szabo et al., “Online behavior identification in

distributed systems,” in SRDS, 2015.
[14] L. Cherkasova, K. Ozonat et al., “Anomaly? application change? or

workload change? towards automated detection of application perfor-
mance anomaly and change,” in DSN, 2008.

[15] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures,” in SRDS, 2013.

[16] Y. Tan, H. Nguyen et al., “Prepare: Predictive performance anomaly
prevention for virtualized cloud systems,” in ICDCS, 2012.

[17] H. W. Choi, H. Kwak et al., “Autonomous learning for efficient resource
utilization of dynamic vm migration,” in ICS, 2008.

[18] A. Surie, H. A. Lagar-Cavilla et al., “Low-bandwidth vm migration via
opportunistic replay,” in HotMobile, 2008.

[19] C. Ghribi, M. Hadji et al., “Energy efficient vm scheduling for cloud
data centers: Exact allocation and migration algorithms,” in CCGrid,
2013.

[20] H. Liu, H. Jin et al., “Live migration of virtual machine based on full
system trace and replay,” in HPDC, 2009.

[21] J. W. Jiang, T. Lan et al., “Joint vm placement and routing for data
center traffic engineering,” in INFOCOM, 2012.

[22] H. Liu, H. Jin et al., “Performance and energy modeling for live
migration of virtual machines,” Cluster computing, vol. 16, no. 2, 2013.

[23] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in MMSys, 2010.

[24] H. A. Lagar-Cavilla, J. A. Whitney et al., “Snowflock: rapid virtual
machine cloning for cloud computing,” in Eurosys, 2009.

100

