
A Survey of Online Failure Prediction Methods

FELIX SALFNER, MAREN LENK, and MIROSLAW MALEK

Humboldt-Universität zu Berlin

With ever-growing complexity and dynamicity of computer systems, proactive fault management

is an effective approach to enhancing availability. Online failure prediction is the key to such
techniques. In contrast to classical reliability methods, online failure prediction is based on runtime

monitoring and a variety of models and methods that use the current state of a system and,

frequently, the past experience as well. This survey describes these methods. To capture the wide
spectrum of approaches concerning this area, a taxonomy has been developed, whose different

approaches are explained and major concepts are described in detail.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Reliability, availability,

and serviceability; Fault tolerance; D.2.5 [Testing and Debugging]: Error handling and recovery

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Error, failure prediction, fault, prediction metrics, runtime

monitoring

1. INTRODUCTION

Predicting the future has fascinated people from the beginning of times. Several
millions of people work on prediction daily: astrologers, meteorologists, politicians,
pollsters, stock analysts and doctors as well as computer scientists and engineers. As
computer scientists we focus on the prediction of computer system failures, a topic
that has attracted interest for more than 30 years. However, what is understood
by the term “failure prediction” varies among research communities and has also
changed over the decades.

As computer systems are growing more and more complex, they are also chang-
ing dynamically due to the mobility of devices, changing execution environments,
frequent updates and upgrades, online repairs, the addition and removal of system
components and the systems/networks complexity itself. Classical reliability the-
ory and conventional methods do rarely consider the actual state of a system and
are therefore not capable to reflect the dynamics of runtime systems and failure
processes. Such methods are typically useful in design for long term or average
behavior predictions and comparative analysis.

The motto of research on online failure prediction techniques can be well ex-
pressed by the words of the Greek poet C. P. Cavafy, who said [Cavafy 1992]:

This research was supported in part by Intel Corporation and by German Research Foundation.
Authors’ address: Department of Computer Science, Humboldt-Universität zu Berlin, Unter den

Linden 6, 10099 Berlin, Germany; email:{salfner,lenk,malek}@informatik.hu-berlin.de.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–68.

2 · Felix Salfner et al.

“Ordinary mortals know what’s happening now, the gods know what
the future holds because they alone are totally enlightened. Wise men
are aware of future things just about to happen.”

For ordinary mortals, predicting the near term future is more clever and frequently
more successful than attempting long term predictions. Short term predictions are
especially helpful to prevent potential disasters or to limit the damage caused by
computer system failures. Allowing for the dynamic properties of modern computer
systems online failure prediction incorporates measurements of actual system pa-
rameters during runtime in order to assess the probability of failure occurrence in
the near future in terms of seconds or minutes.

1.1 Focus of this Survey

In computer science, prediction methods are used in various areas. For example,
branch prediction in microprocessors tries to prefetch instructions that are most
likely to be executed, or memory or cache prediction tries to forecast what data
might be required next. Limiting the scope to failures, there are several areas
where the term prediction is used. For example, in reliability theory, the goal
of reliability prediction the goal is to assess future reliability of a system from its
design or specification. The book [Lyu 1996], and especially the chapters [Farr 1996]
and [Brocklehurst and Littlewood 1996], provide a good overview, while the books
[Musa et al. 1987; Blischke and Murthy 2000] cover the topic comprehensively.
Denson [1998] gives an overview of reliability prediction techniques for electronic
devices. However,

the topic of this survey is to identify during runtime whether a failure
will occur in the near future based on an assessment of the monitored
current system state. Such type of failure prediction is called online
failure prediction.

Although architectural properties such as interdependencies play a crucial role in
some prediction methods, online failure prediction is concerned with a short-term
assessment that allows to decide, whether there will be a failure, e.g., five minutes
ahead or not. Prediction of systems reliability, however, is concerned with long-term
predictions based on, e.g., failure rates, architectural properties, or the number of
bugs that have been fixed.

Online failure prediction is frequently confused with root cause analysis. Having
observed some misbehavior in a running system, root cause analysis tries to identify
the fault that caused it, while failure prediction tries to assess the risk that the
misbehavior will result in future failure (see Figure 1). For example, if it is observed

Fig. 1. Distinction between root cause analysis and failure prediction.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 3

Fig. 2. The steps involved in proactive fault management. After prediction of an upcoming failure,

diagnosis might be required in order to find the fault that causes the upcoming failure. Failure
prediction and/or diagnosis results are used to decide upon which proactive method to apply and

to schedule their execution.

that a database is not available, root cause analysis tries to identify what the reason
for unavailability is: a broken network connection, or a changed configuration, etc.
Failure prediction on the other hand tries to assess whether this situation bears
the risk that the system cannot deliver its expected service, which may depend on
system characteristics, failure prediction model and the current situation: is there
a backup database or some other fault tolerance mechanism available? What is the
current load of the system? This survey focuses on failure prediction only.

1.2 The Big Picture: Proactive Fault Management

When both industry and academia realized that traditional fault tolerance mech-
anisms could not keep pace with the growing complexity, dynamics and flexibility
of new computing architectures and paradigms, they set off the search for new
concepts as can be seen from initiatives and research efforts on autonomic comput-
ing [Horn 2001], trustworthy computing [Mundie et al. 2002], adaptive enterprise
[Coleman and Thompson 2005], recovery-oriented computing [Brown and Patter-
son 2001], and various conferences on self-*properties where the asterisk can be
replaced by any of “configuration”, “healing”, “optimization”, or “protection” (see,
e.g., [Babaoglu et al. 2005]). Most of these terms span a variety of research areas
ranging from adaptive storage to advanced security concepts. One of these areas is
concerned with the task how computer systems can proactively handle failures: if
the system knows about a critical situation in advance, it can try to apply coun-
termeasures in order to prevent the occurrence of a failure, or it can prepare repair
mechanisms for the upcoming failure in order to reduce time-to-repair. In analogy
to the term “fault tolerance”, we use proactive fault management as an umbrella
term for these techniques.

Proactive fault management consists basically of four steps (see Figure 2):

(1) In order to identify failure-prone situations, i.e. situations that will probably
evolve into a failure, online failure prediction has to be performed. The output
of online failure prediction can either be a binary decision or some continuous
measure judging the current situation as more or less failure-prone.

(2) Even though techniques such as checkpointing can be triggered directly by a
binary failure prediction algorithm, further diagnosis is required in many other
cases. The objective is, dependent on the countermeasures that are available
in the system, to find out where the error is located (e.g., at which component)
or what the underlying fault is. Note that in contrast to traditional diagnosis,
in proactive fault management diagnosis is invoked by failure prediction, i.e.,

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Felix Salfner et al.

when the failure is imminent but has not yet occurred.

(3) Based on both the outcome of online failure prediction and/or diagnosis, a
decision needs to be made which of the actions, i.e., countermeasures, should
be applied and when it should be executed in order to remedy the problem.
This step is termed action scheduling. These decisions are based on an objective
function taking cost of actions, confidence in the prediction, effectiveness and
complexity of actions into account in order to determine the optimal trade-off.
For example, in order to trigger a rather costly technique the scheduler should
be almost sure about an upcoming failure, whereas for a less expensive action
less confidence in the correctness of failure prediction is required. Candea et al.
[2004] have examined this relationship quantitatively. They showed that short
restart times (microreboots) allow for a higher false positive rate in comparison
to slower restarts (process restarts).1 Many emerging concepts such as the
policies used in IBM’s autonomic manager relate to action scheduling, as well.

(4) The last step in proactive fault management is the actual execution of actions.
Challenges for action execution include online reconfiguration of globally dis-
tributed systems, data synchronization of distributed data centers, and many
more.

In summary, accurate online failure prediction is only the prerequisite in the chain
and each of the remaining three steps constitutes a whole field of research on its
own. Not devaluing the efforts that have been made in the other fields, this survey
provides an overview of online failure prediction.

In order to build a proactive fault management solution that is able to boost
system dependability by up to an order of magnitude, the best techniques from all
four fields for the given surrounding conditions have to be combined. However, this
requires comparability of approaches which can only be achieved if two conditions
are met:

—a set of standard quality evaluation metrics is available

—publicly available reference data sets can be accessed.

Regarding reference data sets, a first initiative has been started in 2006 by Carnegie
Mellon University called the Computer Failure Data Repository (http://cfdr.
usenix.org) that publicly provides detailed failure data from a variety of large
production systems such as high performance clusters at the Lawrence Livermore
National Laboratory.

Regarding standard metrics, this survey provides the first step by presenting and
discussing major metrics for the evaluation of online failure prediction approaches.

1.3 Outline

This article is a survey on failure prediction methods that have been used to pre-
dict failures of computer systems online, i.e., based on the current system state.
Starting from a definition of the basic terms such as errors, failures and lead time

1Although in the paper by Candea et al. [2004] false positives relate to falsely suspecting a com-

ponent to be at fault, similar relationships should hold for failure predictions, too.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 5

(Section 2), established metrics to investigate the quality of failure prediction al-
gorithms are reviewed in Section 3. In order to structure the wide spectrum of
methods, a taxonomy is introduced in Section 4 and almost fifty online failure pre-
diction approaches are surveyed in Section 5. A comprehensive list of all failure
prediction methods together with demonstrated and potential applications is pro-
vided in the summary and conclusions (Section 6). In order to give further insight
into online failure prediction approaches, selected representative methods are dis-
cribed in greater detail in the appendix: In Appendix A a table of the selected
methods is provided and the techniques are discussed in Appendices B-K.

2. DEFINITIONS

The aim of online failure prediction is to predict the occurrence of failures during
runtime based on the current system state. The following sections provide more
precise definitions of the terms used throughout this article.

2.1 Faults, Errors, Symptoms, and Failures

Several attempts have been made to get to a precise definition of faults, errors,
and failures, among which are [Melliar-Smith and Randell 1977; Aviz̆ienis and
Laprie 1986; Laprie and Kanoun 1996; IEC: International Technical Comission
2002], [Siewiorek and Swarz 1998, Page 22], and most recently [Avižienis et al.
2004]. Since the latter seems to have broad acceptance, its definitions are used in
this article with some additional extensions and interpretations.

—A failure is defined as “an event that occurs when the delivered service deviates
from correct service”. The main point here is that a failure refers to misbehav-
ior that can be observed by the user, which can either be a human or another
computer system. Things may go wrong inside the system, but as long as it does
not result in incorrect output (including the case that there is no output at all)
there is no failure.

—The situation when “things go wrong” in the system can be formalized as the
situation when the system’s state deviates from the correct state, which is called
an error. Hence, “an error is the part of the total state of the system that may
lead to its subsequent service failure.”

—Finally, faults are the adjudged or hypothesized cause of an error – the root cause
of an error. In most cases, faults remain dormant for some time and once they
become active, they cause an incorrect system state, which is an error. That
is why errors are also called “manifestation” of faults. Several classifications of
faults have been proposed in the literature among which the distinction between
transient, intermittent and permanent faults [Siewiorek and Swarz 1998, Page 22]
is best known.

—The definition of an error implies that the activation of a fault lead to an incorrect
state, however, this does not necessarily mean that the system knows about it. In
addition to the definitions given by [Avižienis et al. 2004], we distinguish between
undetected errors and detected errors: An error remains undetected until an error
detector identifies the incorrect state.

—Besides causing a failure, undetected or detected errors may cause out-of-norm
behavior of system parameters as a side-effect. We call this out-of-norm be-

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Felix Salfner et al.

Fig. 3. Interrelations of faults, errors, symptoms, and failures. Encapsulating boxes show the
technique by which the corresponding flaw can be made visible.

havior a symptom.2 In the context of software aging, symptoms are similar to
aging-related errors, as implicitly introduced in [Grottke and Trivedi 2007] and
explicitely named in [Grottke et al. 2008].

Figure 3 visualizes how a fault can evolve into a failure. Note that there can be
an m-to-n mapping between faults, errors, symptoms, and failures: For example,
several faults may result in one single error or one fault may result in several errors.
The same holds for errors and failures: Some errors result in a failure some errors
do not, and more complicated, some errors only result in a failure under special
conditions. As is also indicated in the figure, an undetected error may cause a
failure directly or might even be non-distinguishable from it. Furthermore, errors
do not necessarily show symptoms.

To further clarify the terms fault, error, symptom, and failure, consider a fault-
tolerant system with a memory leak in its software. The fault is, e.g., a missing
free statement in the source code. However, as long as this part of the software
is never executed, the fault remains dormant. Once the piece of code that should
free memory is executed, the software enters an incorrect state, i.e., it turns into
an error (memory is consumed and never freed although it is not needed anymore).
If the amount of unnecessarily allocated memory is sufficiently small, this incorrect
state will neither be detected nor will it prevent the system from delivering its
intended service (no failure is observable from the outside). Nevertheless, if the
piece of code with the memory leak is executed many times, the amount of free
memory will slowly decrease in the long run. This out-of-norm behavior of the
system parameter “free memory” is a symptom of the error. At some point in time,
there might not be enough memory for some memory allocation and the error is
detected. However, if it is a fault-tolerant system, the failed memory allocation
still does not necessarily lead to a service failure. For example, the operation might
be completed by some spare unit. Only if the entire system, as observed from the

2This should not be confused with Iyer et al. [1986], who use the term symptom for the most

significant errors within an error group

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 7

outside, cannot deliver its service correctly, a failure occurs.

2.2 Online Prediction

The task of online prediction is visualized in Figure 4: At present time t, the

Fig. 4. Time relations in online failure prediction. Present time is denoted by t. Failures are
predicted with lead-time ∆tl, which must be greater than minimal warning-time ∆tw. A prediction

is assumed to be valid for some time period, named prediction-period, ∆tp. In order to perform

the prediction, some data up to a time horizon of ∆td are used. ∆td is called data window size.

potential occurrence of a failure is to be predicted some time ahead (lead-time ∆tl)
based on the current system state, which is assessed by system monitoring within
a data window of length ∆td. The prediction is valid for some time interval ∆tp,
which is called the prediction period. Increasing ∆tp increases the probability that a
failure is predicted correctly.3 On the other hand, if ∆tp is too large, the prediction
is of little use since it is not clear when exactly the failure will occur. Since failure
prediction does not make sense if the lead-time is larger than the time the system
needs to react in order to avoid a failure or to prepare for it, Figure 4 introduces
the minimal warning time ∆tw. If lead-time were shorter than the warning time,
there would not be enough time to perform any preparatory or preventive actions.

3. EVALUATION METRICS

In order to investigate the quality of failure prediction algorithms and to compare
their potential it is necessary to specify metrics (figures of merit). It is the goal
of failure prediction to predict failures accurately: covering as many failures as
possible while at the same time generating as few false alarms as possible. A perfect
failure prediction would achieve a one-to-one matching between predicted and true
failures. This section will introduce several established metrics for the goodness of
fit of prediction. Some other metrics have been proposed, e.g., the kappa statistic
[Altman 1991, Page 404], but they are rarely used by the community. A more
detailed discussion and analysis of evaluation metrics for online failure prediction
can be found in [Salfner 2008, Chapter 8.2].

Table I defines four cases: A failure prediction is a true positive if a failure occurs
within the prediction period and a failure warning is raised. If no failure occurs
and a warning is given, the prediction is a false positive. If the algorithm misses to
predict a true failure, it is a false negative. If no true failure occurs and no failure
warning is raised, the prediction is a true negative.

3For ∆tp →∞, simply predicting that a failure will occur would always be 100% correct!

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Felix Salfner et al.

Table I. Contingency table. Any failure prediction belongs to one out of four cases: if the

prediction algorithm decides in favor of an upcoming failure, which is called a positive, it results
in raising a failure warning. This decision can be right or wrong. If in reality a failure is imminent,

the prediction is a true positive. If not, a false positive. Analogously, in case the prediction decides

that the system is running well (a negative prediction) this prediction may be right (true negative)
or wrong (false negative)

True Failure True Non-failure Sum

Prediction: Failure true positive (TP) false positive (FP) positives

(failure warning) (correct warning) (false warning) (POS)

Prediction: No failure false negative (FN) true negative (TN) negatives

(no failure warning) (missing warning) (correctly no warning) (NEG)

Sum failures (F) non-failures (NF) total (N)

3.1 Contingency Table Metrics

The metrics presented here are based on the contingency table (see Table I) and
therefore called “contingency table metrics”. They are often used in pairs such
as precision/recall, true positive rate/false positive rate, sensitivity/specificity and
positive predictive value/negative predictive value. Table II provides an overview.

In various research areas, different names have been established for the same
metrics. Hence the leftmost column indicates which terms are used in this paper,
and the rightmost column lists additional names.

Precision is defined as the ratio of correctly identified failures to the number of
all predicted failures.

precision =
TP

TP + FP
(1)

Recall is the ratio of correctly predicted failures to the number of true failures.

recall =
TP

TP + FN
(2)

Consider the following example for clarification: A prediction algorithm that
achieves precision of 0.8, generates correct failure warnings (referring to true fail-
ures) with a probability of 0.8 and false positives with a probability of 0.2. A recall
of 0.9 expresses that 90% of all true failures are predicted and 10% are missed.

In [Weiss 1999], variants of precision and recall have been introduced that ac-
counts for multiple predictions of the same failure and of bursts of false positive
predictions.

Improving precision, i.e., reducing the number of false positives, often results in
worse recall, i.e., increasing the number of false negatives, at the same time. To
integrate the trade-off between precision and recall the F-Measure was introduced
by van Rijsbergen [1979, Chapter 7] as the harmonic mean of precision and recall.
Assuming equal weighting of precision and recall, the resulting formula is

F−measure =
2 · precision · recall

precision + recall
∈ [0, 1] (3)

The higher the quality of the predictor, the higher the F-measure. If precision and
recall both approach zero, the limit of the F-measure is also zero.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 9

Table II. Metrics obtained from contingency table (c.f., Table I). Different names for the same

metrics have been used in various research areas, as listed in the rightmost column.

Name of the metric Formula Other names

Precision TP
TP+FP

= TP
POS

Confidence

Positive predictive value

Recall

True positive rate
TP

TP+FN
= TP

F

Support

Sensitivity

Statistical power

False positive rate FP
FP+TN

= FP
NF Fall-out

Specificity TN
TN+FP

= TN
NF True negative rate

False negative rate FN
TP+FN

= FN
F 1 - recall

Negative predictive value TN
TN+FN

= TN
NEG

False positive error rate FP
FP+TP

= FP
POS 1 - precision

Accuracy TP+TN
TP+TN+FP+FN

= TP+TN
N

Odds ratio TP ·TN
FP ·FN

One problem with precision and recall is that they do not account for true neg-
ative predictions. Hence the following metrics should be used in combination with
precision and recall. The false positive rate is defined as the ratio of incorrectly
predicted failures to the number of all non-failures. The smaller the false positive
rate, the better, provided that the other metrics are not changed for the worse.

false positive rate =
FP

FP + TN
(4)

Specificity is defined as the ratio of all correctly not raised failure warnings to
the number of all non-failures.

specificity =
TN

FP + TN
= 1− false positive rate (5)

The negative predictive value (NPV) is the ratio of all correctly not raised failure
warnings to the number of all not raised warnings.

negative predictive value =
TN

TN + FN
(6)

Accuracy is defined as the ratio of all correct predictions to the number of all
predictions that have been performed.

accuracy =
TP + TN

TP + FP + FN + TN
(7)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Felix Salfner et al.

Due to the fact that failures usually are rare events, accuracy does not appear to
be an appropriate metric for failure prediction: a strategy that always classifies the
system to be non-faulty can achieve excellent accuracy since it is right in most of
the cases, although it does not catch any failure (recall is zero).

From this discussion it might be concluded that true negatives are not of interest
for the assessment of failure prediction techniques. This is not necessarily true since
the number of true negatives can help to assess the impact of a failure prediction
approach on the system. Consider the following example: For a given time pe-
riod including a given number of failures, two prediction methods do equally well
in terms of TP, FP , and FN , hence both achieve the same precision and recall.
However, one prediction algorithm performs ten times as many predictions as the
second since, e.g., one operates on measurements taken every second and the other
on measurements that are taken only every ten seconds. The difference between
the two methods is reflected only in the number of TN and will hence only become
visible in metrics that include TN . The number of true negatives can be deter-
mined by counting all predictions that were performed when no true failure was
imminent and no failure warning was issued as a result of the prediction.

It should also be pointed out, that quality of predictions depends not only on
algorithms but also on the data window size ∆td, lead-time ∆tl, and prediction-
period ∆tp. For example, since it is very unlikely to predict that a failure will
occur at one exact point in time but only within a certain time interval (prediction
period), the number of true positives depends on ∆tp: the longer the prediction
period, the more failures are captured and hence the number of true positives goes
up, which affects, e.g., recall. That is why the contingency table should only be
determined for one specific combination of ∆td, ∆tp and ∆tl.

3.2 Precision/Recall-Curve

Many failure predictors involve an adjustable decision threshold, upon which a
failure warning is raised or not. If the threshold is low, a failure warning is raised
very easily which increases the chance to catch a true failure (resulting in high
recall). However, a low threshold also results in many false alarms which leads to
low precision. If the threshold is very high, the situation is the other way round:
precision is good while recall is low. Precision/recall-curves are used to visualize
this trade-off by plotting precision over recall for various threshold levels. The plots
are sometimes also called positive predictive value/sensitivity-plots. An example is
shown in Figure 5.

3.3 Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC)

Similar to precision/recall curves, the receiver operating characteristic (ROC) curve
(see Figure 6) plots the true positive rate versus false positive rate (sensitivity/recall
versus “1−specificity” respectively) and therefore enables to assess the ability of a
model to discriminate between failures and non-failures. The closer the curve gets
to the upper left corner of the ROC space, the more accurate is the model.

As ROC curves accomplish for all thresholds, accuracy of prediction techniques
can easily be evaluated by comparing their ROC curves: Area Under the Curve
(AUC) is defined as the area between a ROC curve and the x-axis. It is calculated
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 11

Fig. 5. Sample precision/recall-curves visualizing the trade-off between precision and recall.

Curve A shows a predictor that is performing quite poorly: there is no point, where precision
and recall simultaneously have high values. The failure prediction method pictured by curve B

performs slightly better. Curve C reflects an algorithm whose predictions are mostly correct.

Fig. 6. Sample ROC plots. A perfect failure predictor shows a true positive rate of one and a

false positive rate of zero. Many existing predictors facilitate to adjust the trade-off between true
positive rate and false positive rate, as indicated by the solid line. The diagonal shows a random
predictor: at each point the chance of a false or true positive prediction is equal.

as:

AUC =
∫ 1

0

tpr(fpr) dfpr ∈ [0, 1] (8)

where tpr and fpr denote true positive rate and false positive rate, respectively.
AUC is basically the probability that a data point of a failure-prone situation
receives a higher score than a data point of a non failure-prone situation. As AUC
turns the ROC curve into a single number by measuring the area under the ROC

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Felix Salfner et al.

curve, it summarizes the inherent capacity of a prediction algorithm to discriminate
between failures and non-failures. A random predictor receives an AUC of 0.5 (the
inversion is not always true, see, e.g., [Flach 2004]) while a perfect predictor results
in an AUC of one.

3.4 Estimating the Metrics

In order to estimate the metrics discussed in this section, a reference data set is
needed, for which it is known, when failures have occurred. In machine learning,
this is called a “labeled data set.” Since the evaluation metrics are determined
using statistical estimators the data set should be as large as possible. However,
failures are in general rare events usually putting a natural limit to the number of
failures in the data set.

If the online prediction method involves estimation of parameters from the data,
the data set has to be divided into up to three parts:

(1) Training data set: The data on which parameter optimization is performed.
(2) Validation data set: In case the parameter optimization algorithm might result

in local rather than global optima, or in order to control the so-called bias-
variance trade-off, validation data is used to select the best parameter setting.

(3) Test data set: Evaluation of failure prediction performance is carried out on
data that has not been used to determine the parameters of the prediction
method. Such evaluation is also called out-of-sample evaluation.

In order to determine the number of TP, FP, FN, and TN predictions required to
fill out the contingency table and to subsequently compute metrics such as precision
and recall, the prediction algorithm is applied to test data and prediction outcomes
are compared to the true occurrence of failures. The four cases that can occur are
depicted in Figure 7. As can be seen from the figure, prediction period ∆tp (c.f.,
Section 2.2) is used to determine whether a failure is counted as predicted or not.
Hence, the choice of ∆tp impacts the contingency table and should be chosen in
congruence with requirements for subsequent steps in proactive fault management.

Fig. 7. A time line showing true failures of a test data set (▼) and all four types of predictions:

TP, FP, FN, TN. A failure is counted as predicted if it occurs within a prediction period of length
∆tp, which starts lead-time ∆tl after beginning of prediction P.

In order to determine curves such as precision/recall curves or ROC plots, the
predictors rating rather than the threshold-based binary decision should be stored,
which enables to generate the curve for all possible threshold values using an algo-
rithm such as described in [Fawcett 2004].

Estimating evaluation metrics from a finite set of test data only yields an approx-
imate assessment of the prediction performance and should hence be accompanied
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 13

by confidence intervals. Confidence intervals are usually estimated by running the
estimation procedure several times. Since this requires an enormous amount of data,
techniques such as cross validation, jackknife or bootstrapping are applied. A more
detailed discussion of such techniques can be found in [Salfner 2008, Chapter 8.4].

4. A TAXONOMY OF ONLINE FAILURE PREDICTION METHODS

A significant body of work has been published in the area of online failure prediction
research. This section introduces a taxonomy of online failure prediction approaches
in order to structure the manifold of approaches. In order to predict upcoming
failures from measurements, the causing factors, which are faults, have to be made
visible. As explained in Section 2, a fault can evolve into a failure through four
stages: fault, undetected error, detected error, and failure, and it might cause side-
effects which are called symptoms. Therefore, measurement-based failure prediction
has to rely on capturing faults (see Figure 3):

(1) In order to identify a fault, testing must be performed. The goal of testing is to
identify flaws in a system regardless whether the entity under test is actually
used by the system or not. For example, in memory testing, the entire memory
is examined even though some areas might never be used.

(2) Undetected errors can be identified by auditing. Auditing describes techniques
that check whether the entity under audit is in an incorrect state. For example,
memory auditing would inspect used data structures by checksumming.

(3) Symptoms, which are side-effects of errors, can be identified by monitoring sys-
tem parameters such as memory usage, workload, sequence of function calls,
etc. An undetected error can be made visible by identifying out-of-norm be-
havior of the monitored system variable(s).

(4) Once an error detector identifies an incorrect state the detected error may
become visible by reporting. Reports are written to some logging mechanism
such as logfiles or Simple Network Management Protocol (SNMP) messages.

(5) Finally, the occurrence of failures can be made visible by tracking mechanisms.
Tracking includes, for example, watching service response times or sending
testing requests to the system for the purpose of monitoring.

The taxonomy introduced here is structured along the five stages of fault captur-
ing. However, the focus of this article is online failure prediction, which means
that short-term predictions are made on the basis of runtime monitoring. Hence,
methods based on testing are not included since testing is not performed during
runtime. Auditing of undetected errors can be applied offline as well as during run-
time, which qualifies it for being included in the taxonomy. However, we have not
found any publication investigating audit-based online failure prediction, and hence
the branch has no further subdivisions. The full taxonomy is shown in Figure 8.

In Figure 8 the tree is split vertically into four major branches of the type of input
data used, namely data from failure tracking, symptom monitoring, detected error
reporting, and undetected error auditing. Each major branch is further divided
vertically into principal approaches. Each principal approach is then horizontally
divided into categories grouping the methods that we have surveyed. In this section

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Felix Salfner et al.

Fig. 8. A taxonomy for online failure prediction approaches.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 15

we briefly describe the major categories (vertical splits), whereas details on the
methods that are actually used (horizontal splits) are provided in Section 5.

Failure Tracking (1)

The basic idea of failure prediction based on failure tracking is to draw conclusions
about upcoming failures from the occurrence of previous failures. This may include
the time of occurrence as well as the types of failures that have occurred.

Probability Distribution Estimation (1.1). Prediction methods belonging to this
category try to estimate the probability distribution of the time to the next failure
from the previous occurrence of failures. Such approaches are in most cases rather
formal since they have their roots in (offline) reliability prediction, even though
they are applied during runtime.

Co-Occurrence (1.2). The fact that system failures can occur close together ei-
ther in time or in space (e.g., at proximate nodes in a cluster environment) can
be exploited to make an inference about failures that might come up in the near
future.

Symptom Monitoring (2)

The motivation for analyzing periodically measured system variables such as the
amount of free memory in order to identify an imminent failure is the fact that some
types of errors affect the system even before they are detected (this is sometimes
referred to as service degradation). A prominent example for this are memory
leaks: due to the leak the amount of free memory is slowly decreasing over time,
but, as long as there is still memory available, the error is neither detected nor
is a failure observed. When memory is getting scarce, the computer may first
slow down (e.g., due to memory swapping) and only if there is no memory left an
error is detected and a failure might result. The key notion of failure prediction
based on monitoring data is that errors like memory leaks can be grasped by their
side-effects on the system such as exceptional memory usage, CPU load, disk I/O,
or unusual function calls in the system. These side-effects are called symptoms.
Symptom-based online failure prediction methods frequently address non-failstop
failures, which are usually more difficult to grasp. Four principle approaches have
been identified: Failure prediction based on function approximation, classifiers, a
system model, and time series analysis.

Function Approximation (2.1). Function approximation techniques try to mim-
ic a target value, which is supposed to be the output of an unknown function of
measured system variables as input data (see Figure 9). For failure prediction the
target function is usually either

(1) the probability of failure occurrence. In this case, the target value is a boolean
variable only available in the training data set but not during runtime. This
case is depicted in Figure 9, or

(2) some computing resource such as the amount of free memory. Although the
current value is measurable during runtime, function approximation is used in
order to extrapolate resource usage into the future and to predict the time of
resource exhaustion.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Felix Salfner et al.

Fig. 9. Function approximation tries to mimic an unknown target function by the use of measure-

ments taken from a system at runtime.

Fig. 10. Online failure prediction by classification of system variable observations. A decision

boundary is determined from labeled reference data points (training data). During runtime, the

current situation is judged to be failure-prone or not depending on which side of the decision
boundary the current data point under analysis is.

Classifiers (2.2). Instead of approximating a target function, some failure pre-
diction algorithms evaluate the current values of system variables directly. Failure
prediction is achieved by classifying whether the current situation is failure-prone
or not. The classifier’s decision boundary is usually derived from a reference data
set for which it is known for each data point whether it indicates a failure-prone
or non failure-prone situation. Online failure prediction during runtime is then
accomplished by checking on which side of the decision boundary the current mon-
itoring values are (see Figure 10). The dimensions of data points can be discrete
or continuous values. For example, in hard disk failure prediction based on Self-
Monitoring And Reporting Technology (SMART) values, input data may consist
of the number of reallocated sectors (discrete value) and the drive’s temperature
(theoretically continuous variable).

System Models (2.3). In contrast to the classifier approach, which requires train-
ing data for both the failure-prone and non failure-prone case, system model-based
failure prediction approaches rely on modeling of failure-free behavior only, i.e.,
normal szstem behavior. The model is used to compute expected values, to which
the current measured values are compared. If they differ significantly, system is
suspected not to behave as normal and an upcoming failure is predicted (see Fig-
ure 11).

Time Series Analysis (2.4). As the name suggests, failure prediction approaches
in this category treat a sequence of monitored system variables as a time series.
This means that the prediction is based on an analysis of several successive samples
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 17

(a) (b)

Fig. 11. Online failure prediction using a system model. Failure prediction is performed by
comparison (C) of an expected value to an actual, measured value. The expected value is computed

from a system model of normal behavior. The expected value is either computed from previous
(buffered) monitoring values (a) or from other monitoring variables measured at the same time

(b).

Fig. 12. Online failure prediction by time series analysis. Several successive measurements of a

system variable are analyzed in order to predict upcoming failures.

of a system variable, as is shown in Figure 12. The analysis of the time series either
involves computation of a residual value on which the current situation is judged
to be failure-prone or not, or the future progression of the time series is predicted
in order to estimate, e.g., time until resource exhaustion.

Detected Error Reporting (3)

When an error is detected, the detection event is usually reported using some
logging facility. Hence, failure prediction approaches that use error reports as input
data have to deal with event-driven input data. This is one of the major differences
to symptom monitoring-based approaches, which in most cases operate on periodic
system observations. Furthermore, symptoms are in most cases real-valued while
error events mostly are discrete, categorical data such as event IDs, component
IDs, etc. The task of online failure prediction based on error reports is shown in
Figure 13: At present time t0, error reports that have occurred during some data
window before t0 are analyzed in order to decide whether there will be a failure at
some point in time in the future.

Rule-based Systems (3.1). The essence of rule-based failure prediction is that the
occurrence of a failure is predicted once at least one of a set of conditions is met.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Felix Salfner et al.

Fig. 13. Failure prediction based on the occurrence of error reports (A,B,C). The goal is to assess

the risk of failure at some point in future. In order to perform the prediction, some data that
have occurred shortly before present time t0 are taken into account (data window).

Fig. 14. Failure prediction by recognition of patterns in sequences of error reports.

Hence rule-based failure prediction has the form

IF <condition1> THEN <failure warning>
IF <condition2> THEN <failure warning>
. . .

Since in most computer systems the set of conditions cannot be set up manually,
the goal of failure prediction algorithms in this category is to identify the conditions
algorithmically from a set of training data. The art is to find a set of rules that
is general enough to capture as many failures as possible but that is also specific
enough not to generate too many false failure warnings.

Co-occurrence (3.2). Methods that belong to this category analyze error detec-
tions that occur close together either in time or in space. The difference to Cat-
egory 1.2 is that the analysis is based on detected errors rather than previous
failures.

Pattern Recognition (3.3). Sequences of error reports form error patterns. The
goal of pattern recognition-oriented failure prediction approaches is to identify pat-
terns that indicate an upcoming failure. In order to achieve this, usually a ranking
value is assigned to an observed sequence of error reports expressing similarity to
patterns that are known to lead to system failures and to patterns that are known
not to lead to a system failure. The final prediction is then accomplished by clas-
sication on basis of similarity rankings (see Figure 14).

Statistical Tests (3.4). The occurrence of error reports can be analyzed using
statistical tests. For example, the histogram of number of error reports per compo-
nent can be analyzed and compared to the “historically normal” distribution using
a statistical test.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 19

Classifiers (3.5). The goal of classification is to assign a class label to a given
input data vector, which in this case is a vector of error detection reports. Since
one single detected error is generally not sufficient to infer whether a failure is
imminent or not, the input data vector is usually constructed from several errors
reported within a time window.

Undetected Error Auditing (4)

In order to predict failures as early as possible, one can actively search for incorrect
states (undetected errors) within a system. For example, the inode structure of
a UNIX file system could be checked for consistency. A failure might then be
predicted depending on the files that are affected by a file system inconsistency.
The difference to detected error reporting (Category 3) is that auditing actively
searches for incorrect states regardless whether the data is used at the moment or
not, while error detection performs checks on data that is actually used or produced.
However, as stated above, we have not found any failure prediction approaches that
apply online auditing and hence the taxonomy contains no further subbranches.

5. SURVEY OF PREDICTION METHODS

In this survey, failure prediction methods are briefly described with appropriate ref-
erence to the source, and summarized in Table III. Representative selected methods
are explained in greater detail in Appendices A–K.

Failure Tracking (1)

Two principal approaches to online failure prediction based on the previous occur-
rence of failures can be determined: estimation of the probability distribution of
a random variable for time to the next failure, and approaches that build on the
co-occurrence of failure events.

Probability Distribution Estimation (1.1). In order to estimate the prob-
ability distribution of the time to the next failure, Bayesian predictors as well as
non-parametric methods have been applied.

Bayesian Predictors (1.1.1). The key notion of Bayesian failure prediction is to
estimate the probability distribution of the next time to failure by benefiting from
the knowledge obtained from previous failure occurrences in a Bayesian framework.

In Csenki [1990], such a Bayesian predictive approach [Aitchison and Dunsmore
1975] is applied to the Jelinski-Moranda software reliability model [Jelinski and
Moranda 1972] in order to yield an improved estimate of the next time to fail-
ure probability distribution. Although developed for (offline) software reliability
prediction, the approach could be applied in an online manner as well.

Non-parametric Methods (1.1.2). It has been observed that the failure process
can be non-stationary and hence the probability distribution of time-between-
failures (TBF) varies. Reasons for non-stationarity are manifold, since the fixing
of bugs, changes in configuration or even varying utilization patterns can affect the
failure process. In these cases, techniques such as histograms result in poor esti-
mations since stationarity (at least within a time window) is inherently assumed.
For these reasons, the non-parametric method of Pfefferman and Cernuschi-Frias

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Felix Salfner et al.

[2002] assumes the failure process to be a Bernoulli-experiment where a failure of
type k occurs at time n with probability pk(n). From this assumption follows that
the probability distribution of TBF for failure type k is geometric since only the
n-th outcome is a failure of type k and hence the probability is:

Pr
{
TBFk(n) = m | failure of type k at n

}
= pk(n)

(
1− pk(n)

)m−1 (9)

The authors propose a method to estimate pk(n) using an autoregressive averaging
filter with a “window size” depending on the probability of the failure type k.

Co-occurrence (1.2). Due to sharing of resources, system failures can occur
close together either in time or in space (at a closely coupled set of components or
computers) (see, e.g., [Tang and Iyer 1993]). However, in most cases, co-occurrence
has been analyzed for root cause analysis rather than failure prediction.

It has been observed several times, that failures occur in clusters in a temporal
as well as in a spatial sense. Liang et al. [2006] choose such an approach to predict
failures of IBM’s BlueGene/L from event logs containing reliability, availability and
serviceability data. The key to their approach is data preprocessing employing first
a categorization and then temporal and spatial compression: Temporal compression
combines all events at a single location occurring with inter-event times lower than
some threshold, and spatial compression combines all messages that refer to the
same location within some time window. Prediction methods are rather straight-
forward: Using data from temporal compression, if a failure of type application I/O
or network appears, it is very likely that a next failure will follow shortly. If spatial
compression suggests that some components have reported more events than oth-
ers, it is very likely that additional failures will occur at that location. Please refer
to Appendix B for further details.

Fu and Xu [2007] further elaborate on temporal and spatial compression and in-
troduce a measure of temporal and spatial correlation of failure events in distributed
systems.

Symptom Monitoring (2)

Symptoms are side-effects of errors. In this section online failure prediction methods
are surveyed that analyze monitoring data in order to detect symptoms that indicate
an upcoming failure.

Function Approximation (2.1). Function approximation is a term used in
a large variety of scientific areas. Applied to the task of online failure prediction,
there is an assumed unknown functional relationship between monitored system
variables (input to the function) and a target value (output of the function). The
objective is to reveal this relationship from measurement data.

Stochastic Models (2.1.1). Vaidyanathan and Trivedi [1999] try to approximate
the amount of swap space used and the amount of real free memory (target func-
tions) from workload-related input data such as the number of system calls. They
construct a semi-Markov reward model in order to obtain a workload-based esti-
mation of resource consumption rate, which is then used to predict the time to
resource exhaustion. In order to determine the states of the semi-Markov reward
model, the input data is clustered. The authors assume that these clusters repre-
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 21

sent eleven different workload states. State transition probabilities were estimated
from the measurement dataset and sojourn-time distributions were obtained by fit-
ting two-stage-hyperexponential or two-stage-hypoexponential distributions to the
training data. Then, a resource consumption “reward” rate for each workload state
is estimated from the data: Depending on the workload state the system is in, the
state reward defines at what rate the modeled resource is changing. The rate was
estimated by fitting a linear function to the data using the method of Sen [Sen
1968]. Experiments have been performed on data recorded from a SunOS 4.1.3
workstation. Please refer to Appendix C for more details on the approach.

Li et al. [2002] collect various parameters such as used swap space from an Apache
webserver and build autoregressive model with auxiliary input (ARX) to predict
further progression of system resources utilization. Failures are predicted by esti-
mating resource exhaustion times. They compared their method to [Castelli et al.
2001] (see Category 2.4.1) and showed that on their data set, ARX modeling re-
sulted in much more accurate predictions.

Regression (2.1.2). In curve fitting, which is another name for regression, param-
eters of a function are adapted such that the curve best fits the measurement data,
e.g., by minimizing mean square error. The simplest form of regression is curve
fitting of a linear function.

Andrzejak and Silva [2007] apply deterministic function approximation tech-
niques such as splines to characterize the functional relationships between the target
function (the authors use the term “aging indicator”) and “work metrics” as input
data. Work metrics are, e.g., the work that has been accomplished since the last
restart of the system. Deterministic modeling offers a simple and concise description
of system behavior with few parameters. Additionally, using work-based input vari-
ables rather than time-based offers the advantage that the function is not depending
on absolute time anymore: For example, if there is only little load on a server, ag-
ing factors accumulate slowly and so does accomplished work whereas in case of
high load, both accumulate more quickly. The authors present experiments where
performance of an Apache Axis SOAP (Simple Object Access Protocol) server has
been modeled as a function of various input data such as requests per second or
the percentage of CPU idle time.

Machine Learning (2.1.3). Function approximation is one of the predominant
applications of machine learning. It seems natural that various techniques have
a long tradition in failure prediction, as can also be seen from various patents in
that area. Troudet et al. [1990] have proposed to use neural networks for failure
prediction of mechanical parts and Wong et al. [1996] use neural networks to ap-
proximate the impedance of passive components of power systems. The authors
have used an RLC-Π model, which is a standard electronic circuit consisting of a
two resistors (R), an inductor (L), and two capacities (C), where faults have been
simulated to generate the training data. Neville [1998] has described how standard
neural networks can be used for failure prediction in large scale engineering plants.

Turning to publications regarding failure prediction in large scale computer sys-
tems, various techniques have been applied there, too.

In [Hoffmann 2006], the author has developed a failure prediction approach based
ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Felix Salfner et al.

on universal basis functions (UBF), which are an extension to radial basis functinos
(RBF) that use a weighted convex combination of two kernel functions instead
of a single kernel. UBF approximation has been applied to predict failures of a
telecommunication system. In [Hoffmann et al. 2007], the authors have conducted
a comparative study of several modeling techniques with the goal to predict resource
consumption of the Apache webserver. The study showed that UBF turned out to
yield the best results for free physical memory prediction, while server response
times could be predicted best by support vector machines (SVM). Appendix D
provides further details on UBF-based failure prediction.

One of the major findings in [Hoffmann et al. 2007] is that the issue of choosing a
good subset of input variables has a much greater influence on prediction accuracy
than the choice of modeling technology. This means that the result might be better
if, for example, only workload and free physical memory are taken into account
and other measurements such as used swap space are ignored. Variable selection
(some authors also use the term feature selection) is concerned with finding the
optimal subset of measurements. Typical examples of variable selection algorithms
are principle component analysis (PCA, see [Hotelling 1933]) as used in [Ning et al.
2006] or Forward Stepwise Selection (see, e.g., [Hastie et al. 2001, Chapter 3.4.1]),
which has been used in [Turnbull and Alldrin 2003]. In addition to UBF, Hoffmann
[2006] has also developed a new algorithm called probabilistic wrapper approach
(PWA), which combines probabilistic techniques with forward selection or backward
elimination.

Instance-based learning methods store the entire training dataset including input
and target values and predict by finding similar matches in the stored database of
training data (eventually combining them). Kapadia et al. [1999] have applied three
learning algorithms (k-nearest-neighbors, weighted average and weighted polyno-
mial regression) to predict CPU-time of the semiconductor manufacturing sim-
ulation software T-Suprem3 based on input parameters to the software such as
minimum implant energy or number of etch steps in the simulated semiconductor
manufacturing process.

Fu and Xu [2007] build a neural network to approximate the number of failures
in a given time interval. The set of input variables consists of a temporal and
spatial failure correlation factor together with variables, such as CPU utilization
or the number of packets transmitted by a computing node. The authors use (not
further specified) neural networks. Data of one year of operation of the Wayne
State University Grid has been analyzed as a case study. Due to the fact that a
correlation value of previous failures is used as input data as well, this prediction
approach also partly fits into Category 1.2.

In the paper by Abraham and Grosan [2005] the target function is the so-called
stressor-susceptibility-interaction (SSI), which basically denotes failure probability
as function of external stressors such as environment temperature or power supply
voltage. The overall failure probability can be computed by integration of single
SSIs. The paper presents an approach where genetic programming has been used
to generate code representing the overall SSI function from training data of an
electronic device’s power circuit.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 23

Classifiers (2.2). Failure prediction methods in this category build on classi-
fiers that are trained from failure-prone as well as non failure-prone data samples.

Bayesian Classifiers (2.2.1). In [Hamerly and Elkan 2001] two Bayesian failure
prediction approaches are described. The first Bayesian classifier proposed by the
authors is abbreviated by NBEM expressing that a specific Näıve Bayes model
is trained with the Expectation Maximization algorithm based on a real data set
of SMART values of Quantum Inc. disk drives. Specifically, a mixture model is
proposed where each näıve Bayes submodel m is weighted by a model prior P (m)
and an expectation maximization algorithm is used to iteratively adjust model
priors as well as submodel probabilities. Second, a standard näıve Bayes classifier
is trained from the same input data set. More precisely, SMART variables xi such
as read soft error rate or number of calibration retries are divided into bins. The
term “näıve” derives from the fact that all attributes xi in the current observation
vector ~x are assumed to be independent and hence the joint probability P (~x | c) can
simply be computed as the product of single attribute probabilities P (xi | c). The
authors report that both models outperform the rank sum hypothesis test failure
prediction algorithm of Hughes et al. [2002]4 (see Category 2.3.1). Please refer to
Appendix E for more details on these methods. In a later study [Murray et al. 2003],
the same research group has applied two additional failure prediction methods:
support vector machines (SVM) and an unsupervised clustering algorithm. The
SVM approach is assigned to Category 2.2.2 and the clustering approach belongs
to Category 2.3.2.

Pizza et al. [1998] propose a method to distinguish (i.e., classify) between tran-
sient and permanent faults: whenever erroneous component behavior is observed
(e.g., by component testing) the objective is to find out whether this erroneous
behavior was caused by a transient or permanent fault. Although not mentioned
in the paper, this method could be used for failure prediction. For example, a per-
formance failure of a grid computing application might be predicted if the number
of permanent grid node failures exceeds a threshold (under the assumption that
transient outages do not affect overall grid performance severely). This method
enables to decide whether a tested grid node has a permanent failure or not.

Fuzzy Classifier (2.2.2). Bayes classification requires that input variables take
on discrete values. Therefore, monitoring values are frequently assigned to finite
number of bins (as, for example, in [Hamerly and Elkan 2001]). Howerver, this
can lead to bad assignments if monitoring values are close to a bin’s border. Fuzzy
classification addresses this problem by using probabilistic class membership.

Turnbull and Alldrin [2003] use Radial Basis Functions networks (RBFN) to
classify monitoring values of hardware sensors such as temperatures and voltages
on motherboards. More specifically, all N monitoring values occurring within a
data window are represented as a feature vector which is then classified to belong
to a failure-prone or non failure-prone sequence using RBFNs. Experiments were
conducted on a server with 18 hot-swappable system boards with four processors,
each. The authors achieve good results, but failures and non-failures were equally

4Although the paper [Hughes et al. 2002] appeared after [Hamerly and Elkan 2001] it was an-

nounced and submitted already in 2000.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Felix Salfner et al.

likely in the data set.
Berenji et al. [2003] use an RBF rule base to classify whether a component is

faulty or not: Using Gaussian rules, a so-called diagnostic model computes a diag-
nostic signal based on input and output values of components ranging from zero
(fault-free) to one (faulty). The rule base is algorithmically derived by means of
clustering of training data, which consists of input / output value pairs both for
the faulty as well as fault-free case. The training data is generated from so-called
component simulation models that try to mimic the input / output behavior of sys-
tem components (fault-free and faulty). The same approach is then applied on the
next hierarchical level to obtain a system-wide diagnostic models. The approach
has been applied to model a hybrid combustion facility developed at NASA Ames
Research Center. The diagnostic signal can be used to predict slowly evolving
failures.

Murray et al. [2003] have applied SVMs in order to predict failures of hard disk
drives. SVMs have been developed by Vapnik [1995] and are powerful and efficient
neural network classifiers. In the case of hard disk failure prediction, five successive
samples of each selected SMART attribute set up the input data vector. The train-
ing procedure of SVMs adapts the classification boundary such that the margin
between the failure-prone and non failure-prone data points becomes maximal. Al-
though the näıve Bayes approach developed by the same group (see [Hughes et al.
2002], Category 2.3.1) is mentioned in the paper, no comparison has been carried
out.

In [Bod́ık et al. 2005] hit frequencies of web-pages are analyzed in order to quickly
identify non-failstop failures in the operation of a big commercial web site. The
authors use a näıve Bayes classifier. Following the same pattern as described in
Category 2.2.1, the probability P (k | ~x), where k denotes the class label (normal or
abnormal behavior) and ~x denotes the vector of hit frequencies, is computed from
likelihoods P (xi | k) which are approximated by Gaussian distributions. Since the
training data set was not labeled (it was not known when failures had occurred)
likelihoods for the failure case were assumed to be uniformly distributed and un-
supervised learning techniques had to be applied. The output of the näıve Bayes
classifier is an anomaly score. In the paper, a second prediction technique based
on a χ2 test is proposed which is described in Category 2.3.1.

Another valuable contribution of this work is a successful combination of anomaly
detection and detailed analysis support in form of a visual tool.

Other approaches (2.2.3). In a joint effort University of California Berkeley and
Stanford University have developed a computing approach called “recovery-oriented
computing.” As main references, see [Brown and Patterson 2001; Patterson et al.
2002] for an introduction and [Candea et al. 2003; Candea et al. 2006] for a descrip-
tion of “JAGR” (JBoss with Application Generic Recovery), which combines sev-
eral of the techniques to build a dependable system. Although primarily targeted
towards a quick detection and analysis of failures after their occurrence, several
techniques could be used for failure prediction as well. Hence, in this survey run-
time path-based methods are included, which are “Pinpoint” (Category 2.3.1), path
modeling using probabilistic context free grammars (Category 2.3.3), component
peer models (Category 2.3.4), and decision trees, which belong to this category.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 25

Kiciman and Fox [2005] propose to construct a decision tree from runtime paths in
order to identify faulty components. The term runtime path denotes the sequence of
components and other features such as IP addresses of server replicas in the cluster,
etc. that are involved in handling one request in a component-based software such
as a J2EE application server. Runtime paths are obtained using Pinpoint (see
Category 2.3.1). Having recorded a sufficiently large number of runtime paths
including failed and successful requests, a decision tree for classifying requests as
failed or successful is constructed using algorithms such as ID3 or C4.5. Although
primarily designed for diagnosis, the authors point out that the approach could be
used for failure prediction of single requests as well.

Daidone et al. [2006] have proposed to use a hidden Markov model approach to
infer whether the true state of a monitored component is healthy or not. Since
the outcome of a component test does not always represent its true state, hidden
Markov models are used where observation symbols relate to outcomes of compo-
nent probing, and hidden states relate to the (also hidden) component’s true state.
The true state (in a probabilistic sense) is inferred from a sequence of probing re-
sults by the so-called forward algorithm of hidden Markov models. Although not
intended by the authors, the approach could be used for failure prediction in the
following way: Assuming that there are some erroneous states in a system that
lead to future failures and others that do not, the proposed hidden Markov model
approach can be used to determine (classify) whether a failure is imminent or not
on the basis of probing.

System Models (2.3). Online failure prediction approaches belonging to this
category utilize a model of failure free, normal system behavior. The current,
measured system behavior is compared to the expected normal behavior and a
failure is predicted in case of a significant deviation. We have categorized system
model-based prediction approaches according to how normal behavior is stored: as
instances, by clustered instances, using stochastic descriptions, or using formalisms
known from control theory.

Instance Models (2.3.1). The most straightforward data-driven way to memorize
how a system behaves normally is to store monitoring values recorded during failure-
free operation. If the current monitoring values are not similar to any of the stored
values, a failure is predicted.

Elbaum et al. [2003] have carried out experiments where function calls, changes in
the configuration, module loading, etc. of the email client “pine” had been recorded.
The authors have proposed three types of failure prediction among which sequence-
based checking was most successful: a failure was predicted if two successive events
occurring in “pine” during runtime do not belong to any of the event transitions in
the stored training data.

Hughes et al. [2002] apply a simple albeit robust statistical test for hard disk
failure prediction. The authors employ a rank sum hypothesis test to identify
failure prone hard disks. The basic idea is to collect SMART values from fault-
free drives and store them as reference data set. Then, during runtime SMART
values of the monitored drive are tested the following way: The combined data set
consisting of the reference data and the values observed at runtime is sorted and

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Felix Salfner et al.

the ranks of the observed measurements are computed5. The ranks are summed
up and compared to a threshold. If the drive is not fault-free, the distribution of
observed values are skewed and the sum of ranks tends to be greater or smaller
than for fault-free drives.

Pinpoint [Chen et al. 2002] tracks requests to a J2EE application server on their
way through the system in order to identify the software components that are
correllated with a failure. Tracking of the requests yields a set of components used
to process the request. In case of a failure, the sets of components for several
requests are clustered using a Jaccard score-based metric measuring similarity of
the sets. A similar approach could be applied for online failure prediction. If several
sets of failure-free request paths were stored, the same distance metric could be used
to determine wheater the current set of components is similar to any of the known
sets, and if not a failure is supposed to be imminent.

In [Bod́ık et al. 2005], which has been described in Category 2.2.2, a second
detection / prediction technique has been applied to the same data: The current
hit frequencies of the 40 most frequently used pages were compared to previous,
“historically normal” hit frequencies of the same pages using a χ2-test. If the two
distributions are different with a significance level of 99%, the current observation
period is declared anomalous. In addition to this binary decision an anomaly score
was assigned to each page in order to support quick diagnosis. The results achieved
using the χ2-test are comparable to those of the näıve Bayes approach described in
Category 2.2.2.

Clustered Instance Models (2.3.2). If the amount of storage needed for instance
system models exceeds a reasonable level or if a more general representation of
training instances is required, training instances can be clustered. In this case only
cluster centroids or the boundaries between clusters need to be stored.

In a follow-up comparative study to [Hughes et al. 2002] (see Category 2.3.1),
Murray et al. [2003] have introduced a clustering-based failure predictor for hard
disk failure prediction. The basic idea is to identify areas of SMART values where
a failure is very unlikely using unsupervised clustering. In other words, all areas
of SMART values where the disk operates normally are algorithmically identified
from failure-free training data. In order to predict an upcoming failure, the current
SMART values are assigned to the most likely cluster. If they do not fit any known
cluster (more specifically, maximum class membership probability is below a given
threshold), the disk is assumed not to behave normally and a failure is assumed to
be imminent.

Stochastic Models (2.3.3). Especially in the case of complex and dynamic sys-
tems, it seems appropriate to store system behavior using stochastic tools such as
probability distributions.

Ward et al. [1998] estimate mean and variance of the number of TCP connections
from two web proxy servers in order to identify Internet service performance fail-
ures. Using a statistical test developed by Pettitt [1977], the values is compared to
previous number of connections at the same time of the day (holidays are treated
separately). If the current value deviates significantly, a failure is predicted.

5which in fact only involves simple counting

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 27

In [Chen et al. 2004]6 a runtime path analysis technique based on probabilistic
context free grammars (PCFG) is proposed. Probabilistic context-free grammars
have been developed in the area of statistical natural language processing (see,
e.g., [Manning and Schütze 1999, Page 381]). The notion of the approach is to
build a grammar of all possible non faulty sequences of components. By assigning
a probability to each grammar rule, the overall probability of a given sequence of
components can be computed. From this an anomaly score is computed and if
a sufficiently large amount of paths (i.e., requests) have a high anomaly score, a
failure is assumed. The approach has been applied to call paths collected from a
Java 2 Enterprise Edition (J2EE) demo application, an industrial enterprise voice
application network, and from eBay servers. Although not intended by the authors,
the same approach could be used to predict, e.g., service level failures: if a significant
amount of requests do not seem to behave normally, the system might not be able to
deliver the required level of service shortly in the future. It might also be applicable
for request failure prediction: if the probability of the beginning of a path is very
low, there is an increased probability that a failure will occur in the further course
of the request.

Graph Models (2.3.4). In [Kiciman and Fox 2005], a second approach is proposed
that is based on component interaction graphs (a so-called peer model). The peer
model reflects how often one component interacts with another component: each
component is a node and the amount how often one component interacts with the
other is expressed by weighted links. One specific instance of a component is checked
whether it is error-free by using a χ2 goodness-of-fit test: if the proportion of
runtime paths between a component instance and other component classes deviates
significantly from the reference model representing fault-free behavior, the instance
is suspected to be faulty. By adding a trend analysis on anomaly score, a future
failure of the component instance might be predicted.

Control Theory Models (2.3.5). It is common in control theory to have an ab-
straction of the controlled system estimating the internal state of the system and
its progression over time by some mathematical equations, such as linear equation
systems, differential equation systems, Kalman filters, etc. (see, e.g., [Lunze 2003,
Chapter 4]). These methods are widely used for fault diagnosis (see, e.g., [Korbicz
et al. 2004, Chapters 2 and 3]) but have only rarely been used for failure prediction.
However, many of the methods inherently include the possibility to predict future
behavior of the system and hence have the ability to predict failures. For example,
Neville [1998] describes in his Ph.D. thesis the prediction of failures in large scale
engineering plants. Another example is Discenzo et al. [1999] who mention that
such methods have been used to predict failures of an intelligent motor using the
standard IEEE motor model.

With regard to online failure prediction, Singer et al. [1997] propose the Mul-
tivariate State Estimation Technique (MSET) to detect system disturbances by a
comparison of the estimated and measured system state. More precisely, a matrix
D of selected measurement data of normal operation is collected. In the opera-
tional phase, a state estimation is computed as a combination of D and the current

6The same approach is described in more detail in [Kiciman and Fox 2005]

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Felix Salfner et al.

(runtime) observations. The difference between observed and estimated state con-
stitutes a residual that is checked for significant deviation by a sequential probability
ratio test (SPRT). In [Gross et al. 2002], the authors have applied the method to
detect software aging [Parnas 1994] in an experiment where a memory-leak fault
injector consumed system memory at an adjustable rate. MSET and SPRT have
been used to detect whether the fault injector was active and if so, at what rate
it was operating. By this, time to memory consumption can be estimated. MSET
has also been applied to online transaction processing servers in order to detect
software aging [Cassidy et al. 2002].

Other potential approaches. A more theoretic approach that could in principle
be applied to online failure prediction is to abstract system behavior by a queu-
ing model that incorporates additional knowledge about the current state of the
system. Failure prediction can be performed by computing the input value depen-
dent expected response time of the system. Ward and Whitt [2000] show how to
compute estimated response times of an M/G/I processor-sharing queue based on
measurable input data such as number of jobs in the system at time of arrival using
a numerical approximation of the inverse Laplace transform.

Time Series Analysis (2.4). We have identified four groups of methods that
perform time series analysis: Regression tries to fit a function to the data, feature
analysis computes a residual of the measurement series, time series prediction tries
to predict the future progression of the target function from the series’ values itself
(without using other measurements as input data), and finally, also signal processing
techniques can be used for time series analysis.

Regression (2.4.1). Similar to Category 2.1.2, regression techniques adjust pa-
rameters of a function such that it best fits some set of training data. However,
in this section the function is fit directly into the sequence of monitored values,
whereas in Category 2.1.2, some target function needs to be fit.

Garg et al. [1998] have presented a three step approach to compute time to re-
source exhaustion. First, the time series of monitored values is smoothed using ro-
bust locally weighted regression [Cleveland et al. 1979]. In order to detect, whether
a trend is present or not, a seasonal Kendall test is applied since this statistic test
can detect trends even in the presence of cycles. If a trend is detected, the rate
of resource consumption is estimated using a non-parametric procedure developed
by Sen [Sen 1968]. Experiments have been performed on measurements of system
variable “real memory free”, size of file table, process table size, and used swap
space of UNIX machines.

Castelli et al. [2001] mention that IBM has implemented a curve fitting algorithm
for the xSeries Software Rejuvenation Agent. Several types of curves are fit to the
measurement data and a model-selection criterion is applied in order to choose the
best curve. Prediction is again accomplished by extrapolating the curve.

Cheng et al. [2005] present a two step approach for failure prediction in a high
availability cluster system. Failure prediction is accomplished in two stages: first,
a health index ∈ [0, 1] is computed using fuzzy logic, and in case of a detected
“sick” state of a node, a linear function is mapped to the monitored values of the
resource in order to estimate mean time to resource exhaustion. The authors also
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 29

reference a technique called “prediction interval” to computer a lower and upper
bound for time to resource exhaustion. The fuzzy logic assignment of the health
index is based on “processor time”, “privileged time”, “pool nonpaged bytes”, and
“available Mbytes” (presumably of free memory).

Feature Analysis (2.4.2). The goal of feature analysis is to compute a residual
value from the time series upon which the decision whether a failure is imminent
or not can be based.

Crowell et al. [2002] have discovered that memory related system parameters such
as kernel memory or system cache resident bytes show multifractal characteristics
in the case of software aging. The authors used the Hölder exponent to identify
fractality, which is a residual expressing the amount of fractality in the time series.
In a later paper [Shereshevsky et al. 2003], the same authors extended this concept
and built a failure prediction system by applying the Shewhart change detection
algorithm [Basseville and Nikiforov 1993, Page 31] to the residual time series of
Hölder exponents. A failure warning is issued after detection of the second change
point. Experiments have been performed on two machines running the “System
Stress for Windows NT 4.0 and Windows 2000” provided by Microsoft. The algo-
rithm was applied to several memory-related variables in order to predict system
crashes.

Time Series Prediction (2.4.3). In [Hellerstein et al. 1999], the authors describe
an approach to predict if a time series will violate a threshold. In order to achieve
this, several time series models are employed to model stationary as well as non-
stationary effects. For example, the model accounts for the influence of the day-of-
the-week, or time-of-the-day, etc. Experiments have been carried out on prediction
of HTTP operations per second of a production webserver. A similar approach has
been described in [Vilalta et al. 2002]. In Appendix F a more detailed description
of this method can be found.

Sahoo et al. [2003] applied various time series models to data of a 350-node cluster
system to predict parameters like percentage of system utilization, idle time and
network IO.

A relatively new technique on the rise is based on “rough set theory” [Pawlak
et al. 1988], which is an approximation of conventional sets by providing a set of
upper and lower values. Meng et al. [2007] combine rough set theory with wavelet
networks in order to predict memory usage of a J2EE application server. In the
experiments memory usage has been monitored every twelve minutes and the next
monitoring value is predicted based on a series of previous monitoring values. From
this one step ahead prediction of the monitoring variable follows that the lead time
∆tl equals the monitoring period (twelve minutes in this case). The same authors
have published a similar paper about a combination of fuzzy logic and wavelet
networks [Ning et al. 2006], which are called fuzzy wavelet networks (FWN) [Ho
et al. 2001].

Other potential approaches. Signal processing techniques are of course related to
methods that have already been described (e.g., Kalman filters in Category 2.3.5).
Algorithms that fall into this category use signal processing techniques such as low-
pass or noise filtering to obtain a clean estimate of a system resource measurement.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Felix Salfner et al.

Fig. 15. Failure prediction using signal processing techniques on measurement data.

For example, if free system memory is measured, observations will vary greatly due
to allocation and freeing of memory. Such measurement series can be seen as a
noisy signal where noise filtering techniques can be applied in order to obtain the
“true” behavior of free system memory: If it is a continuously decreasing function,
software aging is likely in progress and the amount of free memory can be estimated
for the near-future by means of signal processing prediction methods such as low-
pass filtering or frequency transformation (see Figure 15).

Detected Error Reporting (3)

There are two main groups of failure prediction approaches that analyze error re-
ports: rule-based or error pattern-based approaches.

Rule-based Approaches (3.1). Failure prediction methods in this category
derive a set of rules where each rule consists of error reports.

To our knowledge, the first rule-based approach to failure prediction based on
reported error events has been published by Hätönen et al. [1996]. The authors
describe a system that identifies episode rules from error logs (the authors use the
term alarm). Episode rules express temporal ordering of events in the form “if
errors A and B occur within five seconds, then error C occurs within 30 seconds
with probability 0.8”. Several parameters such as the maximum length of the data
window, types of error messages, and ordering requirements had to be pre-specified.
However, the algorithm returned too many rules such that they had to be presented
to human operators with system knowledge in order to filter out informative ones.

Weiss [1999] introduces a failure prediction technique called “timeweaver” that
is based on a genetic training algorithm. In contrast to searching and selecting
patterns that exist in the database, rules are generated “from scratch” by use of
a simple language: error events are connected with three types of ordering primi-
tives. The genetic algorithm starts with an initial set of rules (initial population)
and repetitively applies crossing and mutation operations to generate new rules.
Quality of the obtained candidates is assessed using a special fitness function that
incorporates both prediction quality (based on a variant of the F-Measure, that
allows to adjust the relative weight of precision and recall) as well as diversity
of the rule set. After generating a rule set with the genetic algorithm, the rule
set is pruned in order to remove redundant patterns. The approach was applied
to telecommunication equipment failure data and results are compared to three
standard machine learning algorithms: C4.5rules [Quinlan 1993], RIPPER [Cohen
1995] and FOIL [Quinlan 1990]. Please refer to Appendix G for further details on
timeweaver.

Vilalta and Ma [2002] describe a data-mining approach that is tailored to short-
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 31

term prediction of boolean data building on a concept termed eventsets. The
method searches for predictive subsets of events occurring prior to a target event.
In the terminology used here, events refer to error reports and target events to
failures. The method addresses the issue of class skewness (failures occur very
rarely in comparison to non-failure events) by first considering only failure-prone
sequences, and by incorporating non failure-prone data in a later step. More pre-
cisely, the method is divided into three steps: First, frequent subsets of error events
preceding a failure are extracted. Second, subsets that occur frequently before
failures but also frequently when no failure occurs are removed by a threshold on
confidence and by applying a statistical test. In a final third step, overly general
sets are removed. Please refer to Appendix H for further details on this approach.
The eventset method has been applied for failure prediction in a 350-node cluster
system, as described in [Sahoo et al. 2003] (Category 2.4.3).

Other potential approaches. Fault trees have been developed in the 1960’s and
have become a standard tool reliability modeling. A comprehensive treatment of
fault trees is, for example, given by Vesely et al. [1981]. The purpose of fault trees
is to model conditions under which failures can occur using logical expressions.
Expressions are arranged in form of a tree, and probabilities are assigned to the leaf
nodes, facilitating to compute the overall failure probability. Fault tree analysis is a
static analysis that does not take the current system status into account. However,
if the leaf nodes are combined with online fault detectors, and logical expressions
are transformed into a set of rules, they can be used as a rule-based online failure
predictor. Although such approach has been applied to chemical process failure
prediction [Ulerich and Powers 1988] and power systems [Rovnyak et al. 1994], we
have not found such approach being applied to computer systems.

Bai et al. [2005] employ a Markov Bayesian Network for reliability prediction
but a similar approach might work for online failure prediction, as well. The same
holds for decision tree methods: upcoming failures can be predicted if error events
are classified using a decision tree approach similar to [Kiciman and Fox 2005] (see
Category 2.2.3). In this case however, the decision tree would have to classify error
reports rather than monitored runtime paths.

Regarding data mining, several developments could potentially be used to further
improve data mining-based online failure prediction: Sequential pattern mining
and the use of ontologies, as described in, e.g., [Srikant and Agrawal 1996], or
path traversal patterns (see, e.g., [Chen et al. 1998]), which could be applied in
transaction-based systems.

Co-occurrence (3.2). Levy and Chillarege [2003] analyze data of a industrial
voice mail system and have identified three characteristics that they call “princi-
ples”, two of which support the assumptions on which failure prediction approaches
in this category are based: principle one (“counts tell”) again emphasizes the prop-
erty that the number of errors (since the paper is about a telecommunication system,
the authors use the term alarm for what is termed an error, here) per time unit
increases before a failure. Principle number two (“the mix changes”) is described
in Category 3.4. Principle number three (“clusters form early”) basically states
the same as principle one by putting more emphasis on the fact that for common

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Felix Salfner et al.

failures the effect is even more apparent if errors are clustered into groups. Similar
observations have been made by Liang et al. [2006]: The authors have analyzed
jobs of an IBM BlueGene/L supercomputer and support the thesis: “On average,
we observe that if a job experiences two or more non-fatal events after filtering,
then there is a 21.33% chance that a fatal failure will follow. For jobs that only
have one non-fatal event, this probability drops to 4.7%”.

According to [Siewiorek and Swarz 1998, Page 262], Nassar and Andrews [1985]
were one of the first to propose two ways of failure prediction based on the oc-
currence of error reports. The first approach investigates the distribution of error
types. If the distribution of error types changes systematically (i.e., one type of
error occurs more frequently) a failure is supposed to be imminent. The second
approach investigates error distributions for all error types obtained for intervals
between crashes. If the error generation rate increases significantly, a failure is
looming. Both approaches resulted in computation of threshold values upon which
a failure warning can be issued.

The dispersion frame technique (DFT) developed by Lin and Siewiorek [1990]
uses a set of heuristic rules on the time of occurrence of consecutive error events of
each component to identify looming permanent failures. A detailed description of
the DFT can be found in Appendix I.

Lal and Choi [1998] show plots and histograms of errors occurring in a UNIX
Server. The authors propose to aggregate errors in an approach similar to tupling
(c.f., [Tsao and Siewiorek 1983]) and state that the frequency of clustered error
occurrence indicates an upcoming failure. Furthermore, they showed histograms of
error occurrence frequency over time before failure.

More recently, Leangsuksun et al. [2004] have presented a study where hardware
sensors measurements such as fan speed, temperature, etc. are aggregated using
several thresholds to generate error events with several levels of criticality. These
events are analyzed in order to eventually generate a failure warning that can be
processed by other modules. The study was carried out on data of a high availability
high performance Linux cluster.

Pattern Recognition (3.3). Pattern recognition techniques operate on se-
quences of error events trying to identify patterns that indicate a failure-prone
system state.

Methods such as eventset [Vilalta et al. 2002] investigate the type of error reports
(e.g., the error message ID) while methods such as dispersion frame technique [Lin
and Siewiorek 1990] focus on the time when errors are detected. If both parts of
error reports –time and type– are considered together, the sequence of error reports
turns into a temporal sequence. Salfner et al. have proposed two failure prediction
methods that identify patterns in temporal sequences.

In [Salfner et al. 2006], the authors present Similar Events Prediction (SEP),
which is a semi-Markov chain model. Each error report event corresponds to a
state in the semi-Markov chain while time between two reports is represented by
the continuous-time state transition duration of the semi-Markov chain using uni-
form distributions. Sequence similarity is computed by the product of state traver-
sal probabilities. Training of the model involves hierarchical clustering of error
sequences leading to a failure and computation of relative frequencies to estimate
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 33

state transition probabilities. The work includes experiments with data from an
industrial telecommunication system.

In Salfner and Malek [2007] the authors propose to use hidden semi-Markov
models (HSMM) in order to add one additional level of flexibility. Associating
error detections with observations that are generated by the states of the HSMM,
errors may be mapped to groups of hidden states. With HSMMs, similarity of error
sequences can be computed by use of the forward algorithm, which is an efficient
dynamic programming algorithm to compute the sequence likelihood. One advan-
tage of HSMMs in comparison to [Salfner et al. 2006] is that HSMMs can handle
permutations in the input event sequences. In addition to the classification step
depicted in Figure 14, which is an evaluation of failure probability for some fixed
point in time in the future, failure prediction can also be accomplished by com-
puting the time-to-failure distribution (c.f., Salfner [2006]). Salfner [2008] provides
more details on the HSMM method including a comparative analysis of HSMM
with DFT, eventset method, and SVD-SVM (see Category 3.5). The study also
includes a comparison of computational overhead both for training and application
of the methods.

Other potential approaches. Computing similarity between sequences is one of
the key tasks in biological sequence analysis [Durbin et al. 1998, Chapter 2], which
is called pairwise alignment. Various algorithms have been developed such as the
Needleman-Wunsch algorithm [Needleman and Wunsch 1970], Smith-Waterman
algorithm [Smith and Waterman 1981] or the BLAST algorithm [Altschul et al.
1990]. The outcome of such algorithms is usually a score evaluating the alignment
of two sequences. If used as a similarity measure between the sequence under
investigation and known failure sequences, failure prediction can be accomplished
as depicted in Figure 14. One of the advantages of alignment algorithms is that they
build on a substitution matrix providing scores for the substitution of symbols. In
terms of error event sequences this technique has the potential to define a score for
one error event being “replaced” by another event giving rise to use a hierarchical
grouping of errors as proposed in [Salfner et al. 2004].

In Category 2.3.3 the paper by Kiciman and Fox [2005] was described who used
probabilistic context-free grammars (PCFG) to analyze runtime paths. However,
runtime paths contain symptoms rather than errors. Nevertheless, PCFGs could
also be used to perform error report-based failure prediction: Following the ap-
proach depicted in Figure 14, PCFGs can be used to compute sequence similarity
to error report sequences that have lead to a failure in the training dataset, and to
compute sequence similarity to error report sequences that usually do not lead to
a failure.

A further well-known stochastic speech modeling technique are n-gram models
[Manning and Schütze 1999, Page 192]. n-grams represent sentences by conditional
probabilities taking into account a context of up to n words in order to compute the
probability of a given sentence.7 Conditional densities are estimated from training

7Although, in most applications of statistical natural language processing the goal is to predict
the next word using P (wn|w1, . . . , wn−1), the two problems are connected via the theorem of

conditional probabilities.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Felix Salfner et al.

data. Transferring this concept to failure prediction, error events correspond to
words and error sequences to sentences. If the probabilities (the “grammar”) of an
n-gram model were estimated from failure sequences, high sequence probabilities
would translate into “failure-prone” and low probabilities into “not failure-prone”.

Statistical Tests (3.4). Principle number two (“the mix changes”) in [Levy
and Chillarege 2003] mentioned in Category 3.2 delineates the discovery that the
order of subsystems sorted by error generation frequency changes prior to a failure.
According to the paper, relative error generation frequencies of subsystems follow a
Pareto distribution: Most errors are generated by only a few subsystems while most
subsystems generate only very few errors (which is also known as Zipf’s law [Zipf
1949]). The proposed failure prediction algorithm monitors the order of subsystems
and predicts a failure if it changes significantly, which basically is a statistical
test. Using data of the voice mail application analyzed, the authors show examples
where the change in order can be observed, however no results with respect to false
negatives or false positives are reported.

Classifiers (3.5). Classifiers usually associate an input vector with a class
label. In this Category 3, input data consists of one or more error reports that
have to be represented by a vector in order to be processed by a classification
algorithm. A straightforward solution would be to use the error type of the first
event in a sequence as value of the first input vector component, the second type as
second component, and so on. However, it turns out that such a solution does not
work: If the sequence is only shifted one step, the sequence vector is orthogonally
rotated in the input space and most classifiers will not judge the two vectors as
similar. One solution to this problem has been proposed by Domeniconi et al. [2002]:
SVD-SVM (Singular-Value-Decomposition and Support-Vector-Machine) borrows
a technique known from information retrieval: the so-called “vector space model”
representation of texts [Manning and Schütze 1999, Page 539]. In the vector space
model representation, there is a dimension for each word of the language. Each text
is a point in this high-dimensional space where the magnitude along each dimension
is defined by the number of occurrences of the specific word in the text. SVD-SVM
applies the same technique to represent error event sequences: Each dimension of
the vector corresponds to one event type and the magnitude is either a boolean
value indicating whether an error type is present or not, the number of occurrences
of the event type in the data window, or a binary encoded timestamp. SVD-SVM
performs two steps: The first step involves simplification and de-correlation of
event sequences by use of singular value decomposition. The second step involves
classification by use of support vector machines. The approach has been applied
to data of a production computer network where failures were defined to be the
occurrence of an error event with severity level “critical” or “fatal”. Further details
on this method can be found in Appendix K.

6. SUMMARY AND CONCLUSIONS

We have surveyed failure prediction methods that have been proposed and many of
them used to predict failures of computer systems online. The goal of online failure
prediction is to identify if a failure, that is a misbehavior of the system resulting
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 35

in deviation from expected output, will occur in the near future. This can be
accomplished by runtime observation and measurement of the current system state.
Although failure prediction approaches exist that base predictions on upcoming
failures without measuring the current system state (e.g., by lifetime probability
distributions), these are beyond the scope of this survey.

We have developed a comprehensive taxonomy in order to structure and classify
a wide spectrum of existing techniques dealing with online failure prediction to help
potential users to easily find a method that might be attractive in their application
environment. Online failure prediction methods can be divided into four categories
according to the type of input data that is processed. Specifically, the approaches
evaluate: (a) the times of previous failure occurrence (failure tracking), (b) moni-
toring data reflecting symptoms (side-effects) of errors, (c) the detection of errors
that have not yet evolved to become a failure, or (d) search for undetected errors
by means of auditing. Three of the categories have been divided further by the
principle approach and subsequently by the methods that are used. Concepts have
been briefly explained, followed by appropriate references.

We have surveyed almost 50 approaches from various research areas such as pat-
tern recognition, control theory and function approximation. The majority of ap-
proaches described focus on failure prediction concerning software but there are also
many methods predicting failures of hardware, e.g., [Hughes et al. 2002; Hamerly
and Elkan 2001; Murray et al. 2003] or [Weiss 1999].

A comprehensive summary of all models/approaches together with demonstrated
applications including appropriate references and classification can be found in
Table III. In addition the table provides a brief synopsis of the approach and
potential application areas and remarks. In order to shorten the table, the following
numbers are used for text that appears several times across the table:

① failure-based long term prediction
② failure prediction in distributed systems
③ prediction of resource-scarcity failures
④ prediction of service level failures
⑤ single request failure prediction
⑥ component failure prediction
⑦ event-based failure prediction (as a superset to error reports)

Table III. Overview of all failure prediction techniques surveyed.

Category /

Reference

Model / Approach Area of

Application

Potential Applications/

Remarks

1.1.1

Csenki
[1990]

Jelinksi-Moranda model

improved by observed
inter-failure times

Software

reliability
prediction

①

Based on software quality

1.1.2

Pfefferman

and
Cernuschi-

Frias
[2002]

Failures modeled as

non-stationary Bernoulli

process

Software failures ①

Adapts to changing system

dynamics

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Felix Salfner et al.

Category /

Reference

Model / Approach Area of

Application

Potential Applications/

Remarks

1.2

Liang et al.
[2006]

Temporal / spatial

compression of failures

Extreme-scale

parallel systems

②

Focus on long-running
applications

2.1.1
Vaidyanathan

and Trivedi

[1999]

Semi-Markov reward
model to predict

resource consumption

Memory
consumption in

UNIX system

③, ④

Fokus on workload

2.1.1
Li et al.

[2002]

ARX model for resource
utilization using

additional system

variables as input

Prediction of
Apache webserver

resource

exhaustion

③, ④

Accounts for stationary

and non-stationary effects

2.1.2
Andrzejak

and Silva

[2007]

Use of deterministic
functions to approx.

aging indicators as a

function of workload
metrics

Performance of
Apache Axis

SOAP server

③

Focus on workload-based

input data

2.1.3

Hoffmann

[2006]

Approximation of

interval call availability

by universal basis
functions

Performance

failures of a

telecommunication
system

③, ④

Also applied to response

time and memory
prediction in Apache

webserver [Hoffmann et al.

2007]

2.1.3
Kapadia

et al. [1999]

Approximation of
resource usage by

averaging values of

similar points in the
training data

Resource
consumption (e.g.,

CPU time) of

programs based on
invocation

parameters

③, ④

Is not regarding

interference with other

programs

2.1.3 / 1.2

Fu and Xu
[2007]

Estimation of number of

failures from CPU
utilization and temporal

and spatial correlation

by use of neural
networks

Failures of Wayne

State University
computing grid

②, ④

Focus on number of
failures

2.1.3

Abraham

and Grosan
[2005]

Genetically generating

code to approximate

failure probability as a
function of external
stressors (e.g.

temperature)

Power circuit

failures of an

electronic device

Applicable to systems

where the root cause of

failures can be assigned to
a small set of stressors

2.2.1
Hamerly

and Elkan
[2001]

Näıve Bayes
classification of SMART

values

Hard disk failures Based on independence
assumption of monitoring

variables. ⇒ variable
selection or decorrelation
required

2.2.1
Pizza et al.

[1998]

Bayes-optimal
discrimination between

permanent and transient
faults

Simulated
component

diagnosis

④

Failure prediction where

short outages do not
matter while permanent

outages lead to a failure

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 37

Category /

Reference

Model / Approach Area of

Application

Potential Applications/

Remarks

2.2.2
Turnbull

and Alldrin

[2003]

Radial basis function
network to classify a

sequence of monitoring

values

Motherboard
failure prediction

based on

temperature and
voltage

③, ④

Results refer to data set

with equally likely failures

and non-failures

2.2.2

Berenji

et al. [2003]

RBF rule base obtained

by clustering from

simulated training data

Hybrid

combustion

facility

Operates on continuous

input and output of

components

2.2.2

Murray
et al. [2003]

Support Vector Machine

classification of SMART
values

Hard disk failures Achieves better recall but

at the cost of higher false
positive rate than [Hughes

et al. 2002]

2.2.2

Bod́ık et al.
[2005]

Näıve Bayes classifier

applied to hit
frequencies of most

frequently used web

pages

Detection of non

fail-stop failures in
a large Internet

application

②, ④

Focus on access statistics

2.2.3
Kiciman

and Fox

[2005]

Decision tree to classify
whether requests are

successful or not from

recorded runtime paths

Identify faulty
components in

J2EE application

server

⑤

Based on runtime

properties such as

component IDs used, etc.

2.2.3
Daidone

et al. [2006]

Use of HMMs to infer
true state of components

from sequences of

component probing
results

Identify whether a
component is

faulty

(simulations)

⑥

Based on unreliable

probing

2.3.1

Elbaum

et al. [2003]

Detection of unknown

sequences of functional

events such as function
calls, etc.

Failures of email

client “pine”

⑤

Single-threaded

applications

2.3.1

Hughes

et al. [2002]

Statistical rank sum test

of monitored values in

comparison to stored
fault-free samples of

SMART values

Failures of hard

disk drives

Monitoring variables must

relate closely to failures,

little computational
overhead

2.3.1

Chen et al.
[2002]

Pinpoint: Identification

of failure correlated
components by

clustering of runtime

paths

Failed components

of a J2EE
application

④, ⑤

Applicable if requests
traverse many components

2.3.1
Bod́ık et al.

[2005]

χ2 test-based
comparison of hit

frequencies of web pages

to a “historically
normal” distribution

Prediction of non
fail-stop failures of

major Internet site

②, ④

Failure prediction based on

usage statistics, applicable

if significant number of
usage counts is available

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Felix Salfner et al.

Category /

Reference

Model / Approach Area of

Application

Potential Applications/

Remarks

2.3.2
Murray

et al. [2003]

Unsupervised clustering
in order to determine

areas of SMART values

where the disk operates
normally

Failures of hard
disk drives

④

Number of clusters needs

to be specified

2.3.3

Ward et al.

[1998]

Comparison of current

measurement to normal

distribution using a
statistical test

TCP connections

of proxy servers

③, ④

Works for failures

indicated by a single
variable, assumption of

stationary process

2.3.3

Chen et al.
[2004]

Probability of runtime

paths computed using
PCFGs

Request failure

detection in J2EE
appl. server,
Tellme enterprise

voice appl.
network, and eBay

online auction

system

④, ⑤

Component-based systems

2.3.4
Kiciman

and Fox

[2005]

Comparison of
component interactions

to reference “peer

model” using χ2 test

Detect anomalous
component

instances in J2EE

application server

⑥

Densly connected

component interaction

graph required

2.3.5

Singer et al.
[1997]

Estimated state

computed by MSET is
compared to the

measured state by
sequential probability

ratio test

Detection whether

a memory
consuming fault

injector is active
or not, and

detection of

software aging in
transaction

processing servers

④

Focus on correlated
multivariate system

variables, details not
publicly available due to

patent restrictions

2.4.1

Garg et al.
[1998]

Smoothing of monitored

resources, seasonal
Kendall test, trend

estimation

Memory, file table

size, process table
size in UNIX

system

③

Works for systems where
time-based (rather than

workload-based) approach

is appropriate

2.4.1
Castelli

et al. [2001]

Fitting of several curve
types, selecting the best,

extrapolation until

resource exhaustion

IBM xSeries
Software

Rejuvenation

Agent

③

Li et al. [2002] showed

inferior performance

compared to ARX
modeling

2.4.1

Cheng et al.

[2005]

Fuzzy logic to detect

“unhealthy state”, linear

regression to determine
mean time to resource

exhaustion

High availability

cluster system

③

sufficiently linear resource

evolution required

2.4.2

Shere-
shevsky

et al. [2003]

Detection of software

aging by use of the
Hölder exponent and

subsequent Shewhart

change detection
algorithm

Predict system

crashes of
Windows NT 4.0

and Windows

2000 servers

Prediction of any software

aging-related failures

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 39

Category /

Reference

Model / Approach Area of

Application

Potential Applications/

Remarks

2.4.3
Hellerstein

et al. [1999]

Application of several
time series models to

remove stationary and

non-stationary effects,
predict failure by

threshold violation

Predict number of
HTTP operations

on production

server

③

Requires sufficient amount

of data in order to identify

stationary /
non-stationary effects

2.4.3

Vilalta
et al. [2002]

Stochastic time series

model accounting for
time-of-the-day, weekly,

and monthly effects,

generalized likelihood
ratio test for

change-point detection

Forecasting

webserver
workload by

predicting the

number of HTTP
operations per

second

③

Requires sufficient amount
of data in order to identify

stationary /

non-stationary effects

2.4.3

Sahoo et al.
[2003]

Various linear time

series models including
ARMA to predict e.g.,

percentage of system

utilization, idle time,
network IO

350-node cluster ②, ③

2.4.3

Meng et al.

[2007]

Rough set wavelet

network to predict next

monitoring value

Memory

consumption of

J2EE server

③

One step ahead prediction

⇒ lead-time equal to
monitoring interval

2.4.3

Ning et al.

[2006]

Fuzzy wavelet network

to predict next

monitoring value

Memory

consumption of

J2EE server

Similar to [Meng et al.

2007]

3.1
Hätönen

et al. [1996]

Episode rules
determined by data

mining followed by

manual selection of rules

Telecommunication
Alarm Sequence

Analyzer (TASA)

⑦

Profound system

knowledge required, not

suitable for dynamic
systems due to manual

rule selection

3.1

Weiss [1999]

Timeweaver: rule base

generation from scratch
using genetic

programming

Telecommunication

equipment failure
data

⑦

Events must contain
several attributes, limited

expressiveness in terms of

temporal properties

3.1
Vilalta and
Ma [2002]

Extraction of event sets
that indicate an
upcoming failure by

data mining

Failure prediction
in a 350-node
cluster system

⑦

Focus on class imbalance

3.2

Nassar and
Andrews

[1985]

Detection of changes /

trends in distribution of
error types

event log data of

three DEC
computing

systems

⑦

Estimation of distributions
requires long time windows

⇒ useful for slowly
developing failures

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Felix Salfner et al.

Category /
Reference

Model / Approach Area of
Application

Potential Applications/
Remarks

3.2

Lin and

Siewiorek
[1990]

DFT: Heuristic rules

investigating time of

error occurrence

Error log of

distributed

machines running
the Andrew file

system at

Carnegie Mellon
University

② ⑦

Builds on system

components, heuristic
rules need to be adapted

3.2

Lal and

Choi [1998]

Aggregation of errors

and trend detection in

the frequency of
occurrence

Errors and failures

in a UNIX server

⑦

Very simple method with

little computational
overhead

3.2
Leangsuk-

sun et al.
[2004]

Thresholds on sensor
measurements generate

events. Predict a failure
if frequency of

aggregated events

exceeds threshold

High availability,
high performance

Linux cluster

Simple heuristic method,
no results presented

3.3

Salfner
et al. [2006]

SEP: error report

sequences modelled
using a semi Markov

model

Performance

failures of a
telecommunication

system

⑦

Includes both type and
time of error reports

3.3

Salfner and
Malek

[2007]

Model error report

sequences using hidden
semi-Markov models

(HSMM)

Performance

failures of a
telecommunication

system

⑦

Includes both type and
time of error reports, can

handle permutations in

event sequences

3.4
Levy and

Chillarege

[2003]

Detection of changes in
subsystem order built

from their error

generation frequency

Comverse Voice
Mail system

②, ④, ⑥

Significant amount of

errors without successive

failures needed for reliable
estimation of component

order

3.5

Domeniconi
et al. [2002]

SVD-SVM: Using

techniques from natural
language processing,

classify error sequences

using support vector
machines

Production

computer network
with 750 hosts

⑦

In order to provide better insight into categories, appendices describe various
approaches that are representative for each category. Table IV in Appendix A lists
the approaches that are described in Appendices B to K. “Classification” refers
to the category of our taxonomy the approach is assigned to, “application area”
denotes the areas the method was or could be implemented in, the metrics which
were used to assess the quality of the corresponding failure prediction approach are
listed in “metrics” and, finally, “failure model” names the failures and/or faults
that can be predicted by the examined technique. Most of these techniques have
been tested and evaluated in practice.

Let us reiterate and summarize: dependability and resilience are and will remain
a permanent challenge due to:
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 41

—Ever-increasing systems complexity
—Ever-growing number of attacks and threats
—Novice users
—Third-party, open-source software, Commercial-Of-The-Shelf (COTS) compo-

nents
—Growing connectivity and interoperability
—Dynamicity (frequent configurations, reconfigurations, updates, upgrades and

patches, ad hoc extensions)
—Systems proliferation to applications in all domains of human activity

In such circumstances proactive fault management by runtime monitoring and on-
line failure prediction seem to be one of a very few alternatives for effective online
dependability assessment and enhancement. In our opinion, proactive fault man-
agement (where failure prediction plays a crucial role) is the key enabler for the
next generation of dependability improvement. Researchers have adopted various
concepts from computer science resulting in a diverse landscape of approaches to
online failure prediction. The goal of this survey is to provide an overview of exist-
ing approaches including key properties and fields of application in order to prepare
researchers for the next challenge of proactive fault handling: the prediction-based
triggering of effective countermeasures to enhance system availability by potentially
an order of magnitude or more [Candea et al. 2004; Salfner et al. 2005] by using
effective failure avoidance and downtime minimization methods.

Acknowledgment

We would like to express our gratitude to the reviewers who provided several con-
structive comments that helped to improve this survey.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Felix Salfner et al.

APPENDIX

A. LIST OF PREDICTION METHODS DESCRIBED IN APPENDIX

Table IV. Overview of reference online failure prediction methods that are described in detail in

Appendices B-K.

Class Application

Area

Metrics Failure Model

BlueGene/L
[Liang et al. 2006]

1.2 extreme-scale
parallel systems

recall transient and
permanent faults

of software and
hardware

Reward Model

[Vaidyanathan

and Trivedi 1999]

2.1.1 software

rejuvenation

not specified time of resource

exhaustion

UBF [Hoffmann
2006]

2.1.3 large software
systems

ROC, AUC,
cost-based metric

permanent and
transient faults

Näıve Bayes

[Hamerly and

Elkan 2001]

2.2.1 disk drives true and false

positive rate,

ROC

disk drive failures

Threshold

Violation

[Vilalta et al.
2002]

2.4.3 systems

management,

workload
forecasting

false positive rate transient,

intermittent and

permanent faults

Timeweaver

[Weiss 2002; 1999]

3.1 telecommunication

systems, hardware

recall, precision,

F-measure

intermittent and

reoccurring faults

Eventset [Vilalta

and Ma 2002]

3.1 computer

networks,
financial

transactions

false positive and

false negative rate

intermittent and

permanent faults

DFT [Lin and
Siewiorek 1990]

3.2 electromechanical,
electronic devices

performance,
frequency of rule

firings

intermittent faults

HSMM [Salfner

and Malek 2007]

3.3 large software

systems

precision, recall,

false positive rate,
F-measure, ROC

permanent and

intermittent faults

SVD-SVM

[Domeniconi et al.

2002]

3.5 computer

networks

error rates critical and fatal

error events

Please note that a direct comparison of the approaches with respect to certain
metrics cannot be provided due to the diversity of experimental conditions as well
as lack of details in the papers. Therefore, we opted for summarizing key results
for each method independently. For more information, the interested reader might
refer to the original publication.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 43

B. BLUEGENE/L FAILURE PREDICTION

Authors, developed at: Yinglung Liang, Yanyong Zhang, Rutgers University,
New Jersey, USA; Morris Jette, Lawrence Livermore National Laboratory, Cali-
fornia, USA; Anand Sivasubramaniam, Penn State University, Pennsylvania, USA;
Ramendra Sahoo, IBM T. J. Watson Research Center, New York, USA

Classification: 1.2

Special application areas: Failure prediction on extreme-scale parallel systems
such as IBM BlueGene/L.

Basic idea: The authors use event logs containing reliability, availability and
serviceability data from IBM’s BlueGene/L to predict memory, network and appli-
cation I/O failures of the supercomputer. They develop three prediction algorithms
based on failure occurrence before non-fatal events and the spatial skewness of fail-
ure occurrence. A three-step filtering algorithm is applied to extract and categorize
failure events as well as to perform temporal and spatial compression. Failure pre-
diction is based upon temporal and spatial failure characteristics and correlations
between fatal and non-fatal events.

Outline of algorithm:

(1) After applying the filtering algorithm, failure events that are reported by the
same job are clustered. Events that are detected by different jobs are not
merged.
(a) Events with severity either fatal or failure are extracted. Failures are fur-

ther classified into categories according to the subsystem in which they
occur: memory, network, application I/O, midplane switch and node card
failures.

(b) Failure events that occur within the same subsystem and are reported by
the same location as well as the same job are combined into a cluster if
the interarrival time between these events is lower than some pre-specified
threshold (e.g., five minutes). This step is called temporal compression.

(c) As failures can be reported by multiple locations, spatial filtering removes
all failure events from different locations that are reported by the same job
and contain the same event description, within a certain time window (e.g.,
five minutes).

(2) Prediction based on inter-event times: After the occurrence of a network or
application I/O failure more failures are likely to occur shortly.

(3) Prediction based on spatial skewness: If some components have reported more
failure events than others, it is likely that more failures will follow in the near
future at the same location. This is especially true for network failures.

(4) It has been observed that large bursts of non-fatal events are mostly followed
by fatal failure events. If a job has experienced two or more non-fatal events, it
is likely that either itself or the following four jobs may be terminated because
of a fatal failure.

Metrics used: The quality of the failure prediction methods are assessed using
recall.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Felix Salfner et al.

Input data used: RAS (reliability, availability and serviceability) event logs from
IBM’s BlueGene/L supercomputer serve as event-driven input dataset. In two and
a half months 1.318.137 events occurring in various system components have been
recorded.

Failure models: The authors intend to predict transient and permanent failures
of hardware and software as well.

Results, application areas, experiments: The prediction methods were ap-
plied to BlueGene/L, a supercomputer with 128K processors. 37% of all network
failures and 48% of all application I/O failures were predicted by using temporal
compression. If network and application I/O failure events were merged, 370 out
of 687 failures (54%) were predicted. By monitoring the following five jobs after
the occurrence of a non-fatal event, 82% of the total fatal failures can be predicted.
Futhermore, if five jobs after observing a fatal failure are checked, 9.5% additional
fatal failures can be caught.

Main reference: [Liang et al. 2006]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 45

C. SEMI-MARKOV REWARD MODEL

Authors, developed at: Kalyanaraman Vaidyanathan, Kishor S. Trivedi, Duke
University, North Carolina, USA

Classification: 2.1.1

Special application areas: Software Rejuvenation.

Basic idea: The authors present a semi-Markov reward model that is based on
workload and resource usage data to allow the prediction of resource exhaustion
due to software aging. Thus software rejuvenation processes may be controlled.
A semi-Markov process utilizing sojourn time, i.e., the time spent in a state, and
transition probabilities is used as base model. In order to build a state-space model
different workload states are identified by monitoring and clustering four system
parameters. Corresponding to two system resources (used swap-space and free
memory), a reward is assigned to each workload state based on the rate of resource
consumption in this state. The model is solved to estimate the resource usage trend
and to predict the time to exhaustion of resources.

Outline of algorithm:

(1) To identify essential workload states, four system variables are taken into con-
sideration: the number of process context switches, the number of system
calls, the number of page-in operations and the number of page-out operations.
Therefore, each data point in a four-dimensional space represents a workload
measured at a particular time. These data points are clustered such that the
sum of squares within each cluster is minimized.

(2) A state-transition model is built by computing the transition probability pij

from a state i to a state j for each workload state using the formula:

pij =
observed number of transitions from state i to state j

total observed number of transitions from state i
(10)

(3) The distribution of sojourn time for each workload state is determined.
(4) A reward rate, which is assigned to each workload state for each resource, is

computed as the slope (rate of increase/decrease per unit time interval) of a
specific resource in a specific workload state. This is done by using a non-
parametric procedure by Sen [1968] that computes the slope as the median of
the difference quotients of all pairs of measurement points xi and xj for which
i > j.

Metrics used: The authors do not specify any metrics to assess the quality of
their approach.

Input data used: Continuous parameters concerning the operating system re-
source usage and the system activity were periodically monitored on nine UNIX
workstations over a period of three months. However, in the referenced paper, only
data of one machine is used.

Failure models: It is assumed that the exhaustion of operating system resources,
such as memory and swap-space, may lead to software failures. Therefore, a

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · Felix Salfner et al.

measurement-based methodology is developed that takes the system workload into
account to estimate a resource usage trend and to accomplish failure prediction,
i.e., to predict the time of exhaustion of resources.

Results, application areas, experiments: The semi-Markov reward model was
solved using the Symbolic Hierarchical Automated Reliability and Performance
Evaluator (SHARPE) [Sahner et al. 1996]. The expected accumulated reward over
time with respect to a specific resource is considered to be an estimator of the
resource usage trend. It is shown that the developed model gives better trend
estimates than a purely time-based approach. However, since interactions between
resources are not taken into account, the estimated time of resource exhaustion
does not necessarily coincide with a system failure.

Main reference: [Vaidyanathan and Trivedi 1999]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 47

D. UNIVERSAL BASIS FUNCTIONS (UBF)

Authors, developed at: Günther A. Hoffmann, Humboldt University, Berlin,
Germany

Classification: 2.1.3

Special application areas: High level modeling for software systems, single server
scenarios.

Basic idea: Given a software system that permanently monitors characteristic
variables such as workload, number of processes, used I/O bandwidth, the proba-
bility of failure occurrence is assumed to be a function of a selection of these input
variables. This functional interrelation is learned from previously recorded mea-
surements by proposing a machine learning approach: universal basis functions.
UBF are a further development of radial basis functions (RBF) where each kernel
is a weighed mixture of two kernels, e.g., a mixture of Gaussian and sigmoid.

Outline of algorithm: The approach is inspired by machine learning techniques.
It employs offline selection of parameters (variable selection) from previously recorded
training data and is then used to perform an online prediction of failures.

(1) The probability of failure occurrence is modeled as a weighted mixture of uni-
versal basis functions:

f(~x) =
N∑

i=1

αi(~x) Gi(~x, βi) (11)

where αi are weights and Gi are universal basis functions. More precisely, each
universal basis function Gi is a mixture of two kernel functions φ1 and φ2 (such
as sigmoid or Gaussian) weighed by β:

Gi(~x, β) = β φ1(~x,~λ1,i) + (1− β) φ2(~x,~λ2,i) (12)

where ~λ denotes the parameter vector of the kernel function (e.g., µ and σ in
case of a Gaussian kernel).

(2) The goal of training the model from previously recorded training data is to
determine the model’s parameters αi, βi, λ1,i and λ2,i. This is achieved using
an iterative evolutionary optimization algorithm that tries to find an optimal
set of parameters such that the mean square error of the training dataset is
minimized:

Λ = argminΛ

M∑
j=1

(f(~xj)− yj)
2 (13)

where Λ denotes the set of all model parameters and the tuple (xj , yj) is one
data point in the training dataset. yj is the target value of the function f :
It equals 1 if a failure had occurred during measurement j and 0 if no failure
occurred.

(3) Once the model is trained, the measurements that are obtained during runtime
are used to evaluate equation 11. The resulting value for f is an estimate of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

48 · Felix Salfner et al.

probability that a failure will occur. If it exceeds some predefined threshold,
a failure warning is raised. It is a matter of fact that in most cases prediction
performance is best if not all measurements that are available are fed into the
model. Therefore, an indicative choice of input variables has to be selected
carefully. In order to obtain such a selection, techniques known as “variable
selection” have to be applied (see, e.g., Guyon and Elisseeff [2003] for an intro-
duction).

Metrics used: Prediction quality has mainly been assessed using ROC plots and
AUC. A cost-based metric that assigns cost to true positive and false positive pre-
dictions has been introduced in [Hoffmann et al. 2004] and improved in [Hoffmann
2006].

Input data used: Since the approach is based on measurements that reflect the
effects of faults, it is focused on periodic measurements of continuous variables.
However, event-driven data can additionally be included.

Failure models: The approach is based on the assumption that a functional
relationship between input-variables and the probability of failure occurrence exists.
Furthermore, it tries to infer this relationship from previous samples. This implies
that the relationship must be causal and must have been observed (at least with
some similarity) several times before. This assumption holds for both permanent
and transient faults that lead to failures.

Results, application areas, experiments: Experiments have been carried out
using periodic measurements of a commercial telecommunication platform. The
data had been collected with the UNIX System Activity Reporter (SAR) and com-
prised 192 different periodic measurements ranging from the number of running
processes to memory consumption. After applying a variable selection technique
only two variables have been used: the number of semaphore operations per second
and the amount of allocated kernel memory. The method achieved 0.9024 AUC for
5 min lead time.

Although the method was originally developed to predict the occurrence of fail-
ures in a large commercial telecommunication system [Hoffmann 2006], the method
has also been successfully applied to the prediction of resource consumption in the
Apache webserver [Hoffmann et al. 2006].

Main references: [Hoffmann 2004; 2006; Hoffmann and Malek 2006; Hoffmann
et al. 2006]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 49

E. NÄIVE BAYES CLASSIFIERS FOR FAILURE PREDICTION

Authors, developed at: Greg Hamerly, Charles Elkan, University of California,
San Diego, USA

Classification: 2.2.1

Special application areas: Hard disk drive failure prediction.

Basic idea: The authors propose two Bayesian methods for the prediction of hard
disk drive failures: an anomaly detection algorithm that utilizes a mixture of näıve
Bayes submodels and a näıve Bayes classifier that is trained by a supervised learning
method. The first method builds a probability model only for drives behaving
normal. The Näıve-Bayes Model is trained by using Expectation-Maximization and
is hence called NBEM. The second method is computing conditional probabilities
for SMART values belonging to the failure or non-failure class. As the authors
are only giving little information on the classifier, it will not be described here in
further detail.

Outline of algorithm:
Constructing the anomaly detector:

(1) The probabilistic model used here is a mixture of näıve Bayes submodels, which
can be seen as clusters. The model takes a data point as input, which may be
a summary of hard drive behavior for a certain time interval, and outputs a
probability of failure occurrence:

P (x) =
∑

k

P (x|k)P (k) (14)

P (k) is the prior probability of a submodel k, P (x|k) is the probability that
the data point x is generated by submodel k. As in näıve Bayes approaches it
is assumed, that the attributes xi of a data point x are conditionally indepen-
dent, the joint probability can be computed as the product of single attribute
probabilities:

P (x|k) =
d∏

i=1

P (xi|k) (15)

To allow for smooth probability estimates, the values of the attributes are
placed in bins, which are internal values representing the true attribute values.
This approach uses equal-width binning, where the data range is divided into
intervals of the same size. Each interval is represented by a bin.

(2) The model parameters are learned from the training data. After initializing
the model by assigning data points randomly to submodels, the expectation-
maximization (EM) training starts. EM works in rounds of E- and M-steps:
the E-step determines the probability for each data point that each submodel
is generating this point. During the M-step the parameters P (xi|k) and P (k)
are updated and the logarithm of the likelihood is maximized.

(3) A probability threshold t is chosen either by hand or learned experimentally.
If the probability of the data point is below this threshold, the data point is

ACM Journal Name, Vol. V, No. N, Month 20YY.

50 · Felix Salfner et al.

classified as anomalous.
(4) A failure warning is raised if any of the data points is either identified as

anomalous or as failure (by the classifier).

Metrics used: The authors use true and false positive rate as well as ROC curves
to evaluate the quality of their prediction methods.

Input data used: The approach uses time-driven SMART (self-monitoring and
reporting technology) values of 1936 Quantum Inc. disk drives as data set. SMART
attributes comprise for example spin-up time, power-on hours and counts for seek
errors and CRC errors.

Failure models: The presented methods are capable of predicting hard disk drive
failures based on SMART values, which are representing the internal conditions of
disk drives.

Results, application areas, experiments: NBEM as well as the näıve Bayes
classifier have been applied to the input data set. Using a decision threshold of
0.005, NBEM achieves a true positive rate of 0.33 while raising false warnings with
a probability of 0.0036. The classifier is able to identify 56% of all failures while
having a false positive rate of 0.0082 at a class threshold t of 0.001. Overall, the
standard näıve Bayes classifier performs better than NBEM. Nevertheless, NBEM
still outperforms industry standard methods and the approach proposed in [Hughes
et al. 2002].

Main reference: [Hamerly and Elkan 2001]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 51

F. PREDICTION OF THRESHOLD VIOLATIONS

Authors, developed at: Ricardo Vilalta, Chidanand V. Apte, Joseph L. Heller-
stein, Sheng Ma, Sholom M. Weiss, IBM T. J. Watson Research Center, New York,
USA

Classification: 2.4.3

Special application areas: Systems management, especially prediction of work-
load.

Basic idea: The paper presents three predictive algorithms: (1) long-term predic-
tion of performance variables such as disk utilization, (2) short-term prediction of
abnormal behavior (e.g., threshold violations) and (3) short-term prediction of sys-
tem events such as router failures. As we are interested in time series prediction,
only the second approach will further be explained here. The authors construct
a statistical model of the time-varying behavior of a production webserver - its
HTTP operations per second (httpops) are of special interest. After removing non-
stationary components (i.e., mean, daily, weekly and monthly effects), the algorithm
searches for residuals to identify abnormal behavior.

Outline of algorithm:

(1) To build the stochastic model, the effect of the time of day is considered first.
vjd denotes the value of httpops for the j-th five-minute interval (i.e., the time-
of-day value) and the d-th day in the collected data. vjd is decomposed into
three parts: the grand mean µ, the deviation from the mean αj due to the time-
of-day value and an error term εjd that captures daily variability. Therefore,
the model incorporating mean and daily effects is:

vjd = µ + αj + εjd (16)

The time-of-day effects are removed and the residuals are searched for more
patterns.

(2) The weekly effect is incorporated into the model: βw denotes the effect of the
w-th day of the work week. This is also a deviation from µ.

(3) After removing the weekly effects, the model is extended once more to consider
monthly effects on the data represented by γm. The model is:

vjdwm = µ + αj + βw + γm + εjdwm (17)

(4) The authors assume that the time index t can be expressed as function of
(j, d, w,m). Therefore, a second-order autoregressive model is introduced that
extends equation 17:

εt = θ1εt−1 + θ2εt−2 + ut (18)

θ1 and θ2 are model parameters, which are estimated from the data, and ut are
random variables, which are independent and identically distributed.

(5) After removing time serial dependencies, a change-point detection algorithm is
applied that detects anomalies (e.g., an increase in the mean or the variance).
Here the GLR (Generalized Likelihood Ratio) algorithm is used. A reference

ACM Journal Name, Vol. V, No. N, Month 20YY.

52 · Felix Salfner et al.

time window is used to test whether the parameters of a test time window differ
significantly.

Metrics used: Only false alarms, i.e., false positive rate, are used to assess the
quality of the forecasting method.

Input data used: Time-driven input data is obtained over a period of eight
months from a production webserver of a large company. It was collected in intervals
of five minutes. The authors analyze HTTP operations per second.

Failure models: The approach is designed to predict anomaly behavior and is
used here for workload forecasting of a webserver. Transient as well as intermittent
and permanent faults can be detected.

Results, application areas, experiments: The method was applied to the
webserver data of a day for which no abnomal behavior is apparent. As normal
load fluctuations were considered, the algorithm did not raise any false alarms.
Furthermore, no anomalies were detected.

To our knowledge no more results on experiments were published.

Main reference: [Vilalta et al. 2002]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 53

G. TIMEWEAVER

Authors, developed at: Gary M. Weiss, AT&T Labs, New Jersey, USA

Classification: 3.1

Special application areas: Telecommunication Systems, Hardware (4ESS switches).

Basic idea: Timeweaver is a data mining system that generates a set of rules
used to predict telecommunication equipment failures from network alarm messages
(i.e., error messages) generated by 4ESS switches that route the majority of the
AT&T network traffic. The set of rules is created “from scratch” using a genetic
programming approach: starting from an initial set of rules, new rules are created
by crossing and mutations. Each rule set is assessed using a fitness function that
takes into account prediction quality and diversity of the rule set.

Outline of algorithm:

(1) The alarms of the 4ESS switches served as target dataset. All kinds of failure
alarms are replaced with a common failure alarm and redundant alarms are
removed.

(2) Data mining:
(a) Patterns are encoded as follows: Patterns are sequences of pattern-events,

where each pattern-event corresponds to an event in the dataset (i.e.,
an alarm). Pattern-events are of the form <device-id, device-type,
diag-code, severity>. The feature values in pattern-events may take
on a wildcard-value. There are ordering constraints between successive
events in the pattern. A pattern duration is associated with each pattern.
Patterns are described by a pattern language.

(b) Each pattern-event in the pattern matches an event in the sequence, the
specified ordering constraints are obeyed and all events involved in the
match occur within a time period corresponding to the pattern duration.
The sample pattern 351:<id20, TMSP, ?, Major> * <id20, TMSP, ?,
Major> * <id20, TMSP, ?, Minor> is matched if within 351 seconds two
major alarms, followed by a minor alarm, occur on the same device. The
diagnostic code does not matter as indicated by the wildcard “?”. The
“*” represents the after constraint and specifies the relative ordering of the
pattern-events.

(c) Recall and precision are computed for each pattern. Proportional to their
fitness pattern are selected for combining and mutation to generate new
patterns.

(3) The process is iterated to modify the used parameters monitoring and warning
time.

Metrics used: Evaluation of timeweaver comprises recall and precision. The
fitness of prediction patterns is computed using the F-measure.

Input data used: The alarms of the 4ESS switches collected over two weeks serve
as event-driven target dataset. It consists of 148,886 alarms whereas each alarm is
characterized by five variables: the time the alarm is generated, a unique identifier

ACM Journal Name, Vol. V, No. N, Month 20YY.

54 · Felix Salfner et al.

for the device associated with the alarm, the type of device, the diagnostic code of
the alarm, and the severity of the alarm.

Failure models: The author intends to identify intermittent and reoccurring faults
of the 4ESS switches.

Results, application areas, experiments: The target dataset was split into
disjoint training and test sets. Timeweaver was applied to the training set and the
discovered patterns were evaluated on the test set. While holding the monitoring
time constant at eight hours, the warning time was varied and precision/recall
curves were generated by ordering the patterns from most to least precise.

It is shown, that the precision of the prediction decreases as the recall increases.
The performance of the rules depends heavily on the lead-time ∆tl (see Figure 4):
the shorter the lead-time, the better the prediction.

Main references: [Weiss 2002; 1999]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 55

H. EVENTSET METHOD

Authors, developed at: Ricardo Vilalta, University of Houston, Texas, USA;
Sheng Ma, IBM T. J. Watson Research Center, New York, USA

Classification: 3.1

Special application areas: Computer Networks, Financial Transactions.

Basic idea: This data mining approach intends to predict errors, called target
events, such as attacks in computer networks or illegal financial transactions, by
capturing patterns that characterize the conditions preceding each target event.
Such patterns are sets of event types and referenced here as “eventsets”. The
algorithm performs several steps to find eventsets, which occur frequently before
target events but not outside the time windows preliminary to failures (see Figure
16). After the validation of eventsets, eventsets that are overly general are filtered
out and a rule-based system for failure prediction can be built.

Outline of algorithm:

(1) First of all a target event is defined.
(2) To find all frequent eventsets the following is done: All events occurring within

a certain time window are maintained in memory. All event types within the
window are saved as a new transaction on every occurrence of a target event.
After analyzing all events, eventsets that are above a minimum support (i.e.,
that occur with a minimum probability before a target event) can be found.

(3) After identifying frequent eventsets, eventsets that are frequent and accurate
have to be found. Therefore, eventsets that are below a minimum degree of
confidence (i.e., that occur with a minimum probability solely before target
events and are rarely preceding non-target events) are filtered out. This is
done by analyzing the number of times each of the frequent eventsets occurs
outside the windows preceding target events.

(4) The eventsets are validated: As the probability of an eventset occurring before a
target event has to be higher than the probability of the eventset not preceding
target events, any negative correlation between an eventset and the occurrence
of target events are discarded.

(5) A rule-based model that can be used for failure prediction is built. All eventsets
are sorted according to their ranks, which depend on the degree of support
and confidence. Eventsets that are too general are removed. The rule-based
system predicts failures, if an eventset (i.e., rule) occurs within the current time
window.

Metrics used: Prediction quality has mainly been assessed using the false positive
and false negative rate.

Input data used: Both, a data generator and a production computer network
serve as event-driven data sources.

Failure models: The authors intend to predict rare events, i.e., target events.
Only reoccurring failures which were present in the training data can be predicted.

ACM Journal Name, Vol. V, No. N, Month 20YY.

56 · Felix Salfner et al.

Fig. 16. Eventset Method.

This is true for intermittent as well as permanent faults.

Results, application areas, experiments: The method was first applied to arti-
ficial domains. A data generator created sequences of events, which were uniformly
distributed over a time interval of one week. The first half of events served for
training and the other half served for testing. Results show that patterns are easier
to identify as the pattern size increases, as the number of event types increases and
as the density of events decreases. Furthermore, the relationship between the level
of minimum support and the amount of CPU time is illustrated.

The method was then implemented in a production computer network with 750
hosts. Over 26.000 events with 165 different types of events were collected during
one month of monitoring. The analysis covered two critical types of target events:
end-to-end response times to a host and URL time-outs. The results show that the
size of the time window and the existence of eventsets frequently occurring before
target events are crucial to the effectiveness of the method.

Main reference: [Vilalta and Ma 2002]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 57

I. DISPERSION FRAME TECHNIQUE (DFT)

Authors, developed at: Ting-Ting Y. Lin, University of California, California,
USA; Daniel P. Siewiorek, Carnegie Mellon University, Pennsylvania, USA

Classification: 3.3

Special application areas: Electromechanical and Electronic Devices.

Basic idea: The dispersion frame technique utilizes error logs for fault diagnosis
and failure prediction working under the assumption that errors are manifestations
of faults. A trend analysis is performed by determining the frequency of error
occurrences whereas intermittent errors are extracted from transient errors in the
system error log. The DFT applies two metrics: the dispersion frame (DF) is the
interarrival time between successive error events of the same error type, the error
dispersion index (EDI) is the number of error occurrences in half of a DF. A high
EDI therefore exhibits a group of highly related errors. In order to predict failures
a set of heuristic rules is defined that evaluate the number of error occurrences in
successive DFs, which may result in a failure. Some of the rules test if errors occur
in a distribution that is typical for upcoming failures (Weibull distribution), others
are based on empirical experiences. Whereas the latter criteria are hardly useful
for general problems, the usefulness of the first rules depends on whether the errors
really fit the assumed distribution.

Outline of algorithm:

(1) A time line of the five recent error occurrences for each observed device is
drawn. Figure 17 shows the error events i-4, i-3, i-2, i-1, and i.

(2) The previous DFs are centered around each error occurrence on the time line.
For example, frame i-3, which is the interarrival time between events i-4 and
i-3, is centered around events i-3 and i-2.

(3) The number of errors from the center to the right end of each frame is designated
as the EDI.

(4) A failure warning is issued under the following conditions:
(a) 3.3 rule: when two consecutive EDIs from the same frame are greater or

equal to 3,
(b) 2.2 rule: when two consecutive EDIs from two successive frames are greater

or equal to 2,
(c) 2-in-1 rule: when a DF is less than one hour,
(d) 4-in-1 rule: when four error events occur within a 24-hour-frame,
(e) 4 decreasing rule: when there are four monotonically decreasing frames and

at least one frame is half the size of its previous DF.

(5) Usually several iterations between steps 2 to 4 are performed before a warning
is issued.

Metrics used: Evaluation of the DFT comprises the frequency of rule firings for
each device and the performance of the prediction rules on each device.

ACM Journal Name, Vol. V, No. N, Month 20YY.

58 · Felix Salfner et al.

Fig. 17. Dispersion Frame Technique.

Input data used: Data was collected over a 22 month period from 13 VICE
file servers of the campus-wide Andrew file system at Carnegie Mellon University.
Event-driven data sources include the automatic error logs of the file servers and
an operator’s log.

Failure models: The authors assume that there exists a period of increasing
intermittent error rate before most hardware failures. They are therefore extracting
intermittent errors from the error logs to predict hardware failures.

Results, application areas, experiments: The DFT was implemented in a
large-scale distributed computing environment at Carnegie Mellon University, which
consists of workstations, high bandwidth networks and 13 file servers in a time-
sharing file system called VICE. Over a period of 22 month there were 20 workstation-
years of data collected.

The DFT requires only between three and five events in order to identify a trend
to predict failures, that is only 20% of the error log entries required by statistical
methods. 16 of 29 hardware failures that require repairs have been recorded by the
online monitoring system, 15 of this 16 failures were correctly predicted while five
false warnings were raised. The DFT for this case study therefore achieves recall
of 93,75% and precision of 75%.

Main reference: [Lin and Siewiorek 1990]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 59

J. HSMM-BASED FAILURE PREDICTION

Authors, developed at: Felix Salfner, Humboldt University, Berlin, Germany

Classification: 3.2

Special application areas: The approach aims at predicting of failures in large
software systems.

Basic idea:
The approach is based on the assumption that failure-prone system behavior can

be identified by characteristic patterns of errors. The rationale for this assumption is
that due to dependencies within the software, a detected fault (error) in one system
component leads —under certain conditions— to errors of dependent components.
The goal is to identify and recognize those patterns that indicate an upcoming
failure by Hidden Semi-Markov Models (HSMMs).

Two HSMMs are trained from previously recorded log data: One for failure
and one for non-failure sequences. Online failure prediction is then accomplished
by computing likelihood of the observed error sequence for both models and by
applying Bayes decision theory to classify the sequence (and hence the current
system status) as failure-prone or not (see Figure 18).

Fig. 18. Online failure prediction using hidden semi-Markov models.

Outline of algorithm:

(1) A sequence of error messages can be interpreted as a temporal sequence. Train-
ing data is analyzed in order to extract error sequences preceding a failure by a
certain lead-time (failure sequences) and not preceding any failure (non-failure
sequences).

(2) Two HSMMs are trained: One from failure and one from non-failure sequences.
HSMMs extend standard hidden Markov models by defining cumulative prob-
ability distributions in order to specify the duration of state transitions. By

ACM Journal Name, Vol. V, No. N, Month 20YY.

60 · Felix Salfner et al.

this approach, the two HSMMs learn to identify the specifics of failure and
non-failure sequences.

(3) After training, the model is used for online failure prediction: During runtime,
each time an error occurs, the sequence o of errors and delays that have occurred
within some time window before present time are classified whether they belong
to a failure-prone pattern or not. Classification consists of the following steps:
(a) Sequence likelihood of o is computed for both HSMM models:

P (o|λ) =
∑
s

πs0 bs0(o0)

L∏
k=1

P (Sk =sk, dk = tk − tk−1|Sk−1 =sk−1) bsk
(ok) (19)

where λ denotes HSMM parameters, s = [sk] denotes a sequence of states
sk of length L+1 and tk’s are the timestamps of the errors in the sequence,
πi’s denote initial state probabilities, and bi(ok) denotes observation prob-
ability of state si for the k-th error observed in the sequence. The sum
over s indicates that all possible state sequences are investigated. The
forward algorithm (c.f., [Rabiner 1989]) is used to compute Equation 19 ef-
ficiently. Sequence likelihood can be interpreted as a probabilistic measure
of similarity of a sequence o to failure and non-failure sequences.

(b) Using Bayes decision theory, sequence o is classified as failure-prone, iff

log
[
P (o |λF)

]
− log

[
P (o |λF̄)

]
> log

[
cF̄F − cF̄ F̄

cFF̄ − cFF

]
︸ ︷︷ ︸

∈(−∞;∞)

+ log
[
P (F̄)
P (F)

]
︸ ︷︷ ︸

const.

(20)

where cta denotes the associated cost for assigning a sequence of type t to
class a, e.g., cFF̄ denotes cost for falsely classifying a failure-prone sequence
as failure-free. P (F) and P (F̄) denote class probabilities of failure and non-
failure sequences, respectively.

Metrics used: Prediction quality is assessed by using precision, recall, false posi-
tive rate, F-measure, and ROC plots.

Input data used: The approach analyses error messages of large systems which
are at least determined by a timestamp and a discrete message type.

Failure models: The approach is data-driven, which means that HSMM failure
predictors generalize from system behavior as observed in training data. For this
reason, only reoccurring failures present in the training data can be predicted. This
holds for permanent as well as intermittent faults.

Results, application areas, experiments: Analyses show excellent prediction
performance on field data of an industrial telecommunication system. For the
maximum F-measure, a precision of 0.85, recall of 0.66, and false positive rate of
0.0145 has been achieved.

Main references: [Salfner and Malek 2007; Salfner 2008]

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 61

K. SINGULAR VALUE DECOMPOSITION AND SUPPORT VECTOR MACHINES
(SVD-SVM)

Authors, developed at: Carlotta Domeniconi, University of California, Cali-
fornia, USA; Chang-Shing Perng, Ricardo Vilalta, Sheng Ma, IBM T. J. Watson
Research Center, New York, USA

Classification: 3.5

Special application areas: Error event prediction in computer networks.

Basic idea: The approach describes the application of latent semantic indexing
[Deerwester et al. 1990], an information retrieval technique, to error event predic-
tion. Event sequences, where each event is characterized by a timestamp, the event
type and the severity level, are obtained from continuous monitoring of a computer
network. Each event type is represented by a dimension and each error event se-
quence that is observed within a certain time interval (i.e., the monitor window) is
a vector in this high-dimensional space. The components of such a vector could en-
code the number of occurrences of the corresponding event type within the monitor
window or their values could be a function of the event timestamps. Singular value
decomposition is used to de-correlate event sequences and to reduce the feature
space, whereas classification is performed by use of support vector machines.

Outline of algorithm:

(1) Feature construction:
(a) Training sets of positive and negative examples for each target event are

generated by monitoring the event history of time intervals preceding and
far from the occurrence of a target event.

(b) Event sequences are mapped into vectors which are in turn represented
as matrix D, whose rows are indexed by event types and the columns by
training vectors. D has m × n dimensions: m different event types and n
monitor windows.

(2) Feature Selection:
(a) D is decomposed into D = UΣV t by performing the SVD. U and V are

square orthogonal matrices. Σ has the same dimensions as D, but is only
non-zero on the diagonal. It contains the singular values with σ as their
average value.

(b) k is set to the number of singular values which are above σ.
(c) To reduce the dimension of the feature space, the vectors are projected

into the subspace spanned by the k largest singular values. Therefore,
the projection operator P = U t

k is constructed. Uk consists of the first k

columns of U . By computing l̂i = (Pli) ∈ <k the vectors li are projected
into the selected k dimensions and a new training set is obtained.

(3) A support vector machine is trained for classification and prediction using the
training set of the step before.

Metrics used: Evaluation of SVD-SVM comprises error rates.
ACM Journal Name, Vol. V, No. N, Month 20YY.

62 · Felix Salfner et al.

Input data used: The system management event messages of a computer network
with 750 hosts are used as event-driven dataset. Within 30 days 26.554 events are
collected with 692 events rated critical and 16 fatal. 164 event types were identified.

Failure models: The authors focus on system management events and intend to
predict error events with severity either critical or fatal (i.e., target events).

Results, application areas, experiments: The approach was applied to the
data of a production computer network. Two critical event types were pre-
dicted: “CRT URL Timeout”, which indicates that a website is not accessible,
and “OV Node Down”, which indicates that a managed node is down.

Various experiments have been carried out to compare different feature construc-
tion processes: the event types were encoded by existence, by the number of their
occurrence and by the times of their occurrence. The best performance has been ob-
tained with existence as feature construction process. Furthermore, an experiment
has been performed to determine the proper length of the monitor window. The
authors discovered that the error rate, the number of selected dimensions and the
window length correlate: the number of selected dimensions grows as the length of
the monitor window increases. A stable point is reached when the error rate comes
to its minimum.

Results of offline and online prediction are compared to C4.5 [Quinlan 1993], a
standard machine learning algorithm, and SVM. SVD-SVM and SVM mostly show
a similar performance, whereas C4.5 is in most cases the worst performer. The
error rates of SVD-SVM range from 6.8 to 7.7 for offline, and 7.2 to 8.6 for online
prediction.

Main reference: [Domeniconi et al. 2002]

REFERENCES

Abraham, A. and Grosan, C. 2005. Genetic programming approach for fault modeling of
electronic hardware. In IEEE Proceedings Congress on Evolutionary Computation (CEC’05),.

Vol. 2. Edinburgh, UK, 1563–1569.

Aitchison, J. and Dunsmore, I. R. 1975. Statistical Prediction Analysis. Cambridge University

Press.

Altman, D. G. 1991. Practical Statistics for Medical Research. CRC Press.

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. 1990. Basic local alignment
search tool. Journal of Molecular Biology 215, 3, 403–410.

Andrzejak, A. and Silva, L. 2007. Deterministic models of software aging and optimal re-
juvenation schedules. In 10th IEEE/IFIP International Symposium on Integrated Network

Management (IM ’07). 159–168.

Aviz̆ienis, A. and Laprie, J.-C. 1986. Dependable computing: From concepts to design diversity.

Proceedings of the IEEE 74, 5 (May), 629–638.

Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. 2004. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1, 1, 11–33.

Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel A.,
and van Steen, M., Eds. 2005. Self-Star Properties in Complex Information Systems. Lecture

Notes in Computer Science, vol. 3460. Springer-Verlag.

Bai, C. G., Hu, Q. P., Xie, M., and Ng, S. H. 2005. Software failure prediction based on a

Markov Bayesian network model. Journal of Systems and Software 74, 3 (Feb.), 275–282.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 63

Basseville, M. and Nikiforov, I. 1993. Detection of abrupt changes: theory and application.

Prentice Hall.

Berenji, H., Ametha, J., and Vengerov, D. 2003. Inductive learning for fault diagnosis. In
IEEE Proceedings of 12th International Conference on Fuzzy Systems (FUZZ’03). Vol. 1.

Blischke, W. R. and Murthy, D. N. P. 2000. Reliability: Modeling, Prediction, and Optimiza-
tion. Probability and Statistics. John Wiley and Sons.

Bod́ık, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Patel, K., Tolle, G., Hui,

J., Fox, A., Jordan, M. I., and Patterson, D. 2005. Combining visualization and statistical

analysis to improve operator confidence and efficiency for failure detection and localization. In
IEEE Proceedings of International Conference on Autonomic Computing (ICAC 05). IEEE

Computer Society, 89–100.

Brocklehurst, S. and Littlewood, B. 1996. Techniques for prediction analysis and recalibra-

tion. In Handbook of software reliability engineering, M. R. Lyu, Ed. McGraw-Hill, Chapter 4,
119–166.

Brown, A. and Patterson, D. 2001. Embracing failure: A case for recovery-oriented computing

(ROC). In High Performance Transaction Processing Symposium.

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. 2004. Microreboot - a

technique for cheap recovery. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation. 31–44.

Candea, G., Kiciman, E., Kawamoto, S., and Fox, A. 2006. Autonomous recovery in compo-

nentized internet applications. Cluster Computing 9, 2, 175–190.

Candea, G., Kiciman, E., Zhang, S., Keyani, P., and Fox, A. 2003. Jagr: An autonomous

self-recovering application server. In Proceedings of the 5th International Workshop on Active
Middleware Services. Seattle, WA, USA.

Cassidy, K. J., Gross, K. C., and Malekpour, A. 2002. Advanced pattern recognition for
detection of complex software aging phenomena in online transaction processing servers. In

Proceedings of Dependable Systems and Networks (DSN). 478–482.

Castelli, V., Harper, R., P., H., Hunter, S., Trivedi, K., Vaidyanathan, K., and Zeggert,

W. 2001. Proactive management of software aging. IBM Journal of Research and Develop-
ment 45, 2 (Mar.), 311–332.

Cavafy, C. P. 1992. But the wise perceive things about to happen. In Collected Poems, G. Savidis,

Ed. Princeton University Press.

Chen, M., Accardi, A., Lloyd, J., Kiciman, E., Fox, A., Patterson, D., and Brewer, E. 2004.

Path-based failure and evolution management. In Proceedings of USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI). San Francisco, CA.

Chen, M., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. 2002. Pinpoint: Problem deter-

mination in large, dynamic internet services. In Proceedings of 2002 International Conference

on Dependable Systems and Networks (DSN), IPDS track. IEEE Computer Society, 595–604.

Chen, M.-S., Park, J. S., and Yu, P. S. 1998. Efficient data mining for path traversal patterns.
IEEE Transactions on Knowledge and Data Engineering 10, 2, 209–221.

Cheng, F., Wu, S., Tsai, P., Chung, Y., and Yang, H. 2005. Application cluster service
scheme for near-zero-downtime services. In IEEE Proceedings of the International Conference
on Robotics and Automation. 4062–4067.

Cleveland, W. et al. 1979. Robust locally weighted regression and smoothing scatterplots.

Journal of the American Statistical Association 74, 368, 829–836.

Cohen, W. W. 1995. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning. 115–123.

Coleman, D. and Thompson, C. 2005. Model Based Automation and Management for the

Adaptive Enterprise. In Proceedings of the 12th Annual Workshop of HP OpenView University
Association. 171–184.

Crowell, J., Shereshevsky, M., and Cukic, B. 2002. Using fractal analysis to model software
aging. Tech. rep., West Virginia University, Lane Department of CSEE, Morgantown, WV.
May.

ACM Journal Name, Vol. V, No. N, Month 20YY.

64 · Felix Salfner et al.

Csenki, A. 1990. Bayes predictive analysis of a fundamental software reliability model. IEEE

Transactions on Reliability 39, 2 (Jun.), 177–183.

Daidone, A., Di Giandomenico, F., Bondavalli, A., and Chiaradonna, S. 2006. Hidden

Markov models as a support for diagnosis: Formalization of the problem and synthesis of the

solution. In IEEE Proceedings of the 25th Symposium on Reliable Distributed Systems (SRDS
2006). Leeds, UK.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. 1990. Indexing
by latent semantic analysis. Journal of the American Society for Information Science 41, 6,

391–407.

Denson, W. 1998. The history of reliability prediction. IEEE Transactions on Reliability 47, 3
(Sep.), 321–328.

Discenzo, F., Unsworth, P., Loparo, K., and Marcy, H. 1999. Self-diagnosing intelligent mo-
tors: a key enabler for nextgeneration manufacturing systems. In IEE Colloquium on Intelligent

and Self-Validating Sensors.

Domeniconi, C., Perng, C.-S., Vilalta, R., and Ma, S. 2002. A classification approach for pre-
diction of target events in temporal sequences. In Proceedings of the 6th European Conference

on Principles of Data Mining and Knowledge Discovery (PKDD’02), T. Elomaa, H. Mannila,

and H. Toivonen, Eds. LNAI, vol. 2431. Springer-Verlag, Heidelberg, 125–137.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. 1998. Biological sequence analysis:

probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge,
UK.

Elbaum, S., Kanduri, S., and Amschler, A. 2003. Anomalies as precursors of field failures.

In IEEE Proceedings of the 14th International Symposium on Software Reliability Engineering
(ISSRE 2003). 108–118.

Farr, W. 1996. Software reliability modeling survey. In Handbook of software reliability engi-

neering, M. R. Lyu, Ed. McGraw-Hill, Chapter 3, 71–117.

Fawcett, T. 2004. ROC graphs: Notes and practical considerations for researchers. Machine

Learning 31.

Flach, P. A. 2004. The many faces of roc analysis in machine learn-

ing. Tutorial at International Conference on Machine Learning (ICML’04).

http://www.cs.bris.ac.uk/ flach/ICML04tutorial/.

Fu, S. and Xu, C.-Z. 2007. Quantifying temporal and spatial fault event correlation for proactive

failure management. In IEEE Proceedings of Symposium on Reliable and Distributed Systems
(SRDS 07).

Garg, S., van Moorsel, A., Vaidyanathan, K., and Trivedi, K. S. 1998. A methodology for

detection and estimation of software aging. In Proceedings of the 9th International Symposium
on Software Reliability Engineering, ISSRE 1998.

Gross, K. C., Bhardwaj, V., and Bickford, R. 2002. Proactive detection of software aging

mechanisms in performance critical computers. In SEW ’02: Proceedings of the 27th An-
nual NASA Goddard Software Engineering Workshop (SEW-27’02). IEEE Computer Society,

Washington, DC, USA.

Grottke, M., Matias, R., and Trivedi, K. S. 2008. The fundamentals of software aging.

In IEEE Proceedings of Workshop on Software Aging and Rejuvenation, in conjunction with

ISSRE. Seattle, WA.

Grottke, M. and Trivedi, K. 2007. Fighting bugs: Remove, retry, replicate, and rejuvenate.
IEEE Computer , 107–109.

Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature selection. Journal

of Machine Learning Research 3, 1157–1182. Special Issue on Variable and Feature Selection.

Hamerly, G. and Elkan, C. 2001. Bayesian approaches to failure prediction for disk drives. In
Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kauf-

mann Publishers Inc., 202–209.

Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer Series in Statistics. Springer Verlag.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 65

Hätönen, K., Klemettinen, M., Mannila, H., Ronkainen, P., and Toivonen, H. 1996. Tasa:

Telecommunication alarm sequence analyzer, or: How to enjoy faults in your network. In IEEE
Proceedings of Network Operations and Management Symposium. Vol. 2. Kyoto, Japan, 520 –

529.

Hellerstein, J. L., Zhang, F., and Shahabuddin, P. 1999. An approach to predictive detection
for service management. In IEEE Proceedings of Sixth International Symposium on Integrated

Network Management. 309–322.

Ho, D. W. C., Zhang, P. A., and Xu, J. 2001. Fuzzy wavelet networks for function learning.
IEEE Transactions on Fuzzy Systems 9, 1, 200–211.

Hoffmann, G. A. 2004. Adaptive transfer functions in radial basis function (rbf) networks.

In Proceedings of 4th International Conference on Computational Science (ICCS 2004),

M. Bubak, G. D. van Albada, P. M. A. Sloot, et al., Eds. LNCS, vol. 3037. Springer-Verlag,
682–686.

Hoffmann, G. A. 2006. Failure Prediction in Complex Computer Systems: A Probabilistic Ap-

proach. Shaker Verlag.

Hoffmann, G. A. and Malek, M. 2006. Call availability prediction in a telecommunication

system: A data driven empirical approach. In Proceedings of the 25th IEEE Symposium on

Reliable Distributed Systems (SRDS 2006). Leeds, United Kingdom.

Hoffmann, G. A., Salfner, F., and Malek, M. 2004. Advanced failure prediction in complex

software systems. research report 172, Department of Computer Science, Humboldt University,

Berlin, Germany. Available at www.rok.informatik.hu-berlin.de/Members/salfner.

Hoffmann, G. A., Trivedi, K. S., and Malek, M. 2006. A best practice guide to resource

forecasting for the apache webserver. In IEEE Proceedings of the 12th International Symposium

Pacific Rim Dependable Computing (PRDC’06). University of California, Riverside, USA.

Hoffmann, G. A., Trivedi, K. S., and Malek, M. 2007. A best practice guide to resource
forecasting for computing systems. IEEE Transactions on Reliability 56, 4 (Dec.), 615–628.

Horn, P. 2001. Autonomic computing: IBM’s perspective on the state of information technology.

Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology 24, 417–441.

Hughes, G., Murray, J., Kreutz-Delgado, K., and Elkan, C. 2002. Improved disk-drive

failure warnings. IEEE Transactions on Reliability 51, 3 (Sep.), 350–357.

IEC: International Technical Comission, Ed. 2002. Dependability and Quality of Service, 2
ed. IEC, Chapter 191.

Iyer, R. K., Young, L. T., and Sridhar, V. 1986. Recognition of error symptoms in large

systems. In Proceedings of 1986 ACM Fall joint computer conference. IEEE Computer Society
Press, Los Alamitos, CA, USA, 797–806.

Jelinski, Z. and Moranda, P. 1972. Software reliability research. In Statistical computer per-

formance evaluation, W. Freiberger, Ed. Academic Press.

Kapadia, N. H., Fortes, J. A. B., and Brodley, C. E. 1999. Predictive application-performance
modeling in a computational gridenvironment. In IEEE Procedings of the eighth International
Symposium on High Performance Distributed Computing. 47–54.

Kiciman, E. and Fox, A. 2005. Detecting application-level failures in component-based internet
services. IEEE Transactions on Neural Networks 16, 5 (Sep.), 1027–1041.

Korbicz, J., Kościelny, J. M., Kowalczuk, Z., and Cholewa, W., Eds. 2004. Fault Diagnosis:
Models, Artificial Intelligence, Applications. Springer Verlag.

Lal, R. and Choi, G. 1998. Error and failure analysis of a unix server. In IEEE Proceedings of

third International High-Assurance Systems Engineering Symposium (HASE). IEEE Computer

Society Washington, DC, USA, 232–239.

Laprie, J.-C. and Kanoun, K. 1996. Software reliability and system reliability. In Handbook of
software reliability engineering, M. R. Lyu, Ed. McGraw-Hill, Chapter 2, 27–69.

Leangsuksun, C., Liu, T., Rao, T., Scott, S., and Libby, R. 2004. A failure predictive and

policy-based high availability strategy for linux high performance computing cluster. In The
5th LCI International Conference on Linux Clusters: The HPC Revolution. 18–20.

ACM Journal Name, Vol. V, No. N, Month 20YY.

66 · Felix Salfner et al.

Levy, D. and Chillarege, R. 2003. Early warning of failures through alarm analysis - a case

study in telecom voice mail systems. In ISSRE ’03: Proceedings of the 14th International
Symposium on Software Reliability Engineering. IEEE Computer Society, Washington, DC,

USA.

Li, L., Vaidyanathan, K., and Trivedi, K. S. 2002. An approach for estimation of software aging
in a web server. In Proceedings of the Intl. Symposium on Empirical Software Engineering,

ISESE 2002. Nara, Japan.

Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., and Sahoo, R. 2006. Bluegene/l

failure analysis and prediction models. In IEEE Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2006). 425–434.

Lin, T.-T. Y. and Siewiorek, D. P. 1990. Error log analysis: statistical modeling and heuristic

trend analysis. IEEE Transactions on Reliability 39, 4 (Oct.), 419–432.

Lunze, J. 2003. Automatisierungstechnik , 1 ed. Oldenbourg.

Lyu, M. R., Ed. 1996. Handbook of Software Reliability Engineering. McGraw-Hill.

Manning, C. D. and Schütze, H. 1999. Foundations of Statistical Natural Language Processing.

The MIT Press, Cambridge, Massachusetts.

Melliar-Smith, P. M. and Randell, B. 1977. Software reliability: The role of programmed

exception handling. SIGPLAN Not. 12, 3, 95–100.

Meng, H., Di Hou, Y., and Chen, Y. 2007. A rough wavelet network model with genetic

algorithm and its application to aging forecasting of application server. In IEEE Procedings of

International Conference on Machine Learning and Cybernetics. Vol. 5.

Mundie, C., de Vries, P., Haynes, P., and Corwine, M. 2002. Trustworthy computing. Tech.
rep., Microsoft Corp. Oct.

Murray, J., Hughes, G., and Kreutz-Delgado, K. 2003. Hard drive failure prediction using

non-parametric statistical methods. Proceedings of ICANN/ICONIP .

Musa, J. D., Iannino, A., and Okumoto, K. 1987. Software Reliability: Measurement, Predic-
tion, Application. McGraw-Hill.

Nassar, F. A. and Andrews, D. M. 1985. A methodology for analysis of failure prediction data.

In IEEE Real-Time Systems Symposium. 160–166.

Needleman, S. B. and Wunsch, C. D. 1970. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 3,

443–53.

Neville, S. W. 1998. Approaches for early fault detection in large scale engineering plants. Ph.D.
thesis, University of Victoria.

Ning, M. H., Yong, Q., Di, H., Ying, C., and Zhong, Z. J. 2006. Software aging prediction

model based on fuzzy wavelet network with adaptive genetic algorithm. In 18th IEEE Inter-

national Conference on Tools with Artificial Intelligence (ICTAI’06). IEEE Computer Society,
Los Alamitos, CA, USA, 659–666.

Parnas, D. L. 1994. Software aging. In IEEE Proceedings of the 16th international conference

on Software engineering (ICSE ’94). IEEE Computer Society Press, Los Alamitos, CA, USA,
279–287.

Patterson, D. A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez,

P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W.,
Traupman, J., and Treuhaft, N. 2002. Recovery-oriented computing (roc): Motivation, def-
inition, techniques, and case studies. Tech. Rep. UCB//CSD-02-1175, UC Berkeley, Computer

Science. March.

Pawlak, Z., Wong, S. K. M., and Ziarko, W. 1988. Rough sets: Probabilistic versus determin-
istic approach. International Journal of Man-Machine Studies 29, 81–95.

Pettitt, A. 1977. Testing the normality of several independent samples using the anderson-

darling statistic. Applied Statistics 26, 2, 156–161.

Pfefferman, J. and Cernuschi-Frias, B. 2002. A nonparametric nonstationary procedure for
failure prediction. IEEE Transactions on Reliability 51, 4 (Dec.), 434–442.

Pizza, M., Strigini, L., Bondavalli, A., and Di Giandomenico, F. 1998. Optimal discrimi-

nation between transient and permanent faults. In IEEE Proceedings of Third International

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Online Failure Prediction Methods · 67

High-Assurance Systems Engineering Symposium (HASE’98). IEEE Computer Society, Los

Alamitos, CA, USA, 214–223.

Quinlan, J. 1990. Learning logical definitions from relations. Machine Learning 5, 3, 239–266.

Quinlan, J. 1993. C4. 5: Programs for Machine Learning. Morgan Kaufmann.

Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE 77, 2 (Feb.), 257–286.

Rovnyak, S., Kretsinger, S., Thorp, J., and Brown, D. 1994. Decision trees for real-time
transient stability prediction. IEEE Transactions on Power Systems 9, 3 (1994), 1417–1426.

Sahner, R. A., Trivedi, K. S., and Puliafito, A. 1996. Performance and Reliability Analysis of

Computer Systems: An Example-Based Approach Using the SHARPE Software Package (The

Red Book). Kluwer Academic Publishers.

Sahoo, R. K., Oliner, A. J., Rish, I., Gupta, M., Moreira, J. E., Ma, S., Vilalta, R., and

Sivasubramaniam, A. 2003. Critical event prediction for proactive management in large-scale
computer clusters. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’03). ACM Press, 426–435.

Salfner, F. 2006. Modeling event-driven time series with generalized hidden semi-Markov mod-

els. Tech. Rep. 208, Department of Computer Science, Humboldt-Universität zu Berlin, Ger-
many. Available at http://edoc.hu-berlin.de/docviews/abstract.php?id=27653.

Salfner, F. 2008. Event-based Failure Prediction: An Extended Hidden Markov Model Approach.

dissertation.de - Verlag im Internet GmbH, Berlin, Germany. Available at http://www.rok.

informatik.hu-berlin.de/Members/salfner/publications/sal%fner08event-based.pdf.

Salfner, F., Hoffmann, G. A., and Malek, M. 2005. Prediction-based software availability
enhancement. In Self-Star Properties in Complex Information Systems, O. Babaoglu, M. Je-

lasity, A. Montresor, C. Fetzer, S. Leonardi, van Moorsel A., and M. van Steen, Eds. Lecture

Notes in Computer Science, vol. 3460. Springer-Verlag.

Salfner, F. and Malek, M. 2007. Using hidden semi-Markov models for effective online failure
prediction. In IEEE Proceedings on 26th International Symposium on Reliable Distributed

Systems (SRDS 2007).

Salfner, F., Schieschke, M., and Malek, M. 2006. Predicting failures of computer systems: A

case study for a telecommunication system. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2006), DPDNS workshop. Rhodes Island, Greece.

Salfner, F., Tschirpke, S., and Malek, M. 2004. Comprehensive logfiles for autonomic systems.

In IEEE Proceedings of International Parallel and Distributed Processing Symposium (IPDPS),

Workshop on Fault-Tolerant Parallel, Distributed and Network-Centric Systems (FTPDS).
IEEE Computer Society, Santa Fe, New Mexico, USA.

Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the
American Statistical Association 63, 324 (Dec.), 1379–1389.

Shereshevsky, M., Crowell, J., Cukic, B., Gandikota, V., and Liu, Y. 2003. Software aging

and multifractality of memory resources. In Proceedings of the International Conference on

Dependable Systems and Networks (DSN 2003). IEEE Computer Society, San Francisco, CA,
USA, 721–730.

Siewiorek, D. P. and Swarz, R. S. 1998. Reliable Computer Systems, third ed. A. K. Peters,

Ltd., Wellesley, MA.

Singer, R. M., Gross, K. C., Herzog, J. P., King, R. W., and Wegerich, S. 1997. Model-based
nuclear power plant monitoring and fault detection: Theoretical foundations. In Proceedings of
Intelligent System Application to Power Systems (ISAP 97). Seoul, Korea, 60–65.

Smith, T. and Waterman, M. 1981. Identification of common molecular subsequences. Journal

of Molecular Biology 147, 195–197.

Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and perfor-

mance improvements. In Proc. 5th Int. Conf. Extending Database Technology, EDBT, P. M. G.
Apers, M. Bouzeghoub, and G. Gardarin, Eds. Vol. 1057. Springer-Verlag, 3–17.

Tang, D. and Iyer, R. 1993. Dependability measurement and modeling of a multicomputer
system. IEEE Transactions on Computers 42, 1 (Jan.), 62–75.

ACM Journal Name, Vol. V, No. N, Month 20YY.

68 · Felix Salfner et al.

Troudet, T., Merrill, W., Center, N., and Cleveland, O. 1990. A real time neural net

estimator of fatigue life. In IEEE Proceedings of International Joint Conference on Neural
Networks(IJCNN 90). 59–64.

Tsao, M. M. and Siewiorek, D. P. 1983. Trend analysis on system error files. In Proc. 13th

International Symposium on Fault-Tolerant Computing. Milano, Italy, 116–119.

Turnbull, D. and Alldrin, N. 2003. Failure Prediction in Hardware Systems. Tech. rep.,
University of California, San Diego. available at http://www.cs.ucsd.edu/~dturnbul/Papers/

ServerPrediction.pdf.

Ulerich, N. and Powers, G. 1988. On-line hazard aversion and fault diagnosis in chemical

processes: the digraph+fault-tree method. IEEE Transactions on Reliability 37, 2 (Jun.),
171–177.

Vaidyanathan, K. and Trivedi, K. S. 1999. A measurement-based model for estimation of

resource exhaustion in operational software systems. In Proceedings of the International Sym-
posium on Software Reliability Engineering (ISSRE).

van Rijsbergen, C. J. 1979. Information Retrieval , second ed. Butterworth, London.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer Verlag, New York.

Vesely, W., Goldberg, F. F., Roberts, N. H., and Haasl, D. F. 1981. Fault tree handbook.

Tech. Rep. NUREG-0492, U.S. Nuclear Regulatory Commission, Washington, DC.

Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., and Weiss, S. M. 2002. Predictive
algorithms in the management of computer systems. IBM Systems Journal 41, 3, 461–474.

Vilalta, R. and Ma, S. 2002. Predicting rare events in temporal domains. In Proceedings of the

2002 IEEE International Conference on Data Mining (ICDM’02). IEEE Computer Society,
Washington, DC, USA, 474–482.

Ward, A., Glynn, P., and Richardson, K. 1998. Internet service performance failure detection.

SIGMETRICS Performance Evaluation Review 26, 3, 38–43.

Ward, A. and Whitt, W. 2000. Predicting response times in processor-sharing queues. In Proc.

of the Fields Institute Conf. on Comm. Networks, P. W. Glynn, D. J. MacDonald, and S. J.
Turner, Eds.

Weiss, G. 1999. Timeweaver: A genetic algorithm for identifying predictive patterns in sequences

of events. In Proceedings of the Genetic and Evolutionary Computation Conference. Morgan
Kaufmann, San Francisco, CA, 718–725.

Weiss, G. 2002. Predicting telecommunication equipment failures from sequences of network

alarms. In Handbook of Knowledge Discovery and Data Mining, W. Kloesgen and J. Zytkow,

Eds. Oxford University Press, 891–896.

Wong, K. C. P., Ryan, H., and Tindle, J. 1996. Early warning fault detection using artificial

intelligent methods. In Proceedings of the Universities Power Engineering Conference.

Zipf, G. K. 1949. Human Behavior and the Principle of Least Effort: An Introduction to Human

Ecology. Addison-Wesley Press, Cambridge, Mass.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

