
F
S

I
a

b

a

A
R
R
A
A

K
F
R
S
E
L

1

s
e
(
a
a
p
t
p
t
s
P
J
h
s
h

(
(

0
h

The Journal of Systems and Software 86 (2013) 2– 11

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

ailure prediction based on log files using Random Indexing and
upport Vector Machines

lenia Fronzaa,∗, Alberto Sillitti a, Giancarlo Succia, Mikko Terhob, Jelena Vlasenkoa

Center for Applied Software Engineering, Faculty of Computer Science, Free University of Bolzano-Bozen, Italy
Nokia, Visiokatu, 3, FI-33720 Tampere, Finland

 r t i c l e i n f o

rticle history:
eceived 18 May 2011
eceived in revised form 5 June 2012
ccepted 14 June 2012
vailable online 28 June 2012

eywords:
ailure prediction
andom Indexing

a b s t r a c t

Research problem: The impact of failures on software systems can be substantial since the recovery process
can require unexpected amounts of time and resources. Accurate failure predictions can help in mitigating
the impact of failures. Resources, applications, and services can be scheduled to limit the impact of failures.
However, providing accurate predictions sufficiently ahead is challenging. Log files contain messages that
represent a change of system state. A sequence or a pattern of messages may be used to predict failures.
Contribution: We describe an approach to predict failures based on log files using Random Indexing (RI)
and Support Vector Machines (SVMs).
Method: RI is applied to represent sequences: each operation is characterized in terms of its context.
upport Vector Machine (SVM)
vent sequence data
og files

SVMs associate sequences to a class of failures or non-failures. Weighted SVMs are applied to deal with
imbalanced datasets and to improve the true positive rate. We apply our approach to log files collected
during approximately three months of work in a large European manufacturing company.
Results: According to our results, weighted SVMs sacrifice some specificity to improve sensitivity. Speci-
ficity remains higher than 0.80 in four out of six analyzed applications.
Conclusions: Overall, our approach is very reliable in predicting both failures and non-failures.
. Introduction

The impact of failures on software systems can be substantial
ince a failure may have irreversible consequences and a recov-
ry process can require unexpected amounts of time and resources
Adiga et al., 2002; Fulp et al., 2008; Lan et al., 2010). Thus, being
ble to forecast failures is extremely important, even when failures
re inevitable – recovery actions can be started on time or, at least,
lanned. For these reasons, an increasing attention has been paid
o failure prediction and a variety of predictive methods have been
resented in the last few years (Zheng et al., 2009). In particular,
here has appeared a growing interest in predicting failures from
equential data (Fulp et al., 2008; Li et al., 2007; Mannila et al., 1997;
andalai and Holloway, 2000; Sampath et al., 1994; Srinivasan and
afari, 1993). Several data mining and machine learning approaches
ave been proposed where the dataset to be analyzed consists of a

equence of events (Fulp et al., 2008; Salfner, 2008), and each event
as an associated time of occurrence.

∗ Corresponding author.
E-mail addresses: Ilenia.Fronza@unibz.it (I. Fronza), Alberto.Sillitti@unibz.it

A. Sillitti), Giancarlo.Succi@unibz.it (G. Succi), Mikko.J.Terho@nokia.com
M. Terho), Jelena.Vlasenko@stud-inf.unibz.it (J. Vlasenko).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.06.025
© 2012 Elsevier Inc. All rights reserved.

Log files represent one example of sequential data available;
each entry in these files consists of a message. The information
recorded varies from general messages (e.g., user logins and sta-
tus of the system) to critical warnings about program failures (e.g.,
network problems, i/o errors, etc.). Forensic analysis of the log files
can identify causes of failures. Moreover, the information contained
in log files can be used for predicting events (Fulp et al., 2008). A
classifier can be applied to associate the sequence of messages that
precedes an event with a certain group, for example “fail”, thereby
producing a prediction. Given labeled training data, a Support Vec-
tor Machine (SVM) can determine the maximum hyperplane that
divides data into two classes. Aggregate features are often used
for SVM-based classification (e.g., the average number of messages
during a period of time). However, it is important to exploit the
sequential nature of system messages (Fulp et al., 2008).

In this paper we introduce a new approach for predicting failures
based on SVMs and Random Indexing (RI). Unlike other applications
of SVM classifiers (Liang et al., 2007; Xue et al., 2007; Yamanishi
and Maruyama, 2005), we use RI to represent sequences of opera-
tions (i.e., events) extracted from log files of applications. Then, a
SVM classifies the representations provided by RI as either fail or

non-fail.

The paper is structured as follows: in Section 2 we discuss exist-
ing works in this area; in Section 3, we present some background;
in Section 4, we introduce our approach; in Section 5, we describe

dx.doi.org/10.1016/j.jss.2012.06.025
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:Ilenia.Fronza@unibz.it
mailto:Alberto.Sillitti@unibz.it
mailto:Giancarlo.Succi@unibz.it
mailto:Mikko.J.Terho@nokia.com
mailto:Jelena.Vlasenko@stud-inf.unibz.it
dx.doi.org/10.1016/j.jss.2012.06.025

ystem

o
a
o

2

m
T
a
o
a
a
1
c
a
n
i
s
a
(

u
d
M
(

T
O

I. Fronza et al. / The Journal of S

ur experiments and results; in Section 6 we discuss our results
nd the generalizability of our approach; in Section 7 we introduce
ur future work.

. Related work

Methods for predicting failures based on events (e.g., the log
essages) have been proposed in various engineering disciplines.

hese methods can be classified into (1) design-based methods,
nd (2) data-driven rule-based methods. In design-based meth-
ds the expected event sequence is obtained from system design
nd it is compared with an observed event sequence (Pandalai
nd Holloway, 2000; Sampath et al., 1994; Srinivasan and Jafari,
993). The major disadvantage of these methods is that in many
ases events occur randomly, thus, there is no information avail-
ble about the system logic. Data-driven rule based methods do
ot require any system logic design information. These methods

nclude two phases: (1) identification of temporal patterns, i.e.,
equences of events that frequently occur (Mannila et al., 1997),
nd (2) development of prediction rules based on these patterns
Li et al., 2007).

Several approaches have been proposed for predicting failures

sing system log files. Such prediction methods include stan-
ard machine learning techniques such as Bayes networks, Hidden
arkov Models, and Partially Observable Markov Decision Process

Fu and Xu, 2007a,b; Fulp et al., 2008; Gross et al., 2002; Liang et al.,

able 1
verview of related work.

Reference Approach Results

Vilalta and Ma (2002) Patterns are detected in event
sequences by using association
rule mining techniques. Then
patterns are combined into a
rule-based model for prediction

The false negati
decreases signifi
window increas

Salfner et al. (2006) Similar Events Prediction (SEP)
based on the recognition of
suspicious patterns of error events

SEP is shown to
other failure pre
and to achieve a
and recall of 92%

Pai and Hong (2006) Simulated annealing algorithms
are used to select the parameters
of an SVM model to forecast
software reliability

Experimental re
proposed mode
other methods i
inter-failure tim

Li et al. (2007) Cox PH model is used to provide a
rigorous statistical prediction of
system failure events. Frequent
failure signatures are used as
covariates

The method is s
effectively the s
event sequence

of event types in

Liang et al. (2007) Temporal compression is used to
include all events at a single
location occurring with inter-event
times lower than some threshold.
Spatial compression serves to
include all messages that refer to
the same location within some
time window. Four predictors are
compared

With a predictio
of 12 h, 3 predic
reasonably well
than 60%, precis
50%, and recall h

Fulp et al. (2008) SVMs are applied on data extracted
from system log files to determine
which sequence are precursors to
failure

The spectrum-re
messages comb
classifier is show
75% as true posi
25–30% as corre
positive rate. SV
spectrum-repre
messages is sho
SVM using only
s and Software 86 (2013) 2– 11 3

2007; Salfner, 2008; Stearley and Oliner, 2008; Xue et al., 2007;
Yamanishi and Maruyama, 2005). Usage of time-series analysis
is common among these methods since the information obtained
from a single message has been shown to be insufficient for pre-
dicting failures (Pinheiro et al., 2007; Yamanishi and Maruyama,
2005). Still it is an open question how to find the right pattern(s)
(Fulp et al., 2008).

Salfner et al. (2006) present an approach called Similar Events
Prediction (SEP) based on the recognition of suspicious patterns of
error events (Table 1). SEP is shown to outperform the other failure
prediction techniques and to achieve a precision of 80% and recall
of 92%. Li et al. (2007) use the Cox proportional hazard model to
provide a rigorous statistical prediction of system failure events.
Frequent failure signatures are used as covariates. Vilalta and Ma
(2002) first detect patterns in event sequences by using association
rule mining techniques. Then patterns are combined into a rule-
based model for prediction. The false negative error rate decreases
significantly as the time window increases. Lee et al. (1991) analyze
automatically generated event logs from fault tolerant systems.
Multivariate statistical techniques (i.e., factor analysis and clus-
ter analysis) are used to investigate error and failure dependency
among different system components. Liang et al. (2007) predict

failures of IBM’s BlueGene/L from event logs containing reliability,
availability and serviceability data. Temporal compression is used
to include all events at a single location occurring with inter-event
times lower than some threshold. Spatial compression serves to

Type of data Limitations

ve error rate
cantly as the time
es

Artificial data
and real data

The success of the algorithm is
shown to be contingent on the
existence of patterns preceding
target events

 outperform the
diction techniques

 precision of 80%

Real data Computational complexity of
training grows heavily if the
amount of training data increases

sults show that the
l outperforms the
n predicting the
e

Real data Advanced searching techniques for
determining the suitable
parameters could be used to
increase the forecasting accuracy

hown to handle
ituation of a long
and a large number

 the sequence

Real data Failure prediction for multiple
event sequences should be
inspected

n window size �
tions perform

 (F measure higher
ion higher than
igher than 70%)

Real data The prediction window size �
impacts on the prediction
accuracy. As � becomes smaller,
the prediction difficulty rapidly
increases, leading to much
degraded performances. Only the
nearest neighbour predictor
sustains a much slower
degradation. Even with � = 1 h, F
measure is above 20%, and recall is
30%

presentation of
ined with a SVM

n to achieve about
tive rate and about
sponding false
M using the
sentation of
wn to outperform
aggregate features

Real data The performance of the system
could be improved by leveraging
the message content, instead of
solely relying on the tag value; in
this case, adding more message
information should be balanced
with the sequence length, since the
number of features grows
exponentially. Moreover, more
research is needed to study the
impact of message diversity, which
can be the result of machine
purpose and log generation rates

4 ystems and Software 86 (2013) 2– 11

i
t

n
a
i
(
h
s
i
t
u
t
o

(
2
H
m
fi
i
c
i
S
o
r

3

3

t
a
a

s
s
m
p
t

w
m
t
o
a
a
t
o

F
p
t
u

Table 2
Fields of the log messages in the analyzed dataset.

Field name Description

Time Time when a message was recorded
Application Running application
Server Machine sending a message
Computer
UserName Name of a logged user
I. Fronza et al. / The Journal of S

nclude all messages that refer to the same location within some
ime window.

Support Vector Machines (SVMs) have been employed to solve
on-linear regression and time series problems. SVMs have been
lso successfully applied to solve prediction problems when study-
ng, e.g., time series (Tay and Cao, 2001; Cao, 2003), air quality
Wang et al., 2003), wind speed (Mohandes et al., 2004), forum
otspots (Li and Wu, 2010), and cancer (Chuang et al., 2011). In
ome cases SVMs have been applied to forecasting software reliabil-
ty. Pai and Hong (2006) elucidate the feasibility of the use of SVMs
o predict software reliability. Simulated annealing algorithms are
sed to select the parameters of a SVM model. The experimen-
al results (in industrial settings) show that the proposed model
utperforms the other methods in predicting the inter-failure time.

Aggregate features are often used for SVM-based classification
Liang et al., 2007; Xue et al., 2007; Yamanishi and Maruyama,
005), e.g., the average number of messages during a period of time.
owever it is important to exploit the sequential nature of system
essages. Fulp et al. (2008) apply SVMs on data extracted from log

les to determine which sequences are precursors to failure. Exper-
mental results show that the spectrum-representation of messages
ombined with a SVM classifier can achieve about 75% as true pos-
tive rate and about 25–30% as corresponding false positive rate.
VM using the spectrum-representation of messages is shown to
utperform SVMs using only aggregate features. We compare our
esults with those achieved in the experiments in Fulp et al. (2008).

. Background

.1. Log files

Log files are important for managing computer systems since
hey provide a history or an audit trail of events. In this context
n event is a change of a system status, such as a user login or an
pplication failure.

Typically, system log files are text files that consist of messages
ent to the logging service by applications. The applications can
end information to the logging service process, which stores the
essages in a text file in an arrival order. The logging service is

rimarily responsible for managing the log file while a content of
he message is created by the application.

We use log files collected during approximately 3 months of
ork in a large European company that prefer to remain anony-
ous. Each log entry consists of seven fields. The Time field is the

ime when the message was recorded. One field stores the name
f the running Application. Two fields identify the machine: Server
nd Computer. The logged-in user is reported in the UserName field,
nd Severity contains the level of severity of the message. There are
hree levels of severity: Information, Warning, and Error. The size
n disk of the dataset is 0.8 GB.

The attributes of each dataset (i.e., log file) are listed in Table 2;

ig. 1 shows an example file. Due to the sensitive nature of the data
resented here, data elements have been masked. In the example,
he recorded messages are about 10 min of work of the user John,
sing the application “App1” on his computer “456” on server “123”.

Fig. 1. Example of a log file in the dataset. Sen
Operation Performed operation
Severity Level of severity of a message

Fully automated and non-invasive data collection has been rec-
ognized as a successful approach (Coman et al., 2009). The full
automation reduces the costs associated with data collection and
ensures continuous and accurate measurements. The completely
non-invasive collection allows developers to concentrate on their
tasks as usual and thus it does not affect their efficiency. Log files
can be automatically and non-invasively collected. Moreover, the
approach presented in this paper needs just the following informa-
tion to be available in the log files: the performed operation, the
severity of the message, and the timestamp. Thus, this approach
can be easily put into practice without much effort.

3.2. Random Indexing

In text analysis, Sahlgren (2005, 2006) proposes a word space
model called RI as an alternative to Latent Semantic Analysis (LSA)-
like models (Landauer et al., 1998) that first constructs a large co-
occurrence matrix and then uses a separate dimension reduction
phase. The main idea of RI is to accumulate context vectors based
on occurrence of words in contexts. This technique is inherently
incremental and does not require a separate dimension reduction
phase.

The RI technique can be described as a two-step operation:

1. Each word is assigned a unique and randomly generated repre-
sentation called index vector. The index vectors are sparse, high
dimensional, and ternary, meaning that their dimensionality is
on the order of thousands and they consist of a small number of
randomly distributed +1 s and −1s, with the rest of the elements
of the vectors set to 0. Each context is also assigned an initially
empty context vector that has the same dimensionality as the
index vector.

2. The text is scanned to find context vectors. Every time a word
occurs in a context (e.g., within a sliding context window) the d-
dimensional index vector of the context is added to the context
vector for the word considered. Thus, words are represented by
d-dimensional context vectors that are the sum of the words’
contexts.

This methodology represents a radically different way of

conceptualizing how context vectors are constructed. In the “tra-
ditional” view, firstly a co-occurrence matrix is constructed and
then context vectors are extracted. In the RI approach, on the other
hand, the context vectors are accumulated first. The co-occurrence

sitive data elements have been masked.

ystem

m
o

f
t
c
i
i
v
c
c
a

S

1

2

3

S
s
t
w

3

fi
i
a
o
t
i
i
m
c

x
p
v
w
A
p
v

a
m
t
m
t
b
e
t

and (1,1) represent the training-free classifiers AlwaysNegative and
AlwaysPositive; the point (0,1) represents the ideal classifier, and
(1,0) represents the classifier which gets it all wrong. The ascend-
ing diagonal (0,0)–(1,1) represents random training-free behavior:

Table 3
Contingency table (a.k.a., confusion matrix).

Actual value

Pos Neg
I. Fronza et al. / The Journal of S

atrix may be obtained by collecting the context vectors as rows
f the matrix (Sahlgren, 2006).

For example, let us consider the sentence ‘A friend in need is a
riend indeed’ (Chatterjee and Mohan, 2008). Let the dimension of
he index vector be 10, and let the context be defined as one pre-
eding and one succeeding word. Let ‘friend’ be assigned a random
ndex vector: [0 0 0 1 0 0 0 0 −1 0] and ‘need’ be assigned a random
ndex vector: [0 1 0 0 −1 0 0 0 0 0]. Then, to compute the context
ector of ‘in’, RI sums up the index vectors of its context. Since the
ontext is defined as one preceding and one succeeding word, the
ontext vector of ‘in’ is the sum of index vectors of ‘friend’ and ‘need’
nd is equal to [0 1 0 1 −1 0 0 0 −1 0] (Chatterjee and Mohan, 2008).

RI gives the following advantages (Raga and Raga, 2010;
ahlgren, 2005, 2006):

. It is an incremental method, i.e., the context vectors can be used
for similarity computations even with a small number of exam-
ples. By contrast, most other word space methods require the
entire data to be sampled before similarity computations can be
performed.

. It uses fixed dimensionality, meaning that new data does not
increase the dimensionality of the vectors. Increasing dimen-
sionality can lead to significant scalability problems in other
word space methods.

. It uses implicit dimension reduction, since the fixed dimension-
ality is much lower than the number of words in the data. This
leads to a significant gain in processing time and reduction of
memory consumption.

Sahlgren and Cöster (2004) use RI to improve the performance of
VMs in text categorization. In this paper we use RI to (1) represent
equences of operations, characterizing each operation in terms of
he context (i.e., operations within a sliding context window) in
hich it appears, and (2) improve the performance of the SVMs.

.3. Support Vector Machines

SVMs (Vapnik, 1995) have been applied successfully in different
elds, such as image retrieval, handwriting recognition, gene profil-

ng, and text classification (Cortes, 1995; Joachims, 1998; Sahlgren
nd Cöster, 2004; Tong and Chang, 2001; Xu et al., 2010). SVM is one
f the top 10 data mining algorithms identified by the IEEE Interna-
ional Conference on Data Mining (ICDM) in 2007 (Wu et al., 2007);
t solves a mathematical optimization problem to find the separat-
ng hyperplane that has maximum margin between two classes. By

aximizing the margin, the capacity or complexity of a function
lass (separating hyperplanes) is minimized.

Let {(�x1, y1), . . . , (�xl, yl)} be a set of training examples, where
�i ∈ Rn, y ∈ {0, 1}. The SVM separates these examples by a hyper-

lane defined by a weight vector �w and a threshold b. The weight
ector �w determines a direction perpendicular to the hyperplane,
hile b determines the distance to the hyperplane from the origin.

 new example �z is classified according to which side of the hyper-
lane it belongs. The hyperplane is uniquely defined by the support
ectors.

When examples are not linearly separable, the SVM algorithm
llows to use slack variables to allow classification errors and to
ap examples to a (high-dimensional) feature space. In this fea-

ure space, a separating hyperplane can be found such that, when
apped back to input space, it describes a non-linear decision func-
ion (Sahlgren and Cöster, 2004). The implicit mapping is performed
y a kernel function that expresses the inner product between two
xamples in the desired feature space. In our experiments, we use
he following three standard kernel functions:
s and Software 86 (2013) 2– 11 5

• The basic linear kernel: K(�xi, �z) = xi · �z.
• The polynomial kernel: K(�xi, �z) = (xi · �z)d.
• The radial basis kernel: K(�xi, �z) = exp(−� ||�xi − �z||2).

For all the experiments we select as default values d = 3 for the
polynomial kernel and � = 1/dim(data) for the radial basis (Akbani
et al., 2004).

When facing with imbalanced datasets, where the number of
negative instances far out numbers the positive instances, the per-
formance of SVMs has been shown to drop significantly (Akbani
et al., 2004). Application areas such as gene profiling, medical diag-
nosis, and credit card fraud detection have highly skewed datasets
with a very small number of positive instances, which are hard
to classify correctly but are important to detect nevertheless (Wu
and Chang, 2003). With imbalanced data, the simplest hypothesis is
often the one that classifies almost all instances as negative. There
have been several alternative proposals for coping with skewed
datasets, e.g., (1) to preprocess the data by under-sampling the
majority class or oversampling the minority class to create a bal-
anced dataset, or (2) to bias the classifier so that it gives more
attention to the positive instances. One possible approach to do that
is to increase the penalty associated with misclassifying the positive
class relative to the negative class (Akbani et al., 2004; Japkowicz,
2005; Maloof, 2003; Osuna et al., 1997; Provost and Fawcett, 2001;
Veropoulos et al., 1999).

Weighted SVMs implement cost-sensitive learning for SVM
modeling. The basic idea is to assign a larger penalty value to false
negatives than false positives (Akbani et al., 2004; Osuna et al.,
1997; Veropoulos et al., 1999). Without loss of generality the cost
for a false positive may be always 1; the cost for a false negative is
usually suggested to be the ratio of negative samples over positive
samples (Tang et al., 2009).

3.4. Performance assessment

Choosing the “best” candidate among different models involves
performance assessment and detailed comparison. Many perfor-
mance measures may be applied to perform this comparison.

A contingency table (sometimes called confusion matrix) is a
convenient way to tabulate statistics for evaluating the quality of
a model. In Table 3, TP, FP, TN, and FN stand for true positive, false
positive, true negative, false negative counts, respectively. PP and
PN stand for predicted positive/negative; and Pos and Neg stand for
actual positive/negative.

In this paper we consider only metrics that can be defined in
terms of counts in a contingency table; this excludes, e.g., the met-
rics that use model complexity (Flach, 2003; Jiang et al., 2008). The
most relevant metrics of this type are reported in Table 4.

We use Receiver Operating Characteristics (ROC) space to ana-
lyze the performance of the classifier. False positive rate is plotted
against the true positive rate. The graph (Fig. 2) shows the trade-off
benefits (true positives) and costs (false positives). The points (0,0)
Prediction outcome PP TP FP
Computer PN FN TN

PP, predicted positive; PN, predicted negative; Pos, actual positive; Neg, actual neg-
ative; TP, true positive; FP, false positive; TN, true negative; FN, false negative.

6 I. Fronza et al. / The Journal of Systems

Table 4
Derivations from a confusion matrix: the most relevant metrics for classification
performance evaluation (Akbani et al., 2004; Menzies et al., 2007).

Name (a.k.a.) Definition

True positive rate (TPR, sensitivity, recall) TP
TP+FN

False positive rate (FPR, fall out)
FP

FP+TN
Accuracy

TP+TN
TP+TN+FP+FN

True negative rate (TNR, specificity) TN
TN+FP

Balance 1 −
√

(0−FPR)2+(1−TPR)2

√
2

a
p
t
w
t
s
t
n
p

t
F
b
1
s
a
T

T
v
p
q
u
l

Fig. 3 represents a schematic view of the proposed approach.
While the system is running, log files are collected to track the
actual execution path. In this work we look at the running sys-
tem as a “black box”, meaning that we do not have any other
Fig. 2. ROC space structure, from Flach (2003).

ny point (p,p) can be obtained by predicting positive with
robability p and negative with probability (1 − p). The upper left
riangle contains the classifiers that perform better than random,
hile the lower right triangle contains those performing worse

han random. The descending diagonal (0,1)–(1,0) represents clas-
ifiers that perform equally well on both classes (TPR = 1 − FP); on
he left of this line we find classifiers that perform better on the
egatives than on the positives, on the right performance on the
ositives dominates (Flach, 2003).

Balance is defined in (Menzies et al., 2007) as the Euclidean dis-
ance from the sweet spot FPR = 0, TPR = 1 to a pair of (FPR; TPR).
or convenience, we (1) normalize balance by the maximum possi-
le distance across the ROC square (

√
2) and (2) subtract this from

. This way, better and higher balances fall closer to the desired
weet spot of FPR = 0, TPR = 1. In particular, classifiers having bal-
nce higher than 0.5 fall in the upper left triangle of the ROC space.
hus, we consider 0.5 as a threshold for balance.

Ideally, we seek predictors that maximize accuracy, TPR, and
NR. Note that maximizing any of these does not imply high
alues for the others. Accuracy is a good measure of a learner’s
erformance when the possible outcomes occur with similar fre-

uencies, and it is not suggested when class distributions are
neven (Menzies et al., 2007). Therefore, this paper assesses its

earned predictors using balance, TPR, FPR, and not accuracy.
 and Software 86 (2013) 2– 11

3.5. Training and testing the model

The concept of splitting the data into two parts (not necessar-
ily of equal size) to assess the performance of the model is by no
means new. The available dataset D is divided into two disjoint
subsets: the training set Dtrain to develop the model, and the test
set (a.k.a., holdout set) Dtest for testing the model to assess its per-
formance. The historical background of this method is provided
by Stone (1974, 1978) and Geisser (1975); useful discussions are
given by Snee (1977) and Mosteller and Tukey (1977), who consider
aspects of data splitting from a researcher’s perspective (Picard and
Cook, 1984).

The performance of classification methods is commonly evalu-
ated by cross-validation (CV) (Allen, 1974; Stone, 1978; Wahba and
Wold, 1975; Wold, 1978) or Monte Carlo CV (MCCV) (Picard and
Cook, 1984; Shao, 1993; Xu et al., 2004). In m-fold CV, the n obser-
vations are divided into m (approximately) equally sized groups.
In the kth iteration, the kth group is considered as test dataset,
whereas the remaining m − 1 groups form the training set which is
used for classifier construction. This classifier is then used to predict
the observations from group k. After the m iterations, the error rate
is estimated as the proportion of misclassified observations. MCCV
(a.k.a., subsampling or random splitting) also consists of several
iterations in which the dataset is split into training and test sets.
In contrast to CV, the test sets are not chosen to form a partition
of the whole dataset but drawn randomly (without replacement)
from the n observations at each iteration. The number of iterations
is fixed by the user and can be as high as computationally feasi-
ble (usually higher than 200), leading to a more robust estimation
than cross-validation (Smyth, 1996). The size ratio between train-
ing and test datasets is also fixed by the user. (Boulesteix, 2007).
Normally, 60–80% of the total sample is used to estimate the model;
the remaining 20–40% sample is set aside to validate the model.
The larger Dtrain, the better is the classifier; the larger Dtest, the
better are its performances. In our experiments, we used MCCV
with 1000 iterations; since we aimed at a good classifier with good
performances, we chose to use 60% of the dataset as training set.

4. Approach

4.1. Structure of the approach

We propose a technique to predict the failure of a running soft-
ware system using log files. The idea is to develop tools that read
logs of a running system and signal the possible crash of this system.
Fig. 3. Schema of the proposed approach.

I. Fronza et al. / The Journal of System

i
c

t
m
s
d
i
p
a

4

4

p

1

2

3

4

4

a

Fig. 4. Example of the process of extraction of sequences.

nformation about the system (e.g., the behavior in the memory
ould be used as an indicator of failure as well) except the log files.

The monitoring process takes log data as input and, based on
he analysis performed (i.e., RI and SVM), gives the supervisor a

essage indicating the “likely failure” for the running system. The
upervisor can act directly on the running system to avoid the pre-
icted failure or send an alert to the outside world. Possible actions

nclude: abort the running system, restart it, dynamically load com-
onents, or inform the running system if it is a suitably structured
utonomic system (Müller et al., 2009).

.2. Structure of the monitoring process

.2.1. Dimensional reduction of the problem and data preparation
To get from raw log files to RI input, the following steps are

erformed:

. Data are parsed to extract, for each event in the log file, the oper-
ation performed and the corresponding timestamp and severity.

. Duplicate rows are deleted, together with logs where the oper-
ation, the timestamp, or the severity is missing.

. Sequences of operations are extracted; a new sequence starts
either if there is a ‘Log in’ operation or if a day changes. A
sequence is labeled as “failure” if it contains at least one severity
“Error”. An example is shown in Fig. 4. Sequence 1 and sequence
2 (i.e., s1 and s2) start with a ‘Log in’; s3 starts because the day is
changed. In s1 and in s3, one operation has severity ‘Error’; thus,
s1 and s3 are labeled as ‘failure’.

. A text file is created as input for RI, where each line represents
a sequence of operations (i.e., a sentence). As an example, Fig. 5
shows the input file corresponding to the example in Fig. 4.
.2.2. SVM training and analysis of the results
Following the guidelines in (Sahlgren and Cöster, 2004), in each

pplication the monitoring process acts as follows:

Fig. 5. An example of input file for RI (corresponding to the log file in Fig. 4).
s and Software 86 (2013) 2– 11 7

1. It assigns index vectors to operation types.
2. It scans all the sequences of operations and finds context

vectors for each word (i.e., operation) using RI (Jurgens and
Stevens, 2010) where the length of semantic vectors is 1000
and window size (i.e., number of operations to consider in
each direction) is 1. In our preliminary experiments, increas-
ing the window size did not improve the results appreciably.
Thus, we used the smallest context to deal with short sequences
as well.

3. It uses context vectors to generate representations for sequences
of operations. This is done for every sequence by summing the
(weighted) context vectors of the operations that occur in the
particular sequence. Note that summed vectors result in tf-
weighting,1 since a word’s vector is added to the text’s vector as
many times as the word occurs in the text (Sahlgren and Cöster,
2004).

4. Vectors representing sequences are used to train a SVM. The
current sequence of operations of the running system is then
classified according to the obtained model.

5. Experiments and results

5.1. Goal and data

We have applied our approach to industrial data to select
the best performing type of SVM (i.e., weighted or not) and
its kernel. Moreover, we aimed at evaluating objectively our
prediction system applying the most suggested performance eval-
uation techniques (Flach, 2003; Jiang et al., 2008). We used
log files collected in a large European company that prefer to
remain anonymous. The study spanned a period of approximately
3 months.

Initially, the team was composed of 15 developers, but 2 more
joined the team at the beginning of the second month of our
study. The developers are all between 30 and 40 years old. They all
hold university degrees in computer-related areas and have from
10 to 15 years of programming experience. The team works on
several projects, mainly in C#. They are an Agile team, using a cus-
tomized version of Extreme Programming (XP). In particular, they
use weekly iterations, pair programming, user stories, and the test-
first approach. They use pair programming on an “as needed” basis.
The team has been using XP for more than two years previously
to our study. The working space of the team consists in an open
space, where each member has her/his own personal space. There-
fore, informal communication between the developers is easily
possible.

Table 5 describes the six applications in the dataset. For privacy
reasons, we could not access the code to extract metrics and provide
a more exhaustive description of the applications.

After the preprocessing phase, sequences were sampled 1000
times using Monte Carlo methods to obtain calibration sets (60%)
and validation sets (40%).

We applied SVM with linear, polynomial, and radial basis kernel.
The cost of misclassifying points was 100 in each case to force the
creation of a more accurate model (Tang et al., 2009).

To cope with skewed datasets weighted SVMs were also applied;

the cost for a false positive was always 1, while the cost for a false
negative was the ratio of negative samples over positive samples
(Tang et al., 2009).

1 Tf-weighting is the weighting scheme referred to as term frequency, usually
denoted tft,d , with the subscripts representing the term t and the document d. A
weight is assigned to each term in a document; the weight is defined as the number
of occurrences of term t in document d (Manning et al., 2008).

8 I. Fronza et al. / The Journal of Systems and Software 86 (2013) 2– 11

Table 5
Description of the applications in the dataset.

App. Type Maturity Evolution Complexity Size Number of
sequences

Posa (%)

A1 Custom ERP Medium Constantly modified Medium Large 12,765 0.84
A2 Management of historical

data on mechanic
components

High Mildly modified Medium Medium 718 15.88

A3 Signals about variations in
the ERP system

High Rarely modified Low Medium 60 23.33

A4 Calibration and interface
with proprietary hardware

High Rarely modified; going
to be dismissed

Low Small 343 12.83

A5 Radio communication High Constantly modified Extremely high Very large 713 4.77
A6 Mechanical simulations High Constantly modified Extremely high Very largeb 8593 1.23

a Pos = failures (percentage over n).
b The biggest and most critical application in the company.

5

b
T

c
o

i
m
o
b
d
b
A

T
c
i
T

T
S

Fig. 6. Balance (with standard deviation) of the best performing SVMs.

.2. Results

For each application, the best performing SVM was selected
ased on TNR and balance. Table 6 shows the results of this analysis.
NR is higher than 0.96 in all the applications.

Fig. 6 shows that balance is higher than 0.50 in four out of six
ases, as four bars go over the dashed line representing the thresh-
ld for balance.

Fig. 7 shows the ROC space of the best performing SVMs listed
n Table 6. The mean values of TPR and FPR of the 1000 experi-

ents are plotted together with their standard deviation. Five out
f six SVMs fall in the upper left triangle; therefore, they perform
etter than random. In particular, these five points are left of the
escending diagonal (0,1)–(1,0); thus, these five classifiers perform
etter on the negatives than on the positives. Classification in A1 is
lwaysNegative, since the corresponding point is (0,0).

As shown in Table 6, SVMs had almost perfect TNR but poor

PR. TNR may be so high because data are imbalanced; thus, SVMs
lassify almost all instances as negative. Any algorithm that tries to
mprove on it inevitably sacrifices some specificity to improve TPR.
here have been several proposals for coping with skewed datasets

able 6
VMs performance (best performing kernels).

App SVM performance

Kernel TNR (std) TPR (std) FPR (std) Balance (std)

A1 Radial 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.29 (0.00)
A2 Radial 0.98 (0.01) 0.91 (0.03) 0.02 (0.01) 0.93 (0.02)
A3 Linear 0.98 (0.05) 0.04 (0.09) 0.02 (0.05) 0.32 (0.07)
A4 Radial 0.96 (0.02) 0.33 (0.11) 0.04 (0.02) 0.52 (0.08)
A5 Linear 0.99 (0.01) 0.73 (0.18) 0.01 (0.01) 0.81 (0.13)
A6 Linear 0.99 (0.01) 0.51 (0.12) 0.01 (0.01) 0.65 (0.08)
Fig. 7. ROC space of the best performing SVMs.

(Akbani et al., 2004; Japkowicz, 2005; Maloof, 2003; Provost and
Fawcett, 2001; Veropoulos et al., 1999). We address this issue
applying weighted SVMs, which implement cost-sensitive learning
(Akbani et al., 2004; Osuna et al., 1997; Tang et al., 2009; Veropoulos
et al., 1999).

According to results, weighted SVMs sacrifice some specificity
(i.e., TNR) to improve the TPR; anyway, TNR still remains higher
than 0.80 in four out of six operations, as shown in Table 7.

Fig. 8 shows that weighted SVMs balance is higher than 0.50
in four out six cases, as it was for SVMs (Fig. 6). Fig. 9 shows the

comparison between the balance of SVMs and of weighted SVMs.

Fig. 10 shows the ROC space of the best performing weighted
SVMs listed in Table 7. Five out of six points are in the upper left

Table 7
Weighted SVMs performance (best performing kernels).

App SVM performance

Kernel TNR (std) TPR (std) FPR (std) Balance (std)

A1 Radial 0.51 (0.11) 0.50 (0.13) 0.48 (0.11) 0.48 (0.03)
A2 Radial 0.98 (0.01) 0.93 (0.04) 0.02 (0.01) 0.94 (0.02)
A3 Linear 0.80 (0.15) 0.17 (0.18) 0.20 (0.15) 0.36 (0.09)
A4 Radial 0.84 (0.04) 0.76 (0.11) 0.16 (0.04) 0.79 (0.06)
A5 Linear 0.95 (0.02) 0.85 (0.09) 0.05 (0.02) 0.88 (0.06)
A6 Linear 0.95 (0.04) 0.72 (0.16) 0.05 (0.04) 0.80 (0.18)

I. Fronza et al. / The Journal of Systems and Software 86 (2013) 2– 11 9

Fig. 8. Balance (with standard deviation) of the best performing weighted SVMs.

Fig. 9. Balance of SVMs and weighted SVMs: a comparison.

t
f
i
p
i
f

Table 8
Summary of the results obtained in this study.

SVMs Weighted SVMs

TNR Always higher than 0.96 Always higher than 0.80
TPR Lower than 0.50 in 4 out

of 6 cases
Lower than 0.50 in 1 out of 6 cases

Balance Higher than 0.50 in 4 out
of 6 cases

Higher than 0.50 in 4 out of 6 cases

nition of context, i.e., the dimension of the sliding window in the RI
algorithm. Another aspect that we will evaluate is the possibility of
predicting the occurrence of a failure using only an initial portion
Fig. 10. ROC space of the best performing weighted SVMs.

riangle; therefore, they perform better than random. It emerges
rom the comparison of this plot to Fig. 7 that A4 and A1 have
mproved their performance. In particular, A1 has now left the (0,0)
oint. Our approach outperforms in accuracy the method proposed

n (Fulp et al., 2008), where authors use SVMs to predict computer

ailure events using sub-sequences from system log.
Always higher than non weighted
SVMs results

6. Conclusions and limitations

In this paper we introduce a new approach for predicting failures
of a running system using log files; we use RI to represent sequences
of operations extracted from log files, then we apply SVMs to clas-
sify them as either fail or non-fail. This approach allows us to exploit
the sequential nature of system messages.

As expected, we found that SVMs were almost perfect in classi-
fying non-failures correctly but poor in identifying failures. To solve
this issue we applied weighted SVMs to implement cost-sensitive
learning, assigning a larger penalty value to false negatives than
false positives. According to results (Table 8), some specificity (i.e.,
TNR) was sacrificed to improve sensitivity (i.e., TPR). Anyway, TNR
still remains higher than 0.80 in four out of six applications. Over-
all, weighted SVMs are very reliable in predicting both failures and
non-failures of the system.

Table 9 reports the possible threats of validity of our study
according to the list reported in Wohlin et al. (2000).

6.1. Generalizability

We applied the most suggested techniques (Flach, 2003; Jiang
et al., 2008) to evaluate objectively the performance of our
approach. Nevertheless, misclassification carries the risk of system
failure also associated with cost implications. Thus, when applying
the approach in another context, the selection of the “best” model
should consider project cost characteristics, which are specific in
each development environment (Jiang et al., 2008).

The log files need to contain the performed operation, the sever-
ity of the message, and the timestamp. Therefore, this approach
can be easily put into practice in different contexts. Moreover, we
have shown that our approach can be applied in different condi-
tions, since we have considered a set of application heterogeneous
in terms of size, complexity, type and maturity (Table 5).

7. Future work

Our results contribute to the research on failure prediction in
exploiting the sequential nature of log messages while classifying
sequences as either fail or non-fail, thus allowing to abort the run-
ning system, or restart it, or take corrective actions to avoid the
failure. The proposed model could be particularly useful dealing
with autonomic systems. Autonomic systems could be instructed to
receive signals of likely failures and upon reception of such signals
could start a suitable recovery procedure (Müller et al., 2009).

Given the results of this approach, the company where this study
took place has agreed to extend the study for an additional period
of one year. After the 3-months study presented in this work, we
collected feedback from the company. We are now performing
experiments to address the raised issues. In particular, we want
to understand if our results can be improved by changing the defi-
of a sequence, so that there could be an early estimation of failure,

10 I. Fronza et al. / The Journal of Systems and Software 86 (2013) 2– 11

Table 9
Threats to validity of our experiment.

Conclusion validity
Random heterogeneity of subjects The applications are quite heterogeneous, thus the variation in the performances might be due to individual

differences. Anyway, our experiments seem to exclude the influence on performance of the number of sequences and
of the percentage of failures

Internal validity
History

Maturation
The performance of our approach could change over time, since the characteristics of the applications may evolve
(e.g., the prediction may be more accurate with a higher percentage of failures). Analyzing the performance over time
may solve this possible threat

External validity
Interaction of selection and treatment We applied our approach to industrial data and analyzed six different applications. Still, drawing general conclusions

from empirical studies in software engineering is complicated because any process depends to a large degree on a
potentially large number of relevant context variables. Thus, the replication of the analysis on more industrial datasets

the sp

p
w
o
“
p
u
m
w

R

A

A

A

B

C

C

C

C

C

F

F

F

F

is needed to generalize beyond

roviding additional time to take corrective actions. Moreover, we
ill analyze how our approach influences positively the percentage

f failures. Finally, we will investigate how we could consider other
black-box” properties or applications to predict failures; candidate
roperties include memory usage, number of open files, processor
sage, etc. Our future goal is to study more in-depth our promising
odel to determine if we can generalize our results. To this end,
e plan to replicate the analysis on more industrial datasets.

eferences

diga, N., Almasi, G., Almasi, G.S., Aridor, Y., Barik, R., Beece, D., Bellofatto, R., Bhanot,
G., Bickford, R., Blumrich, M., Bright, A.A., Brunheroto, J., Cacaval, C., Castaños,
J., Chan, W., Ceze, L., Coteus, P., Chatterjee, S., Chen, D., Chiu, G., Cipolla, T.M.,
Crumley, P., Desai, K.M., Deutsch, A., Domany, T., Dombrowa, M.B., Donath,
W., Eleftheriou, M., Erway, C., Esch, J., Fitch, B., Gagliano, J., Gara, A., Garg, R.,
Germain, R., Giampapa, M.E., Gopalsamy, B., Gunnels, J., Gupta, M., Gustavson,
F., Hall, S., Haring, R.A., Heidel, D., Heidelberger, P., Herger, L.M., Hoenicke,
D., Jackson, R.D., Jamal-Eddine, T., Kopcsay, G.V., Krevat, E., Kurhekar, M.P.,
Lanzetta, A.P., Lieber, D., Liu, L.-K., Lu, M., Mendell, M., Misra, A., Moatti, Y., Mok,
L., Moreira, J.E., Nathanson, B.J., Newton, M., Ohmacht, M., Oliner, A., Pandit,
V., Pudota, R.B., Rand, R., Regan, R., Rubin, B., Ruehli, A., Rus, S., Sahoo, R.K.,
Sanomiya, A., Schenfeld, E., Sharma, M., Shmueli, E., Singh, S., Song, P., Srini-
vasan, V., Steinmacher-Burow, B.D., Strauss, K., Surovic, C., Swetz, R., Takken, T.,
Tremaine, R.B., Tsao, M., Umamaheshwaran, A.R., Verma, P., Vranas, P., Ward,
T.J.C., Wazlowski, P., 2002. An Overview of the bluegene/l supercomputer. In:
Proceedings of Supercomputing, p. 60.

kbani, R., Kwek, S., Japkowicz, N., 2004. Applying support vector machines to imbal-
anced datasets. Machine Learning 3201 (7), 39–50.

llen, D.M., 1974. The relationship between variable and data augmentation and a
method of prediction. Technometrics 16, 125–127.

oulesteix, A.-L., 2007. WilcoxCV: an R package for fast variable selection in cross-
validation. Bioinformatics 23, 1702–1704.

ao, L., 2003. Support vector machines experts for time series forecasting. Neuro-
computing 51, 321–339.

hatterjee, N., Mohan, S., 2008. Discovering word senses from text using Random
Indexing. In: Proceedings of the 9th International Conference on Intelligent Text
Processing and Computational Linguistics, Haifa, Israel, February 17–23, 2008,
pp. 299–310.

huang, L.Y., Wu, K.C., Chang, H.W., Yang, C.H., 2011. Support Vector Machine-based
prediction for oral cancer using four SNPs in DNA repair genes. Lecture Notes in
Engineering and Computer Science 2188 (1), 426–429.

oman, I.D., Sillitti, A., Succi, G., 2009. A case-study on using an Automated In-
process Software Engineering Measurement and analysis system in an industrial
environment. In: Proceedings of the International Conference on Software Engi-
neering, Canada, May 16–24, 2009, pp. 89–99.

ortes, C., 1995. Prediction of generalisation ability in learning machines. PhD Thesis,
Department of Computer Science, University of Rochester.

lach, P.A., 2003. The geometry of ROC space: understanding machine learning
metrics through ROC isometrics. In: Proceedings of the 20th International Con-
ference on Machine Learning, pp. 194–201.

u, S., Xu, C.Z., 2007a. Quantifying temporal and spatial fault event correlation for
proactive failure management. In: Proceedings of Symposium on Reliable and
Distributed Systems.

u, S., Xu, C.Z., 2007b. Exploring event correlation for failure prediction in coalitions
of clusters. In: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, Reno, NV, USA, November 15–21,
2007.

ulp, E.W., Fink, G.A., Haack, J.N., 2008. Predicting computer system failures using
support vector machines. In: Proceedings of the 1st Conference on Analysis of
System Logs.
ecific environment in which it was conducted

Geisser, S., 1975. The predictive sample reuse method with applications. Journal of
the American Statistical Association 70, 320–328.

Gross, K.C., Bhardwaj, V., Bickford, R., 2002. Proactive detection of software aging
mechanisms in performance critical computers. In: Proceedings of the 27th
Annual NASA Goddard Software Engineering Workshop.

Japkowicz, N., 2005. Learning from imbalanced data sets: a comparison of various
strategies. In: Proceedings of Learning from Imbalanced Data Sets Workshop.

Jiang, Y., Cukic, B., Ma, Y., 2008. Techniques for evaluating fault prediction models.
Empirical Software Engineering 13 (5), 561–595.

Joachims, T., 1998. Text categorization with SVM: learning with many relevant fea-
tures. In: Proceedings of the 10th European Conference on Machine Learning.

Jurgens, D., Stevens, K., 2010. The S-space package: an open source package for
word space models. In: System Papers of the Association of Computational
Linguistics.

Lan, Z., Zheng, Z., Li, Y., 2010. Toward automated anomaly identification in large-scale
systems. In: Proceedings of Transactions on Parallel and Distributed Systems, pp.
174–187.

Landauer, T.K., Foltz, P.W., Laham, D., 1998. Introduction to latent semantic analysis.
Discourse Processes 25, 259–284.

Lee, I., Iyer, R.K., Tang, D., 1991. Error/failure analysis using event logs from fault
tolerant systems. In: Proceedings of the 21st International Symposium on Fault-
Tolerant Computing.

Li, N., Wu, D.D., 2010. Using text mining and sentiment analysis for online forums
hotspot detection and forecast. Decision Support Systems 48 (2), 354–368.

Li, Z., Zhou, S., Choubey, S., Sievenpiper, C., 2007. Failure event prediction using
the Cox proportional hazard model driven by frequent failure sequences. IEE
Transactions 39 (3), 303–315.

Liang, Y., Zhang, Y., Xiong, H., Sahoo, R., 2007. Failure prediction in IBM bluegene/l
event logs. In: Proceedings of the International Conference on Data Mining.

Maloof, M.A., 2003. Learning when data sets are imbalanced and when costs are
unequal and unknown. In: Proceedings of the 2nd Workshop on Learning from
Imbalanced Data Sets.

Mannila, H., Toinoven, H., Verkamo, A.I., 1997. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery 1, 259–289.

Manning, C.D., Raghavan, P., Schütze, H., 2008. Introduction to Information Retrieval.
Cambridge University Press.

Menzies, T., Greenwald, J., Frank, A., 2007. Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering 33 (1), 2–13.

Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A., 2004. Support vector
machines for wind speed prediction. Renewable Energy 29, 939–947.

Mosteller, F., Tukey, J.W., 1977. Data Analysis and Regression. Addison Wesley, Read-
ing, MA.

Müller, H.A., Kienle, H.M., Stege, U., 2009. Autonomic computing: now you see it,
now you don’t—design and evolution of autonomic software systems. In: De
Lucia, A., Ferrucci, F. (Eds.), Software Engineering International Summer School
Lectures: University of Salerno, LNCS 5413. Springer-Verlag, pp. 32–54.

Osuna, E., Freund, R., Girosi, F., 1997. Support vector machines: training and applica-
tions. Technical Report, Massachusetts Institute of Technology, Cambridge, MA,
USA.

Pai, P.F., Hong, W.C., 2006. Software reliability forecasting by support vector
machines with simulated annealing algorithms. Journal of Systems and Software
79 (6), 747–755.

Pandalai, D.N., Holloway, L.E., 2000. Template languages for fault monitoring of
timed discrete event processes. IEEE Transactions on Automatic Control 45 (5),
868–882.

Picard, R.R., Cook, R.D., 1984. Cross-validation of regression models. Journal of the
American Statistical Association 79 (387), 575–583.

Pinheiro, E., Weber, W.D., Barroso, L.A., 2007. Failure trends in a large disk drive
population. In: Proceedings of the Conference on File and Storage Technologies,
pp. 17–29.
Provost, F.J., Fawcett, T., 2001. Robust classification for imprecise environments.
Machine Learning 42 (3), 203–231.

Raga, R., Raga, J., 2010. Combining Random Indexing and instance-based learn-
ing to analyze sentential units of text. In: Proceedings of the 10th Philippine
Computing Science Congress.

ystem

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

V
V

V

W

W

W

W

W

I. Fronza et al. / The Journal of S

ahlgren, M., Cöster, R., 2004. Using bag-of-concepts to improve the performance of
support vector machines in text categorization. In: Proceedings of the 20th Inter-
national conference on Computational Linguistics, Geneva, Switzerland, August
23–27, 2004.

ahlgren, M., 2005. An introduction to Random Indexing. In: Proceedings of the 7th
International Conference on Terminology and Knowledge Engineering.

ahlgren, M., 2006. The Word-Space Model: using distributional analysis to
represent syntagmatic and paradigmatic relations between words in high-
dimensional vector spaces. PhD Thesis, Stockholm University.

alfner, F., Schieschke, M., Malek, M., 2006. Predicting failures of computer systems:
a case study for a telecommunication system. In: Proceedings of the 20th Inter-
national Conference On Parallel and Distributed Processing Symposium, Rhodes
Island, Greece, April 25–29, 2006.

alfner, F., 2008. Event-based failure prediction: an extended hidden Markov model
approach. Dissertation, Verlag, Berlin, Germany.

ampath, M., Sengupta, R., Lafortune, S., 1994. Diagnosability of discrete event
systems. In: Proceeding of the 11th International Conference on Analysis and
Optimization of Systems Discrete Event Systems, Sophia, Antipolis, June 15–17,
1994.

hao, J., 1993. Linear model selection by cross validation. Journal of the American
Statistical Association 88, 486–494.

rinivasan, V.S., Jafari, M.A., 1993. Fault detection/monitoring using time petri nets.
IEEE Transactions on System, Man and Cybernetics 23 (4), 1155–1162.

myth, P., 1996. Clustering using Monte Carlo cross-validation. In: Proceedings of
the 2nd International Conference on Knowledge Discovery and Data Mining,
Portland, Oregon, 1996.

nee, R.D., 1977. Validation of regression models: methods and examples. Techno-
metrics 19, 415–428.

tearley, J., Oliner, A.J., 2008. Bad words: finding faults in Spirit’s syslogs. In: Pro-
ceedings of the International Symposium on Cluster Computing and the Grid,
Lyon, France, May 19–22, 2008.

tone, M., 1974. Cross-validatory and assessment of statistical predictions. Journal
of the Royal Statistical, Series B 36, 111–133.

tone, M., 1978. Cross-validation: a review. Mathematische Operationsforschung
und Statistik 9, 127–139.

ang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S., 2009. SVMs modeling for highly imbal-
anced classification. Systems, man, and cybernetics. Transactions on Cybernetics
39 (1), 281–288.

ay, F.E.H., Cao, L., 2001. Application of support vector machines in financial time
series forecasting. Omega: The International Journal of Management Science 29,
309–317.

ong, S., Chang, E., 2001. Support Vector Machine active learning for image retrieval.
In: Proceedings of the International Conference on Multimedia, pp. 107–
118.

apnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag.
eropoulos, K., Campbell, C., Cristianini, N., 1999. Controlling the sensitivity

of support vector machines. In: Proceedings of Workshop Support Vector
Machines.

ilalta, R., Ma, S., 2002. Predicting rare events in temporal domains. In: Proceedings
of the International Conference on Data Mining.

ang, W., Xu, Z., Lu, J.W., 2003. Three improved neural network models for air
quality forecasting. Engineering Computations 20, 192–210.

ahba, G., Wold, S., 1975. A completely Automatic French Curve. Communications
in Statistics 4, 1–17.

ohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation Software Engineering – An Introduction. Kluwer Academic

Publishers.

old, S., 1978. Cross-validatory estimation of the number of components in factor
and principal components models. Technometrics 20, 397–405.

u, G., Chang, E., 2003. Class-Boundary Alignment for Imbalanced Dataset Learning.
ICM, Washington, DC.
s and Software 86 (2013) 2– 11 11

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J.,
et al., 2007. Top 10 algorithms in data mining. Knowledge and Information
Systems 14 (1), 1–37.

Xu, H., Lemischka, I.R., Ma’ayan, A., 2010. SVM classifier to predict genes important
for self-renewal and pluripotency of mouse embryonic stem cells. BMC Systems
Biology 4 (173).

Xu, Q.S., Liang, Y.Z., Du, Y.P., 2004. Monte Carlo cross-validation for selecting a
model and estimating the prediction error in multivariate calibration. Journal of
Chemometrics 18, 112–120.

Xue, Z., Dong, X., Ma, S., Dong, W., 2007. A survey on failure prediction of large-
scale server clusters. In: Proceedings of the International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Com-
puting, pp. 733–738.

Yamanishi, K., Maruyama, Y., 2005. Dynamic syslog mining for network failure mon-
itoring. In: Proceedings of the International Conference on Knowledge Discovery
in Data Mining, pp. 499–508.

Zheng, Z., Lan, Z., Park, B.-H., Geist, A., 2009. System log pre-processing to improve
failure prediction. In: Proceedings of DSN’09.

Ilenia Fronza holds a PhD in Computer Science received from the University of
Bolzano-Bozen, Italy, in 2012. She is currently a research fellow on a fixed term con-
tract at the Free University of Bolzano-Bozen, Italy. Her current research interest
focuses on data mining and computational intelligence, software process measure-
ment and improvement, failure prediction.

Alberto Sillitti, PhD, PEng is Associate Professor at the Faulty of Computer Science
of the Free University of Bolzano-Bozen, Italy. He holds a PhD in Electrical and Com-
puter Engineering received from the University of Genoa (Italy) in 2005. He has been
involved in several EU funded projects related to Open Source Software, Services
Architectures, and Agile Methods in which he applies non-invasive measurement
approaches. He has served as member of the program committee of several inter-
national conferences and as program chair of OSS 2007, XP 2010, and XP2011. His
research areas include open source development, agile methods, software engineer-
ing, non-invasive measurement, mobile and web services. He is author of more than
80 papers published in international conferences and journals.

Giancarlo Succi is Professor with Tenure at the Free University of Bolzano-Bozen,
Italy, where he directs the Centre for Applied Software Engineering. Before join-
ing the Free University of Bolzano-Bozen, he has been Professor with Tenure at
the University of Alberta, Edmonton, Alberta, Associate Professor at the University
of Calgary, Alberta, and Assistant Professor at the University of Trento, Italy. The
research interest of his involve multiple areas of software engineering, including
open source development, agile methodologies, experimental software engineer-
ing, software engineering over the Internet, and software product lines and software
reuse. He is a Fulbright Scholar.

Mikko Terho works in the Devices R&D Technology, Strategy and Architecture unit.
His current interests are open source development around Qt, machine learning and
semantic data manipulation. He also manages a team that develops prototypes for
pervasive communication devices with novel Internet services. As a Nokia Fellow, he
advices other Nokia R&D Groups in the area of system design, software architecture
and component selection. He joined Nokia in 1983 and has since served in various
research and development and managerial positions within the company. He is also
a founding Director of Wireless Application Protocol (WAP) Forum Ltd. and founding
Director of Symbian Ltd.

Jelena Vlasenko received her Bachelor degree in Computer Science from the Free

University of Bolzano-Bozen, Italy, in 2010. She is currently a Master student at
the Free University of Bolzano-Bozen, Italy, where she works on her thesis at the
Center for Applied Software Engineering. Her current research interest focuses on
agile methodologies, failure prediction, non-invasive measurement, software pro-
cess measurement and improvement.

	Failure prediction based on log files using Random Indexing and Support Vector Machines
	1 Introduction
	2 Related work
	3 Background
	3.1 Log files
	3.2 Random Indexing
	3.3 Support Vector Machines
	3.4 Performance assessment
	3.5 Training and testing the model

	4 Approach
	4.1 Structure of the approach
	4.2 Structure of the monitoring process
	4.2.1 Dimensional reduction of the problem and data preparation
	4.2.2 SVM training and analysis of the results

	5 Experiments and results
	5.1 Goal and data
	5.2 Results

	6 Conclusions and limitations
	6.1 Generalizability

	7 Future work
	References

