
NEVERMIND, the Problem Is Already Fixed: Proactively
Detecting and Troubleshooting Customer DSL Problems

Yu Jin∗, Nick Duffield†, Alexandre Gerber†, Patrick Haffner†, Subhabrata Sen†, Zhi-Li Zhang∗

∗Computer Science Dept., University of Minnesota †AT&T Labs–Research
∗{yjin,zhzhang}@cs.umn.edu †{duffield,gerber,haffner,sen}@research.att.com

ABSTRACT
Traditional DSL troubleshooting solutions are reactive, re-
lying mainly on customers to report problems, and tend to
be labor-intensive, time consuming, prone to incorrect res-
olutions and overall can contribute to increased customer
dissatisfaction. In this paper, we propose a proactive ap-
proach to facilitate troubleshooting customer edge problems
and reducing customer tickets. Our system consists of: i) a
ticket predictor which predicts future customer tickets; and
ii) a trouble locator which helps technicians accelerate the
troubleshooting process during field dispatches. Both com-
ponents infer future tickets and trouble locations based on
existing sparse line measurements, and the inference mod-
els are constructed automatically using supervised machine
learning techniques. We propose several novel techniques to
address the operational constraints in DSL networks and to
enhance the accuracy of NEVERMIND. Extensive evalua-
tions using an entire year worth of customer tickets and mea-
surement data from a large network show that our method
can predict thousands of future customer tickets per week
with high accuracy and significantly reduce the time and ef-
fort for diagnosing these tickets. This is beneficial as it has
the effect of both reducing the number of customer care calls
and improving customer satisfaction.

1. INTRODUCTION
Digital subscriber line (DSL) is a key technology that brings

the Internet to our homes through dedicated copper lines via
the local telephone network. Given the importance of the In-
ternet to our daily life, we want and expect high-reliability
and high-quality DSL network service. Unfortunately, DSL
service problems can and do occur. Most such problems oc-
cur at the network edge beyond the DSL Access Multiplexer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

(DSLAM, see Section 2 for the architecture of DSL net-
works) down to and including customer premises wiring and
home equipment issues, which we refer to as customer edge
problems in this paper. When encountering such a problem,
getting it diagnosed and resolved can be a frustrating expe-
rience for both service providers and customers.
The state-of-the-art operational approaches for detecting

and troubleshooting customer edge problems utilized by DSL
service providers are mainly reactive in nature. Customer
agents wait for a subscriber to report any problem encoun-
tered and use domain knowledge to match the symptoms de-
scribed by the customer to determine if a technical problem
occurs at the customer edge. In order to locate the network
element causing the problem, a dispatch is often scheduled
and a field technician runs a truck roll, going physically to
a customer’s home and/or other locations, and checking nu-
merous devices one by one using a plethora of meters and
tools until the problem is finally solved.
Not only is such a reactive process time-consuming and

labor-intensive from the ISP side, it also diminishes the ex-
perience for the customer. When a customer calls the tech-
nical help line, she is usually asked to go through a series of
routine diagnosis steps such as removing all filters, rebooting
the DSL modem, desktop, etc. Such an interview serves as a
preliminary to identifying the root of the problem. However,
this interview at times may not be successful and the cus-
tomer will then be asked to schedule with field technicians a
physical dispatch to the customer premises for the problem
to be detected and resolved. It may take one or more days
(due to physical scheduling of people and equipment) until
the network is back to normal. A lengthy resolution can lead
to customer dissatisfaction and ultimately lead to churn, i.e.,
customers terminating their contracts.
Instead of relying on a reactive solution, can we trou-

bleshoot customer edge problems more proactively and with
substantially greater efficiency? This is the central challenge
which this paper attempts to address. We would need to
identify customer edge problems and fix them quickly be-
fore the customers complain about them or even realize the
existence of these problems. If successful, we can thereby
reduce the number of trouble tickets, achieve faster resolu-
tions and potentially reduce churn. Our goal is to develop

techniques that work within the confines of the existing op-
erational environment, utilize only existing information in-
frastructure and are not predicated on expensive new infras-
tructure investments. Although these conditions impose con-
straints, they are vital for ensuring the successful deploy-
ment and adoption of resulting techniques by the operators.
In this paper, we propose a novel pro-active approach –

referred to as NEVERMIND – for troubleshooting customer
edge problems. NEVERMIND is designed with two inter-
related goals: i) to detect potential customer edge problems
in advance, or, equivalently, to predict future customer tick-
ets, and the operators can then resolve them before customers
call to complain or even before they realize the problems;
and ii) to assist technicians in quickly locating and trou-
bleshooting problems, thereby speeding up the diagnosis pro-
cess. Both goals target improving the customer experience
on the DSL network by greatly reducing the current lengthy
troubleshooting process of customer edge problems. Corre-
spondingly, NEVERMIND consists of two components: a
ticket predictor which detects potential customer edge prob-
lems which may lead to future customer tickets, and a trou-
ble locator which prioritizes potential problem locations to
assist technicians in diagnosing problems.
The key challenges in designing NEVERMIND lie in the

practical operational constraints. Given the complexity of
DSL networks, especially at the customer edges, there exist
many passive simple physical components at different loca-
tions (inside a customer’s home, the switch box outside the
home, along the phone line to switching office, etc.), which
may cause the problem. They are dedicated devices specific
to a customer and cannot be remotely “pinged” or queried
for their status. Therefore, it is very difficult to obtain fine
grained status measurements for these devices, unless a tech-
nician physically goes to test them on site. The lack of
such fine grained data renders many existing network trou-
bleshooting methods proposed in the literature, e.g., [3–5, 9,
10,12], no longer applicable, as most of them are developed
for active network elements, or rely on correlations of vari-
ous statistics collected on these active elements. In compar-
ison, NEVERMIND does not require fine-grained and con-
tinuous measurements. Instead, it utilizes existing sparse
and noisy line measurements collected weekly at a fixed lo-
cation in the DSL network (via a few remotely accessible
devices, e.g., DSL modems and DSLAMs), which reflect the
aggregate status of all (passive) devices along each individ-
ual dedicated copper line. Such line measurements contain
metrics regarding physical layer line conditions, such as the
bit rate, the estimated loop length and so on. Mining such
sparse and noisy data manually is a daunting task. Employ-
ing advanced machine learning algorithms, NEVERMIND
automatically mines inference rules by correlating periodic
line measurementswith existing customer trouble tickets which
contain diagnosis provided by field technicians. This enables
NEVERMIND to identify accurately potential customer edge
problems and accelerate the troubleshooting process even

with such imperfect measurement data.
Limited operational resources are another key factor that

affects the design of NEVERMIND. In order to seamlessly
integrate NEVERMIND into the existing DSL troubleshoot-
ing architecture, a high priority would be assigned to cus-
tomer reported problems, with the remaining operational ca-
pacity used by NEVERMIND. To make best use of the re-
maining capacity, NEVERMIND ranks predicted problems
by their likelihood of occurrence so that the operators would
focus on the most likely cases. For this study, we consider
the top ranked 20K problems predicted by NEVERMIND.
In order to make accurate predictions, i) we devise a novel

top-N average precision based feature selection method to
select a compact line feature set, which enables the ticket
predictor to yield high accuracy within the capacity of the
operation resources without sacrificing the scalability of the
system; and ii) we put forth a combined model which incor-
porate the hierarchical structure of typical DSL networks.
This combined model can help technicians efficiently locate
problems evenwhen a problemonly occurs rarely in the past.
We evaluate NEVERMIND using line measurement data,

customer tickets and other data sources collected from a ma-
jor DSL network in the US in 2009. This network contains
millions of subscribers across many different geo-locations.
Evaluations show that, using the ticket predictor, we can ac-
curately predict more than 8,000 future tickets per week with
high accuracy. Investigation of the predictions that did not
lead to tickets shows that they are also likely related to cus-
tomer edge problems but somehow not reported by DSL cus-
tomers, e.g., a customer is not aware of the problem because
she was not using the DSL service when the problem hap-
pened (see Section 5.2). In addition, during the dispatches
for resolving these predicted tickets, the trouble locator can
significantly improve the speed for locating problems.
The remainder of the paper is organized as follows. Sec-

tion 2 overviews DSL networks and points out several chal-
lenges for troubleshooting customer edge problems. In Sec-
tion 3, we discuss the problems in the current reactive DSL
customer care solution and propose our proactive solution –
NEVERMIND. The details of ticket predictor in NEVER-
MIND are explained in Section 4 and the evaluation results
are presented in Section 5. We briefly discuss the trouble
locator in Section 6. The related work is introduced in Sec-
tion 7 and Section 8 concludes the paper.

2. BACKGROUND AND CHALLENGES
In this section, we introduce the architecture of typical

DSL networks and study the characteristics of customer edge
problems in DSL networks. Finally, we point out several
challenges in troubleshooting such problems.

2.1 Introduction to DSL Networks
DSL is a widely-deployed technology for supporting digi-

tal signal transmission over traditional telephone lines. Fig. 1
shows the architecture of a typical DSL network. At the

customer’s premise, customer computers and other network
devices are connected to a DSL modemwhich in turn is con-
nected to a phone line. This dedicated connection terminates
at a DSL Access Multiplexer (DSLAM). Each DSLAM typ-
ically terminates the per-subscriber dedicated DSL connec-
tions for several tens of customers. It separates voice from
data signals, sending the former to the Plain Old Telephone
Service (POTS) infrastructure. The DSLAM aggregates data
traffic from the customers and feeds it to an upstream ATM
switch. The latter extracts IP traffic (the traffic from the DSL
modem to the DSLAM is typically ATM) and sends it to a
Broadband Remote Access Server (BRAS) server which is
the gateway from the DSL access network to the IP core net-
work.The above describes commonly deployed DSL infras-
tructure and some variations and evolutions exist. For exam-
ple, newer IP-DSLAMs perform the ATM to-IP conversion
internally obviating the need for an external ATM switch.

Figure 1: DSL network architecture

2.2 Problems in DSL Networks
A customer edge problem only affects a particular cus-

tomer, since all the elements on a dedicated DSL line are
specific to each customer. In contrast, due to the hierarchical
structure of a DSL network, a problem occurring between a
BRAS server and a DSLAM pair usually affects the connec-
tivity of multiple customers served by this pair. Operators
refer to such problems as network outage problems.

Figure 2: Root causes of customer edge problems.
Earlier research has mainly focused on troubleshooting

network outage problems. However, customer edge prob-
lems form the overwhelming majority of all problems oc-
curring in DSL networks. In comparison to existing works,

in this paper, we focus primarily on predicting and trou-
bleshooting customer edge problems. In addition, as we
shall see in Section 5, by correlating predicted customer edge
problems based on geolocations, we can also provide useful
information to the operators about potential outage problems
at DSLAMs. In the following, we briefly discuss the plausi-
ble causes of different customer edge problems.
A dedicated DSL line connects a DSL modem at the user

end to the DSLAM serving the nearby area. There are a
large number of components on each DSL line or inside cus-
tomer’s home network (e.g., inside wiring or equipment) that
may contribute to a reported customer edge problem. To
understand the different causes of customer edge problems,
we study the customer tickets received in August, 2009 (see
Section 3.3 for details of all the datasets). Each ticket is asso-
ciated with a disposition note from the field technician indi-
cating the problem resolution action - either a device or com-
ponent (e.g., a defective DSL modem or a worn cord) had to
be fixed/replaced, or a configuration change effected (e.g.,
stabilizing the line by downgrading speed). We summarize
the representative dispositions and their corresponding loca-
tions in Fig. 2 and provide examples of common problems
and dispositions in Table 1.
These dispositions can be partitioned into four major cat-

egories (or major locations) based on the places where the
problems are resolved: the home network (HN), the DSLAM
(DS), the path between the crossbox and DS (F1), and the
path between HN and the crossbox (F2). Field technicians
today break up the end-end path into these four locations,
and troubleshoot by individual location. For example, if the
technician has enough evidence to believe a problem hap-
pens at DS, she can save time by skipping testing other three
locations. DS, F1 and F2 can be also clustered into a single
larger class - outside (home network) problems. However,
due to the fact that there is no dominant disposition in these
major locations (Table 1), it is difficult to make such a deci-
sion purely based on expert knowledge.

2.3 Challenges
The large number of possible dispositions coupled with

very limited instrumentation on the real-time health of the
network makes troubleshooting customer edge problems a
difficult and expensive task. Automated troubleshooting pro-
posals, e.g., [4, 10], require continuously tracking the health
of different network components and then inferring the trou-
ble locations through the correlations across these compo-
nents. Such approaches are not well-suited to our problem,
where there exists substantial heterogeneity in terms of ele-
ments and their capabilities, and to what extent they can be
monitored. Most elements on a DSL line (e.g., cable and
splitter) are basic physical devices. To measure the state of
such devices, a technician needs to be on site at the loca-
tion of the device and manually run diagnostic checks using
specialized tools to determine the current state of the device.
Due to the huge number of DSL subscribers, continuously

Location Disposition (pct.) Description

HN

Defective DSL modem issues
Filter issues
Splitter issues
Network cable issues
Inside wire (wet, corroded, cut, etc.)
Jack, software, NIC, etc.

F1

Transfer service to another cable pair
bridge tap of the customer’s facilities
Wet or corroded wire conductor
The defect is found in a crossbox
Defective buried ready access terminal
Pair cut, defect cable, stub, etc.

DSLAM

Reduce speed to stabilize the line
Digital stream transport
Wiring at DSLAM
DSLAM pronto card ABCU/ADLU
Porting
Digital stream, ATM switch, etc.

F2

Aerial drop was replaced
Access point (DEMARC) - Outside
Repaired existing buried service wire
Defect in protector unit
Wire from protector to DEMARC
Jumper, defective MTU, etc.

Table 1: Dispositions at different major locations.

monitoring the states of millions of devices via such man-
ual testing is infeasible. Even where it is possible to probe
the state remotely (e.g., for DSL modems), operational con-
straints and resource limitations restrict the fidelity and fre-
quency of these reports. We note that many of these con-
straints are a function of the limitations of existing deployed
technologies and current best practices in operation. Mak-
ing changes to deployed infrastructure, even if possible, can
be prohibitively expensive and hence we need solutions that
work within the constraints of today’s operational environ-
ments.

3. CURRENTSOLUTIONANDNEVERMIND
In this section, we introduce today’s widely used reac-

tive DSL troubleshooting approach and point out the prob-
lems with such an approach. Motivated by these problems,
we propose the system NEVERMIND, which seeks to aid
proactive resolution of customer edge problems.

3.1 Current DSL Troubleshooting Solution
The classical approach to troubleshooting customer edge

problems, widely used in most DSL networks, is a reactive
process. It relies on customers to report any problem en-
countered, and then dispatches technicians to resolve each
problem using their domain expertise. Fig. 3 (the top box)
shows the architecture of such a solution. The customer
agents wait for customers to report any customer edge prob-
lem by phone and interact with the customer to perform
some basic diagnosis (e.g., rebooting the DSL modem or
bypassing the filter) to filter out as many non-technical prob-
lems as possible, such as billing issues, etc. If the prob-
lem cannot be solved by the customer agents, the ticket will
be escalated to ATDS (Automatic Testing and Dispatching

System). ATDS combines various sources of historical data
(e.g., any construction/rewiring recorded in the nearby area)
and online testing (e.g., results of metallic check and other
online testing tools from the telephone company) to deter-
mine whether the problem can be resolved by remote con-
figuration. If not, ATDS will contact the customer to make
an appointment and a field technician is sent to the end host
to locate the problem manually. After the dispatch, ATDS
either closes the ticket or arranges a second-round dispatch
depending on the feedback from the customer.

Figure 3: The current DSL troubleshooting approach
and the proposed NEVERMIND approach.
The current approach has various drawbacks. Operators

rely on customer tickets and interaction with customers to
guide them towards discovering the underlying problem and
solution. However this is very challenging. Most customers
quite naturally lack the technological expertise to pinpoint
the actual problem. They typically are able to describe the
observable symptoms that caused them to call. Unless the
underlying problem and its symptoms are well-known, the
operator does not have enough quality information to lead
the customer through questions to do effective root-cause-
analysis. These factors contribute to limiting the effective-
ness of the interview, and most tickets end in a determination
of a field dispatch, often with an inaccurate prognosis about
the likely cause. A large number of such dispatches would
be unnecessary or at least more effective if better quality in-
formationwas available. For example, if a problem is caused
by a defective DSL modem, this can be solved by placing an
order for a new modem device online without an expensive
field dispatch. Further, waiting for the customers to report
customer edge problems will implicitly lead to increasing
users’ dissatisfaction with the service. In order to have a
problem fixed, a customer needs to wait in the queue for an
available agent to report the problem and may talk to sev-
eral agents until a dispatch is scheduled. It may take one or
more days (due to physical scheduling of people and equip-
ment) for the problem to be finally solved by field techni-
cian. When a problem is not correctly identified and resolved
(e.g., intermittent connection problems), the customer needs
to call multiple times to have it fixed. All these prolong the

troubleshooting process and lead to large number of unnec-
essary customer tickets, which is a noticeable contributor to
the increase in churn.
Another problem with the current solution is that it de-

pends too much on the experience of the field technicians.
A more experienced technician will be able to select an ap-
propriate ordering of locations to test, which enables her to
more quickly find the actual problem earlier on; while an in-
experienced technician may waste time in testing far more
possible locations before identifying the site of the problem.

3.2 Overview of NEVERMIND
In this paper, we propose NEVERMIND, a proactive so-

lution for troubleshooting customer edge problems in DSL
networks, which can be seamlessly integrated into the ex-
isting DSL troubleshooting framework. The architecture of
NEVERMIND is illustrated in Fig. 3 (the bottom box). It
consists of two main components, a ticket predictor and a
trouble locator. The ticket predictor utilizes existing sparse
line measurements of individual DSL lines to proactively
identify lines for which customers are likely to register prob-
lem tickets in the near future. These predicted tickets are
then submitted to ATDS to be diagnosed in a similar way as
normal customer tickets. However, we shall point out that
due to the high complexity of the diagnosing process em-
ployed by ATDS, we need to set high priority to customer re-
ported problems, and only utilize the remaining operational
resource (after resolving customer reported problems) for
NEVERMIND. The number of predicted tickets that can be
handled daily by ATDS is usually upper bounded by a few
thousand in our testing DSL network. For both types of tick-
ets, dispatches are arranged if necessary. Before a dispatch,
the trouble locator creates a list of all possible trouble lo-
cations ordered by the likelihood of being the cause of the
problem. The list is then sent to the field technician to accel-
erate the troubleshooting process.
NEVERMIND depends on extracting useful information

by joining various existing data sources. In the following,
we first introduce the various information sources employed
by NEVERMIND for making accurate inferences.

3.3 Information Sources
1. DSL Line Measurements: These contain the results of
periodic remote line tests initiated from DSLAM servers to
each of the connected DSL lines. The line test is conducted
as follows. Every Saturday, each DSLAM server initiates
connections with the DSL modem on each DSL line and ex-
changes a few packets with the modem. Based on this con-
versation, several metrics or line features are computed to
reflect the current condition of that DSL line. We summa-
rize these 25 line features in Table 2.
These line features were defined by the operators based

on their collective domain expertise and experience gained
from multiple years of operating the service, and represent
the dimensions they have observed to be most useful for de-

Feature Description
state if the modem is on
dnbr, upbr bit rate (kbps)
dnpwr, uppwr signal power
dnnmr, upnmr noise margin
dnaten, upaten signal attenuation
dnrelcap, uprelcap relative capacity
dncvcnt1, dncvcnt2, dncvcnt3 code violation interval counts

with different thresholds
dnescnt1, dnescnt2 the number of seconds in which

code violations occurred
dnfeccnt1 downstream forward error correction

counts with value not less than 50
hicar the biggest carrier number
bt the existence of a bridge tap
crosstalk the existence of cross talk
looplength estimated loop length
dnmaxattainfbr, upmaxattainfbr maximum attainable fast bit rate
dncells, upcells rolling count of cells

Table 2: Basic line features. Prefixes “dn” and “up”
means downloading and uploading, respectively.

termining the health of the network and for troubleshoot-
ing problems. These features were originally used to assist
the customer agents identify customer edge problem tick-
ets from other types of tickets. For example, based on pre-
defined manual rules, an agent will escalate the customer
ticket to ATDS if either the current bit rate is lower than the
minimum bit rate indicated by the profile, or the relative ca-
pacity is greater than 92%. Expert knowledge indicates that
such line status is more likely caused by a defective device,
and hence it may require further diagnosis by field techni-
cians. Though limited, there are also a few manual rules
used by the technicians today to determine the disposition of
a particular problem. For example, an estimated loop length
greater than 15,000 ft often indicates that the current cus-
tomer profile is not supported by the DSL line, and a speed
downgrade is necessary to reduce the noise on the line. How-
ever, due to the high dimensionality of the feature space and
unknown/latent relationships between customer edge prob-
lems and these features, manually deriving accurate infer-
ence rules is very difficult. As we shall show later, our pro-
posed solution involves an effective method for identifying
such relationships and using that knowledge effectively for
ticket prediction and trouble location.
The once-a-week occurrence of these measurements lim-

its the fidelity of this information source, and arises from
operational considerations of minimizing any impact on nor-
mal customer activities (hence run on weekends) as well as
historical perceptions of how often they needed to be run
(was originally considered part of maintenance procedures).
From the arrival time of customer tickets received in August,
2009, we observe a clear weekly trend, where the number of
tickets peaks on Monday and hits the bottom over the week-
end. Since the line tests are conducted on a weekend, we
can afford to reserve more resources to resolve the predicted
tickets proactively during these relatively ”quiet” periods,

and thereby also reduce the new ticket load during the week.

2. Customer Trouble Tickets: These contain problems re-
ported by customers (e.g., slow speed or no connection) and
corresponding solutions provided by customer agents (e.g.,
rebooting the modem or replacing the cable).
Customer agents assign a coarse label to each ticket, in-

dicating the category that the ticket belongs to. We differ-
entiate customer edge problem tickets from other types of
tickets such as billing related issues based on this label.

3. Ticket Disposition Notes: These are created by field
technicians and serve as a summary for each individual dis-
patch. Each note contains the ID of the corresponding cus-
tomer ticket and information regarding the dispatch, such as
the starting time, duration, etc. Though the field technicians
do not record the details of the diagnosis process such as
results from intermediate testing steps, they do provide a
disposition code to indicate which device was finally identi-
fied to be cause of the problem, e.g., a defective modem or
a worn cable, or how the problem was ultimately resolved,
e.g., stabilizing the line performance through downgrading
the line speed. Such disposition codes are used as our ground
truth for studying each problem. We note that the disposi-
tion codes are determined based on the expert knowledge of
the technicians and hence can be very noisy. If a problem
is caused by multiple devices, the code is always associated
with the device closest to the end host.

4. Subscriber Profiles: These specifies the parameters (or
expected values of the line features) for individualDSL lines,
which depend on the type and level of service that a cus-
tomer has subscribed for. For example, DSL customers with
the basic profile are expected to have a downloading rate of
768kbps and an uploading rate of 384kbps. In comparison,
customers with the advanced profile will have a download-
ing rate of 2.5Mbps and an uploading rate of 768kbps.
All these datasets are from one of the major DSL providers

in the US, with a population of millions of DSL subscribers
across multiple geolocations. The datasets are collected by
multiple DSLAMs during the whole year 2009. Typically
these datasets are stored at different locations and are brought
together for our work1. We note that even though the specifics
of data may vary for different networks and service providers,
our system can be applied readily for proactively troubleshoot-
ing problems in other operational networks.

4. PREDICTING TROUBLE TICKETS
In this section, we introduce the ticket predictor, whose

function is to select a number of DSL lines that are likely
to have future customer reported tickets and submit them to
ATDS for further diagnosis. This problem is equivalent to
a ranking problem, where the ticket predictor selects down
millions of DSL lines to a smaller set where problems may
1Customer anonymity was preserved during this study by hash-
ing each customer phone number to a unique anonymous identifier
prior to joining these datasets.

happen. The decision of the ticket predictor is based on ex-
isting sparse line measurements. Therefore, the key in de-
signing the ticket predictor is to identify the correlation of
line measurements and customer tickets.
There are two factors affecting the design of the ticket pre-

dictor. First of all, the weekly DSL line measurements are
quite sparse, i.e., only a maximum of 52 records are avail-
able for each DSL line over a whole year period, hence we
can only construct very coarse grained time-series for in-
dividual DSL lines, which do not provide us sufficient de-
tails for extracting meaningful patterns. Therefore, the chal-
lenge is how to convert these time-series into meaningful
features. After that, we employ advanced machine learning
algorithms to automatically learn inference rules to predict
future tickets using these features. However, the factor of
operation constraints limits our choice of machine learning
algorithms. In particular, since we can only submit 20K pre-
dicted tickets to ATDS every week, we desire a method that
maximize the number of true predictions within these 20K.
In the following, we first formally define the ticket pre-

diction problem, and then discuss in detail how we address
these two factors while designing the ticket predictor.

4.1 Problem Definition
Let U be the set of all DSL customers (or the set of all DSL

lines). For each DSL line u ∈ U , let l(u,t) := {l(u,t)
i ; 0 ≤

i ≤ 25} be the line measurements corresponding to the DSL
line u at the time t (we drop the superscripts when the con-
text is clear). Let NT (u, t) be the length of the time period
from t to the time of the immediate next customer ticket ob-
served registered by u. Let Tkt(u, t, T) := I(NT (u, t) <
T), where I is the indicator function and Tkt(u) = 1 if a
ticket from u is observed between [t, t+T] and Tkt(u) = 0
otherwise (note we replace Tkt(u, t, T)with Tkt(u)when t
and T are predefined). The ticket predictor outputs the prob-
ability that a ticket occurs within an interval T after time t,
and can be expressed as a function f :

P (Tkt(u)|h) = f(h) (1)

where the history h = {l(h,tk)), 1 ≤ k ≤ K}, K is the
length of the history, and tK < t represents the time of the
most recent line measurements. A shorter time interval T
implies that the corresponding customer edge problems lead
to immediate customer tickets (e.g., the problems that often
cut off the connection); in contrast, a longer T value allows
problems that are less noticeable by customers, such as in-
termittent connections, slow speed, etc. In addition, a longer
time interval may also imply that a customer is not on site
when the problem occurs, and the problem is only reported
when the customer comes back home. Therefore, in our ex-
periment, we try to address all these situations by choosing
a longer T equals to 4 weeks.

4.2 Encoding Line Measurement History
We now discuss how to encode the time-series of line

measurements into line features so that they can be readily
used by the ticket predictor for detecting potential customer
edge problems. Our basic idea is to define various types
of features to reflect different properties of the line condi-
tions embodied in these time-series. We define three types
of features: basic features, delta features, and time-series
features (Table 3, row 1-3). In practice, we expect the ticket
prediction to be conducted every Saturday together with the
weekly line measurement. Therefore, the basic features rep-
resent the current conditions of individual DSL lines every
Saturday. The delta features record the change in the ba-
sic features compared with the feature values in the previous
week, which measures the change with respect to the short
term history. In comparison, the time-series features mea-
sure the deviation of the basic features in comparison to a
long term measurement history.

Type Name Def.
History Basic lKi

Delta lKi − lK−1

i
Time-series (lKi − l̄i)/var(li)

Customer Profile lKi /profile(li)
Ticket Time from the most recent trouble ticket
Modem Percentage of times that the modem is off

Derived Quadratic (lti)
2

Product lti · ltj

Table 3: DSL line measurement features.
In addition to these features regarding line conditions, the

chance of a potential trouble ticket also depends on certain
characteristics of the customers. For example, a download-
ing speed of 128kbps on a slow-speed DSL line indicates a
very good line performance. However, such a speed often
leads to a trouble ticket on a high-speed line. We therefore
introduce three kinds of customer related features in Table 3
(row 4-6) to address this issue. The profile features are de-
fined as the basic features divided by the expected feature
values specified by the corresponding customer profile, e.g.,
the minimum downloading bit rate or the maximum down-
loading bit rate, etc. The ticket feature records the time from
the most recent trouble ticket to tK . Its purpose is to address
the correlation between tickets from the same customer. For
example, if there has been a ticket in the past three days and
problem is not fixed, the likelihood of repeat tickets will
increase. The modem feature represents the percentage of
times that the DSL modem is off during the test, which re-
flects the usage pattern of a customer. When a modem is off
during the test, we have a missing record for that customer.
The third type of features are derived features (Table 3,

row 7-8), which are computed from history features and cus-
tomer features2. The quadratic features model the variance
of each variable and the product features address the inter-
actions between pairs of variables3.
2We convert each categorical variables with m values into m bi-
nary variables so that the derived features are defined on all history
features and customer features.
3The derived features are introduced to compensate for the fact that

4.3 Top-N Average Precision Feature Selection
Our next step is to use machine learning algorithms to ex-

tract the correlation between these line features and future
customer tickets. Due to the 20K capacity constraint from
ATDS, we want to choose a machine learning algorithm that
maximize the accuracy of the top 20K predictions. However,
most of the state-of-the-art algorithms focusing on ranking
accuracy are usually computationally expensive and hence
cannot be applied for ranking millions of DSL lines. Our
solution to this problem is to use a scalable machine learn-
ing algorithm that maximize the overall accuracy. To deviate
the “attention” of such an algorithm onto the accuracy of the
top 20K predictions instead of the overall accuracy, we pro-
pose a novel top-N average precision metric to select only
features that provide better accuracy on the top 20K predic-
tions. We elaborate the feature selection method below.
We first define the top-N average precision. Let N be

the total number of top predictions selected. Prec(r) :=
1/r

∑r
i=1 Tkt(ui) is the precision computed based on the

first r predictions. The top-N average precision is defined as
AP (N) :=

∑N
r=1 Prec(r) × Tkt(ur)/N . Hence AP (N)

measures the sum of precisions for all true predictions aver-
aged byN , and AP (N) favors ranking the lines with future
tickets higher than the lines without future tickets.
We apply a greedy feature selection method based onAP (N)

as follows. We first construct a ticket predictor (see Sec-
tion 4.4 for description of the predictor) given each individ-
ual feature on a training dataset, and test the predictor on a
separate test set. We then computeAP (N) for each individ-
ual feature based on the result on the test set. The features
associated with the highest AP (N) values are selected. We
demonstrate the histogram of AP (20K) for all the features
in Fig. 4. We observe strong bimodal shapes in Fig. 4[a] and
Fig. 4[b] for history and customer features and the associ-
ated the quadratic features, respectively. We choose 0.2 as
our threshold to select the features which are significantly
more accurate than the other features of the same type. Be-
cause each product feature is formed by combining two other
features, we hence expect theAP (20K) for the product fea-
ture to be significantly higher than any of the two features.
Therefore, we choose a higher threshold for selecting prod-
uct features (greater than 0.3).

4.4 Learning the Ticket Predictor
Let x be the set of features selected from the original his-

tory of line measurements h. Constructing the ticket predic-
tor is equivalent to solving the regression problemP (Tkt(u)|x) =
f(x). We use existing customer tickets as the ground truth
and apply supervised machine learning techniques to learn f
automatically. To train f , we treat the DSL lines with future
tickets within 4 weeks as positive examples and the rest of
the lines as negative examples.
Due to the fact that some customer edge problems may

not be reported by customers, training data corresponding
chosen BStump algorithm ignores the interactions among features.

0.05 0.1 0.15 0.2 0.250

5

10

15

20

Top 20K average precision

Nu
m

be
r o

f f
ea

tu
re

s

(a) History and customer features

0.05 0.1 0.15 0.2 0.250

5

10

15

20

Top 20K average precision

Nu
m

be
r o

f f
ea

tu
re

s

(b) Quadratic features

0 0.1 0.2 0.3 0.40

500

1000

1500

2000

2500

Top 20K average precision

Nu
m

be
r o

f f
ea

tu
re

s

(c) Product features

Figure 4: Top 20K average precision for different types of derived features

to these problems are mislabeled as negative examples other
than positive examples. Because of the existence of such
noise in the training data, sophisticated non-linear models
overfit easily, we hence choose a linear model for f which
is more robust against noise. The Adaboost algorithm with
decision stumps (i.e. one-level decision trees) [16], which
we refer to as BStump in this paper, is selected to construct
the model. The linear model from BStump was shown to be
the most scalable while having an accuracy comparable to
sophisticated non-linear classifiers [7].

Figure 5: The schematic view of a BStump classifier.

Fig. 5 gives a schematic view of BStump. During train-
ing, we specify the number of iterations T (or the number
of the weak learners) used by the algorithm. At iteration t,
the algorithm selects one particular line feature and the cor-
responding feature value δ that best partitions the training
data, weighted based on the classification result in iteration
t − 1, into positive and negative examples. The algorithm
creates a decision stump using the selected feature as a weak
learner gt. Each weak learner outputsS−

(less likely to have
a future ticket) for a feature value below δ (for continuous
features) or not equal to δ (for categorical features), and out-
puts S+ otherwise (more likely to have a future ticket). For
example, in Fig. 5, the first weak learner (t = 1) tests the
delta uploading bit rate against δ = −112, if the uploading
rate in the previous week is more than 112kbps above that in
this week, the weak learner outputs a score S+ = 0.415,
and S

−
= −0.183 otherwise. A total score correspond-

ing to a combination of the outputs from all weak learners
is computed and a threshold is applied to compute a binary
outcome. The data weights are adjusted in order to best re-
produce the ground truth on all line measurement records.
This process iterates until T weak learners are generated.
At run time, for each line measurement record x, T scores

are generated by the weak learners, and these scores are

summed up as the prediction f(x) :=
∑T

t=1 gt(x). The
score f is then converted to the posterior probabilityP (Tkt(u)|x)
using logistic calibration.

5. EXPERIMENTAL RESULTS
We use line measurement records from 08/01/09 to 09/31/09

as our training data, and the data in the four contiguous
weeks starting from 10/31/09 as our test data. The line mea-
surements from 01/01/09 to 07/31/09 are history records for
computing time-series features and customer related features.
We use Boostexter [16] as the BStump implementation. The
number of iterations is set to 800 based on cross-validation4.

5.1 Evaluation of Ticket Predictor
As the first step, we compare the proposed top-N average

precision method (N=20K) with other well-known feature
selection methods. Due to the computational complexity of
certain feature selection methods and the large number of
derived features, we only use history features for the com-
parison. In particular, for each feature selection method, the
top 50 features are selected according to the criteria in Ta-
ble 4, and a classifier is constructed using these 50 features.

Methods Feature selection criteria
AUC Maximum area under the ROC curve.
Average precision Average precision value on all the samples.
PCA Top principal components.
Gain ratio The total entropy decrease of the result

attribute by knowing one particular feature.

Table 4: Other feature selection methods.
We note that we use accuracy in this paper for evaluat-

ing the performance of the ticket predictor, which is defined
as the proportion of subscribers associated with the top N
predictions who have issued tickets within 4 weeks from the
prediction time. However, such a metric is very conserva-
tive. An incorrect prediction may be related to a real DSL
problem but somehow the customer did not issue a ticket for
various reasons. We shall discuss these reasons in detail in
Section 5.2.
4When the number of iteration is equal to 800, training the clas-
sifier on 1 million training records requires around 2 hours on a
typical server machine without parallelization. Only less than 15
minutes are needed for ranking all the DSL lines (several million).

0 50 100 150 20010

15

20

25

30

35

Number of predictions selected (K)

Ac
cu

rac
y (

%)
AUC
Average precision .
Top−20K AP
PCA
Gain ratio

Figure 6: Feature selection methods.

0 20 40 60 80 1000

5

10

15

20

25

30

35

40

45

Number of predictions selected (K)

Ac
cu

rac
y (

%)

Without derived features .
All selected features

Figure 7: Ticket prediction results.

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

Number of days

CD
F

Top 10K
Top 20K
Top 100K

Figure 8: CDF of ticket coming time.
We illustrate the accuracy of different feature selection

methods in Fig. 6, where the x-axis represents the number of
top predictions selected and the y-axis stands for the accu-
racy of these top x predictions. We observe that the proposed
top-N AP method outperforms all the other methods signif-
icantly when less than 20K predictions are chosen. How-
ever, as more predictions are selected, the accuracy from
the top-N AP method becomes lower than the popular AUC
based method. This phenomenon implies that, even though
the boosting algorithm focuses on maximizing the overall
accuracy, the features chosen by the top-N AP method ef-
fectively select more true predictions to be within the top
20K. In this way, we can make better use of the extra ticket
handling capacity provided by the ATDS system to proac-
tively resolve more potential customer edge problems. We
note that in our top-N AP method, N is a tunable param-
eter, which can be enlarged when more predictions can be
accommodated by ATDS.
We next study the performance of the ticket predictor on

different line measurement features in Table 3. Fig. 7 shows
the prediction results under different feature sets, where the
x-axis stands for the number of predictions selected and the
y-axis represents the accuracy or precision in the top x pre-
dictions. The dotted curve corresponds to the accuracy when
only history and customer features are used, while the solid
curve represents the accuracy when all the features in Ta-
ble 3 are used. The top-20K AP method is applied to select
features from both feature sets.
From Fig. 7, we achieve good accuracy (37.8%) with his-

tory and customer features for the top 20K predictions. The
addition of derived features further boosts the accuracy to
40%. More specifically, when N reaches the maximum ca-
pacity of 20K, we achieve 2 true predictions for 3 incorrect
predictions (or a ratio of 1:1.5)5. This means that for more
than 8K of the predicted lines, we observe at least one ticket
within four weeks after our prediction. This demonstrates
the effectiveness of incorporating the covariance of features
into the classifier by encoding them explicitly using derived
quadratic features and product features.

5.2 Discussion of the Prediction Results
5We have also compared the results using features from AUC and
gain ratio methods, which again are worse much than the top-N AP
method for the top 20K predictions. We omit the detail here due to
space limit.

From the operation perspective, the effectiveness of a proac-
tive solution is affected by two factors: 1) the number of
actual customer edge problems within the 20K predictions;
2) the time allowed for resolving predicted problems before
customers complain.
From the evaluation result in Section 5.1, we achieve an

accuracy around 40% for the top 20K predictions, i.e., around
12K incorrect predictions. Note that in such an offline eval-
uation, we rely on actual customer tickets to evaluate the
accuracy of the proposed ticket predictor, i.e., a ticket is con-
sidered to be correctly predicted if and only if a ticket asso-
ciated with a customer edge problem is observed within one
month after the prediction. We use one month here to give
the customers enough time to report the problems dealing
with intermittent connections or slow browsing problems as
they are hard to perceive or more tolerable. Still, the reported
problems from the customer tickets only comprise a subset
of all the customer edge problems. In the following, we ex-
plore two scenarios when a real problem will not be reported
by the customer.
Outage problems and IVR. The first scenarios is related to
the outage problems. When an outage problem is detected at
a certain area (e.g., from customer tickets or system alarms),
an interactive voice response (IVR) system will be set up to
automatically inform customers who call from the same area
about the outage problem. In this case, the customer does re-
port a problem (caused by the outage) but no ticket is issued
since the phone call is handled by IVR instead of customer
agents. We explore this scenario as follows. For each incor-
rect prediction, we first identify the corresponding DSLAM
that it is associated with. We assume the incorrect prediction
belongs to the IVR scenario if at least one outage problem is
observed in the tickets from the customers belonging to the
same DSLAM within T weeks from the prediction time.

1 week 2 weeks 3 weeks 4 weeks
% of incorrect predictions 12.7 18.4 26.4 31.5
Coef. for outage prediction 0.0733 0.0752 0.0787 0.0784
P-value 0.0021 0.0013 0.0027 0.0011

Table 5: Incorrect predictions explained by outages.
By varying T from 1 week to 4 weeks, we show the pro-

portion of incorrect predictions that can be explained by the
IVR scenario in Table 5 (row 1). Around 12.7% incorrect

predictions are likely the artifact of IVR for outage prob-
lems when the outage problems are observed within a week
from the prediction time. This proportion increases to 31.5%
when at least one outage problem is reported in 4 weeks.
In fact, we have observed a correlation between predic-

tions and future outage problems. Let outage(d, t, T) be a
binary event, where outage(d, t, T) = 1 if at least one out-
age problem occurs in DSLAM d between [t, t + T]. We
quantify the correlation between ticket predictions (in the
top 20K) and future outage problems using logistic regres-
sion: logit(#predictions) ∼ outage(d, t, T). We vary T
from 1 week to 4 weeks. The coefficients and P-values from
the regression results are presented in Table 5 (row 2-3). We
observe that there is always a strong (P-values less than 5%)
positive (coefficients greater than 0) correlation between the
future outage problems and number of predicted customer
edge problems from a certain DSLAM. Based on this obser-
vation, the number of predictions associated with a DSLAM
can be used as an indicator for future outage problems. In ad-
dition, we can group predictions by DSLAMs and send one
truck to resolve most of the problems in a given DSLAM.
Customers not on site. In the second scenario, a customer
may not use the DSL service when the predicted problem oc-
curs, thus she will not notice the problem and no customer
ticket is issued. To identify incorrect predictions correspond-
ing to this scenario, we collect daily aggregated byte infor-
mation for individual customers under two BRAS servers.
We consider a customer to be not on site when no traffic is
observed from that customer from one week before the pre-
diction time until one week after the prediction time. For
12K incorrect predictions, we identify 108 subscribers with
corresponding byte information. However, 18 out of these
108 subscribers (16.7%) are classified as not on site. This
means such 16.7% predictions are plausibly with real cus-
tomer edge problems, but the customers do not realize the
problems since they are away. This also provide us a way
to prioritize the 20K predictions by fixing lines with more
customer activities first. Even though we only have a small
sample of all the DSL customers, we expect the same ob-
servation holds for the DSL customers connecting to other
BRAS servers. In addition, there might be customers be-
longing to both scenarios that we have discussed so far. We
will investigate this in the coming trial of NEVERMIND.
Determining the urgency to solve a problem. We next
study the time interval from the time of prediction of a prob-
lem to the time when a customer reports the problem. The
purpose is to understand howmuch time we have fromwhen
a prediction is made before the customer starts complaining.
The more time we have, the more chance for resolving the
problem and the higher chance for reducing future tickets.
We illustrate the distributions of the time intervals for the
top 10K, top 20K and top 100K predictions in Fig. 8. We
observe in Fig. 8 that around 80% of all the predicted tickets
come within two weeks. This implies higher accuracy for
predicting tickets in the near future, which is not surprising,

since the correlation between line measurements and future
customer tickets becomes weak as the time gap increases.
We consider that we miss a ticket if we fail to resolve a

predicted ticket before the customer complains. From Fig. 8,
if we fix all the predicted problems by Monday (allowing
two days for fixing the problems), we will miss at most 15%
of the tickets. Only at most 20% of the tickets are missed
if we fix all predicted problems in three days. We thus have
plenty of time to handle the predicted customer tickets.

6. LOCATING PROBLEMS
In this section, we briefly introduce the design and evalu-

ation of the trouble locator. An information-theoretic justifi-
cation of the proposed inference model can be found in the
technical report version of this paper [8].

6.1 A Simple Experience Model
When a dispatch is scheduled, a field technician typically

goes to a number of locations, e.g., DSLAM or customer
home network, and test multiple devices until the problem is
located. To save time, the technician needs to prioritize all
the possible locations in the order of decreasing likelihood
of being the problem location. Without additional informa-
tion, the best ranked list is based on the prior probability that
problems occur at a given location in the past.
This simple experience model can be improved in several

ways. First, technicians can be provided with a better ranked
list of locations using existing line measurement data intro-
duced in Sec. 3. The key problem here is to infer problem lo-
cations from line features. Second, the time spent testing one
location may differ significantly from the time spent testing
another, and, if these locations have equal prior probabilities
of being the cause of failures, a technician will save time by
starting with the one which is the fastest to test. Third, tech-
nicians want to minimize the time they spends moving from
one location to another.
This paper will focus on what we can do with the available

information, namely, the first improvement where the loca-
tion is inferred from line features. A this point, the time/cost
for testing a location, and the time/cost for moving from one
location to another are not available and considered as con-
stants. In the following, we introduce the inference model
employed by the trouble locator.

6.2 Flat and Combined Inference Models
The direct inference model, which we refer to as the flat

model, ranks all the locations according to the probability of
being the root cause of a customer edge problem. Let x ∈
Rn denote all the line features in Table 3. Let Ci·, 1 ≤ i ≤ 4
be one of the four major problem locations, e.g., the home
network (HN), and Cij be a specific disposition at Ci·, e.g.,
the DSL modem atHN (see Fig. 2).
The flat approach consists of training a one-versus-other

binary classifier fCij
for each of the Cij dispositions (the

negative classes corresponds to all examples that do not be-

long to Cij). The output from the classifier is then converted
to Pij(Cij |x) through logistic calibration, which represents,
given the current line measurements x, the likelihood that
the problem is caused by the location associated with the
disposition Cij . Hence all the locations are ranked accord-
ing to this probability and the technician will follow such a
rank list during the dispatch.
To enhance the accuracy of the flat model, we propose a

combined model, which explicitly takes into consideration
the hierarchical disposition of the classes in Table 1. The ba-
sic idea is to combine two flat models, one for the disposition
and one for its parent major location, together for the infer-
ence. In particular, for each disposition Cij , we learn two
classifiers fCi·

’s and fCij
’s and combine outputs from these

classifiers as the final inference result P adj
ij (Cij |x) through

logistic regression as follows (γ’s are the coefficients from
the logistic regression):

P adj
ij (Cij |x) =

1

1 + exp(−γ1
ijfCij

(x) − γ2
ijfCi·

(x) − γ0
ij)
(2)

6.3 Evaluating the Trouble Locator
We select 7 weeks of line measurement data from 08/01/09

to 09/18/09 for training and another 7 weeks data from 09/19/09
to 11/06/09 for testing. Based on the disposition notes we
select 52 dispositions (Cij ’s,1 ≤ j ≤ 52) that appear more
than 20 times in the data, which account for 81.9% of all the
customer edge problems. We also categorize these 52 dispo-
sitions into one of the four major locations (Ci·’s,1 ≤ i ≤ 4)
in Table. 1. For each disposition (Cij) or major location
(Ci·), we train a flat model (fCij

(x) or fCi·
(x)) using the

BStump algorithm. We then assemble the inference model
of each Cij with the model of its parent major location Ci·

to form a combined inferencemodel using Eq.2. Using these
52 combined models learned by the BStump algorithm, a
ranked list of dispositions can be created based on the poste-
rior probabilities P (Cadj

ij |x).
The number of iterations for BStump is set to 200 based on

cross-validation tests. We use all the line features presented
in Table 3 to build the model.
Illustration of the combined inference model. We demon-
strate the combined inference model in Fig. 9, which in-
fers the likelihood that, given the measurement data (x), the
problem is caused by the inside wiring (IW) in the home net-
work (HN).
The nodes at the bottom represent partitions of the values

of different line features. The nodes in the middle represent
the intermediate classifier scores of fIW (x) and fHN (x) us-
ing the BStump models. The top node is the final prediction
result P (IW adj |x). The scores on the arrows from the bot-
tom nodes to the intermediate nodes are extracted directly
from the weak learners in the BStump algorithm, which in-
dicate how strong the intermediate nodes depend on the fea-
ture values in the bottom nodes. A positive/negative score
means the chance that the corresponding problem is caused

Figure 9: Combined model for the IW problem at HN.

by the intermediate node will increase/decrease if the feature
value falls with the range specified by the bottom node. Af-
ter fIW (x) and fHN (x) are obtained, they are further com-
bined into P (IW adj |x) using Eq. 2.
Accuracy of the trouble locator. In general, the ranks of
locations from the trouble locator using both types of models
are much more accurate than the basic ranks, based on the
simple experience model (Section 6.1). For example, using
the basic ranks, in order to locate 50% of the problems, a
maximum of 9 tests are needed. In comparison, using either
the flat model or the combined model, only a maximum of 4
tests are required. This means that, in half of the dispatches,
a technician can save more than 50% of the time using the
trouble locator.

Figure 10: Rank change caused by the trouble locator

In Fig. 10, we illustrate the improvement over the basic
ranks for different problem locations. We bin all the cus-
tomer tickets in the test data according to their basic ranks,
and then compute in each bin the average rank change. We
observe that both types of inference models can help im-
prove basic ranks significantly. For example, for the prob-
lems with basic ranks between 16 and 20, both models can
boost the average rank by 4. In other words, the technician
can save time for testing 4 more devices during each dis-
patch on average. Such improvement becomes more signifi-
cant when the basic rank is deeper down the list. Comparing
the performance of the flat model with the combined model,
we see that the combined model further improves the ranks
for the problems with lower ranks.

7. RELATED WORK
Troubleshooting is a key network management problem

which has received considerable attention in the literature.
The most widely used troubleshooting solution in today’s
large commercial network is based on expert rules [1, 2, 11].
Summarizing expert rules relies heavily on domain knowl-
edge and thus is expensive and does not generalize well.
To overcome the problem of using manual rules, many re-

search works apply machine learning techniques to automat-
ically extract inference rules using a pre-labeled training set,
such as [3,5,6,14,17–21]. The basic idea in these works is to
train a classifier which differentiates high level performance
states based on network system-level metrics. Our problem
differs in the special operational constraints in troubleshoot-
ing DSL problems, such as limited operation resources.
Another popular approach is to explicitly model the rela-

tionship among different network components as inference
graphs and then compute their dependencies. Such depen-
dencies can be measured at various levels of granularity. For
example, Sherlock [4] models the dependency among net-
work devices to detect high level problems like connectiv-
ity problems. In contrast, NetMedic [10] models the de-
pendency of fine-grained components like processes to trou-
bleshoot application failures. In addition, specific domain
knowledge can also be used for constructing inference graphs,
such as SCORE [12] and Shrink [9]. NetworkMD [15] auto-
matically learn such inference graphs by correlating failure
history using nonnegative matrix factorization. A limitation
in these approaches is that they require access to measure-
ments of individual components, which are too expensive to
obtain in DSL networks.
In terms of the scale of the target network, one related

work is GIZA [13] which focuses on troubleshooting per-
formance issues in large IPTV networks. GIZA correlates
heavy hitter events to locate problems on the hierarchical
structure of the IPTV network, which affect multiple users at
the closeby area. In comparison, our method targets primar-
ily troubleshooting customer edge problems. Another key
difference is that GIZA is a reactive approach which uses
customer tickets as one of the data feeds; while our approach
reduces future customer tickets.

8. CONCLUSION
In this paper, we presented NEVERMIND, a proactive

approach for detecting and troubleshooting DSL customer
edge problems. NEVERMIND utilizes existing sparse mea-
surements of physical DSL line conditions to predict future
customer tickets and solves them in advance to eliminate
these tickets and potentially reduce customer churn. Dur-
ing the design of NEVERMIND, we accounted for the op-
erational constraints and special properties of the DSL net-
work, and proposed novel techniques, such as a top-N av-
erage precision based feature selection method and a com-
bined inference model which incorporate the hierarchical
structure of DSL networks, to enhance the accuracy of the
approach. Evaluations using a whole year worth of data
gathered from a large DSL network demonstrate that NEV-

ERMIND was able to accurately predict thousands of tickets
every week with high accuracy and significantly reduce the
troubleshooting time. We are currently focusing on trialing
an operational deployment in a large DSL network.

Acknowledgement
Wewould like to thank our colleagues fromAT&TCustomer
Care for helpful discussions. The work is supported in part
by the NSF grants CNS-0905037 and CNS-1017647, and
the DTRA Grant HDTRA1-09-1-0050. Part of the work was
done during an internship by the first author at ATT Labs –
Research.

9. REFERENCES[1] Gteko, inc. http://www.gteko.com.
[2] Open view, hp technologies inc. http://www.openview.hp.com.
[3] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan,

and G. M. Voelker. Netprints: diagnosing home network
misconfigurations using shared knowledge. In NSDI’09, 2009.

[4] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM’07, 2007.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, O. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet services.
In ICDSN’02, 2002.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: a building block
for automated diagnosis and control. In OSDI’04, 2004.

[7] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang. A
modular machine learning system for flow-level traffic classification
in large networks. Technical report, AT&T research, 2009.

[8] Y. Jin, N. Duffield, A. Gerber, P. Haffner, S. Sen, and Z.-L. Zhang.
Proactively detecting and troubleshooting customer dsl problems.
Technical report, AT&T research, 2009.

[9] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: a tool for failure
diagnosis in ip networks. In MineNet’05, 2005.

[10] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and
P. Bahl. Detailed diagnosis in enterprise networks. In SIGCOMM’09,
2009.

[11] G. Khanna, M. Cheng, P. Varadharajan, S. Bagchi, M. Correia, and
P. Verı́ssimo. Automated rule-based diagnosis through a distributed
monitor system. IEEE Trans. Dependable Secur. Comput., 2007.

[12] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Ip fault
localization via risk modeling. In NSDI’05, 2005.

[13] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao. Towards automated performance diagnosis in a large iptv
network. In SIGCOMM’09, pages 231–242, 2009.

[14] Y. Mao. Automated computer system diagnosis by machine learning
approaches. Technical report, UPenn CIS Dept., 2005.

[15] Y. Mao, H. Jamjoom, S. Tao, and J. Smith. Networkmd: topology
inference and failure diagnosis in the last mile. In IMC ’07, 2007.

[16] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system
for text categorization. Mach. Learn., 2000.

[17] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash: improving
configuration management with operating system causality analysis.
In SOSP’07, 2007.

[18] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peerpressure. In
OSDI’04, 2004.

[19] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. Strider: A black-box, state-based approach to
change and configuration management and support. In LISA’03,
2003.

[20] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y.
Ma. Automated known problem diagnosis with event traces. In
EuroSys’06, 2006.

[21] A. X. Zheng, J. Lloyd, and E. Brewer. Failure diagnosis using
decision trees. In ICAC’04, 2004.

