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Abstract 

Availability prediction in a telecommunication system 
plays a crucial role in its management, either by alert-
ing the operator to potential failures or by proactively  
initiating preventive measures. In this paper, we apply  
linear (ARMA, multivariate, random walk) and nonlin-
ear (Radial and Universal Basis Functions) regression  
techniques to recognize system failures and to predict  
the system's call availability up to 15 minutes in ad-
vance. Secondly we introduce a novel nonlinear mod-
eling  technique  for  call  availability  prediction.  We 
benchmark all five techniques against each other. The  
applied modeling methods are data driven rather than 
analytical and can handle large amounts of data. We  
apply the modeling techniques to real data of a com-
mercial  telecommunication  platform.  The  data used  
for modeling includes a) time stamped event-based log  
files and b) continuously measured system states. Re-
sults are given in terms of a) receiver operator charac-
teristics (AUC) for classification into classes of failure  
and non-failure states and b) as a cost-benefit analy-
sis. Our findings suggest a) high degree of nonlineari-
ty in the data, b) statistically significant improved fore-
casting performance and cost-benefit  ratio of nonlin-
ear modeling techniques, and finally finding that c) log  
file data does not contribute to improve model perfor-
mance with any modeling technique.

1 Introduction
Over  the  past  decades  software  systems,  including 
telecommunication systems, have grown in complexity 
up to a point where their  behavior  is in parts  unpre-
dictable.  Software  related  failures  have  now  become 
common. The increasing complexity of these systems 
is seen as a major threat to the benefits these systems 
aim to provide. Nonetheless, human lives and organiza-
tions with considerable economic impact are dependent 
on the availability of exactly these software infrastruc-
tures.  Industrial  software  systems  inevitably  exhibit 
failures. Availability prediction during run time is one 
prerequisite  to  decrease  the  system's  failure  rate  and 
thus increase  its  availability,  e.g.  by proactively trig-
gering preventive measures. We identify three steps in-
volved in building smart high availability systems: 

1. Observe:  develop methods  that  capture  and select 
essential data  of  software  system,  not  all  of  the 
many hundreds or even thousands of variables that 
could  be  observed  actually  contribute  to  failure 
forecasting.

2. Reason:  develop  methods  that  interpret  that  data, 
recognize malicious system states and predict future 
system states.

3. React: reaction schemes which build on these pre-
dictions and help self-manage the system. 

In this paper, we focus on the second step in this pro-
cess. We present a modeling framework, a novel obser-
vation based modeling technique and cross-benchmark 
the employed methods. Step 1 we have covered in [18] 
and is briefly discussed in Section 5.1. Failure avoid-
ance schemes (Step  3)  will  need  to  be  developed  as 
Steps 1 and 2 prove to be successful.  We will assess 
and  benchmark  the  following  nonlinear  and  linear 
modeling techniques: a) univariate linear random walk 
models, b) univariate linear ARMA models, c) multi-
variate  linear  regression  models,  d)  nonlinear  Radial 
Basis Function models and e) nonlinear Universal Ba-
sis Function models. 

The paper is organized as follows: In Section 2 
we review related  work  on  software  availability  and 
empirical  modeling  approaches.  In  Section  3  we de-
scribe the modeling objectives and give a formal de-
scription of the forecasting task. In Section 4 we intro-
duce a novel nonlinear modeling approach we call Uni-
versal Basis Functions (UBF) which is an extension of 
the widely discussed Radial Basis Function (RBF) ap-
proach. Before we present results in Section 6 we de-
scribe  the  data  used,  the  metric  and  the  benchmark 
strategies in Section 5. In Section 7 we briefly summa-
rize our conclusions and discuss future work.

2 Related Work and Motivation

2.1 Availability of Software System
In the past a number of strategies have been developed 
to increase the availability of software systems. First, 
we can try to minimize the number of faults in a soft-
ware component during the development process. After 
all there is a sense of that a piece of software or soft-
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ware component is deterministic. The idea is: either it 
is fault free, then it will not fail, or it contains faults, 
thus circumstances that make it fail once will make it 
fail all the time. In actuality the software failure pro-
cess arises in the context of executing successive inputs 
to the system. Also, the environment in which the exe-
cution takes place might have an impact. Testing the 
system is one way of finding malicious input patterns 
or flaws in their execution.  However, testing only al-
lows establishing the presence of errors. It cannot as-
sure  their  absence  [9].  For  large  systems  we  cannot 
predict with certainty all future inputs into the system 
during system tests and we do not know the systems 
faults. So of the inputs we have not investigated we do 
not know which of them produce a failure if executed 
[4]. If we knew, we could use this knowledge to fix 
that bug before releasing the software. Another way of 
testing a software system is by fault injection. This way 
the system's behavior may be verified if stressed in un-
usual ways. Some of the inherent limitations of this ap-
proach are due to heavy human involvement. Test cas-
es  have  to  be  specified  and  test  scenarios  evaluated. 
For  large  systems the  complexity  of  these  tests  may 
quickly  become  prohibitive.  Also  testing  is  strongly 
product based. Test cases specified for one system may 
not simply be transferred to another system. 

Other  approaches  aiming to ensure  specified 
behavior include rigorous analysis. These methods im-
ply formal specification of the properties of a systems 
intended behavior and verify that the system conforms 
to that specification. Examples of rigorous methods in-
clude  temporal  logic  [28] and  process  algebra  [29]. 
However, formal approaches can quickly become im-
practical when confronted with the degree of complexi-
ty and degrees of freedom of complex computer sys-
tems. We believe that formal methods are too rigorous 
to scale up to enterprise systems and the unpredictable 
environment we find in industry does not allow the rig-
or  we  find  in  traditional  approaches.  This  has  been 
leading to a change in the way software systems are 
perceived and to changing concerns from bug centric - 
whether a system will work to how well it will work. 

A realistic line of thought is to accept the fact 
that software systems or parts of them inevitably do fail 
as discussed in [25] and [33]. In fact this is our opera-
tional framework in this paper. Arguably the most fol-
lowed path within this framework is to recover rapidly 
into a failure free state after a failure has occurred. De-
creasing the reboot time has been a major research con-
cern ([14], [35]). However, rebooting the entire system 
can  cause  nontrivial  service  disruption  or  downtime 
even when clusters and failover  mechanisms are em-
ployed. Thus the concept of rebooting has been further 
refined to only restarting affected parts of the system. 
This procedure recovers most of the same failures as 
full reboots, but does so an order of magnitude faster. 

Most of these concepts are employed in a  reactive – 
post mortem  framework. Meaning after the fact that a 
failure occurred, measures are taken to correct it. 

We often reboot our computers preemptively 
before mishap happens. We find the machine is behav-
ing strangely or because parts like printing or network 
connections  do  subtly  not  work  the  way  we  expect 
them to work. It can be small deviations from normal 
behavior, but nonetheless we observe them and act ac-
cordingly. This can be seen as preventive maintenance, 
triggered by our human observation. It is our belief that 
by automating this process and by embedding it into a 
proactive – preventive framework we can contribute to 
enhanced software availability.  A promising direction 
is to think in terms of constant adaptation to changing 
conditions rather than waiting for abnormal behavior to 
happen and then to recover. To do so, we need systems 
that anticipate the likely evolution of their availability 
or other nonfunctional  properties.  Based on a predic-
tion of its future health status, the system would initiate 
preventive  measures  itself  to  either  totally  avoid  the 
looming failure or at least to be prepared and recover 
more rapidly. Within this line of thought [20], [11] and 
[2] discuss  the concept  of  software  aging  which  has 
subsequently been further refined by a number of au-
thors (e.g.  [5], [37]). The authors argue that due to re-
source exhaustion,  data corruption or numerical error 
accumulation  the  status  of  the  system  may  degrade 
with time. They propose to gracefully terminate the af-
fected application  or  the system while  it  is  still  in a 
manageable state. They call this process  rejuvenation. 
The  problem  then  becomes  determining  the  optimal 
time for rejuvenating. The authors propose, among oth-
er  techniques,  stochastic  measurement-based  models. 
This line of thought has been reflected in the specific 
research area of systems which manage themselves and 
anticipate the likely evolution of their dynamics. These 
systems are also called self-* systems, where the star is 
a place holder for repairing, configuration, healing, op-
timization  and  protection  to  name  a  few.  Although 
some self-* approaches like self-repairing date back to 
the late 1960's [1] more recently autonomic computing 
has been used synonymously  [19] and  self-* systems 
have been investigated in a broader context (e.g. [8]). 

2.2 Probabilistic Modeling Approaches
How can we build the  anticipating  part of  self-* soft-
ware systems? It is our belief that the uncertainty about 
a systems availability,  mainly introduced by its  com-
plexity, can be captured by probabilistic representation 
of the system. To achieve this goal we propose to apply 
a data-driven methodology based on a novel nonlinear 
modeling technique 

There is a well-established theory and a large 
body of tools which let us characterize any given sys-
tem which can be described by a set of  linear equa-
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tions. It is being used in virtually every scientific disci-
pline. Where the assumption of linearity breaks down 
there is a lack of a uniform theory.  However, despite 
this lack it is remarkable how much theoretical insight 
we can gain on the dynamics of a nonlinear system. For 
example, the reconstruction theorem [36], also known 
as  the  embedding  theorem,  provides  the  theoretical 
means to model highly nonlinear behavior of arbitrary 
physical systems with hidden dynamics. It means that 
for almost any scalar function,  for  example,  observa-
tions we take from a software system, we can answer a 
wide  range  of  questions  about  the  dynamics  of  the 
original system by examining the dynamics in a space 
defined  by  delayed  values  of  this  function.  We  can 
compute dynamical invariants, and we can even make 
predictions by interpolating in the so-called delay em-
bedding space1.  Furthermore,  the reconstruction theo-
rem detects low-dimensional structure in a high-dimen-
sional  data  space,  modeling  the  effective  degrees  of 
freedom of a system rather than all degrees of freedom. 
This  has  important  implications  for  our  approach:  in 
the case of software systems it implies that it should be 
sufficient to model the larger picture of effective inter-
nal states and output  signals,  rather than representing 
every single module. However, the reconstruction theo-
rem has its drawbacks. Models can easily become un-
stable for large embedding dimensions. Also the avail-
ability of  large amounts of highly precise data is  as-
sumed [26]. This is difficult to achieve in the presence 
of noise and limited data access in practically any real-
world  system. The  reconstruction  theorem has  influ-
enced a number  of  methods aiming at  circumventing 
these challenges.  These  methods  automatically detect 
the functional  relationship  of  data in the presence of 
noise, limited data accessibility and possibly nonlinear 
dependencies  among  observations.  Methods  which 
have been shown to be able to handle these scenarios 
include Radial Basis Functions  [24], Multi-Layer Per-
ceptrons [31], Projection Pursuit  [21], Hidden Markov 
Models  [30] and Support Vector Machines  [6]. These 
methods are known under a variety of names such as 
learning networks or nonlinear,  stochastic and proba-
bilistic regression. In this paper, we will synonymously 
use the latter  terms as  well  as  machine learning and 
empirical models where applicable. One method which 
has been extensively utilized and studied in conditional 
density estimation and function approximation is Radi-
al  Basis  Functions  (RBF).  This  method  allows  data-
driven,  nonlinear  modeling.  RBF are computationally 
less  expensive  than  Multi-Layer  Perceptrons,  Projec-
tion  Pursuit  or  Hidden  Markov  Models  and  can  be 
translated into Multi-Layer Perceptrons [13]. Also Ra-
dial  Basis  Functions  are  universal  approximators, 
1  Number of axes of a return map sufficient to describe the proper-

ties of the corresponding phase space. The return map is a plot of a 
time series as a function of the current and of the previous values. 

which  means  they  can  approximate  any  continuous 
function  given  enough  degrees  of  freedom  [27].  Al-
though these methods were originally developed in dif-
ferent contexts for seemingly different purposes,  they 
can be viewed as probabilistic approaches to the prob-
lem of nonlinear regression. 

Concluding we can say that rigorous analytical 
study is imperative for systems needing absolute guar-
antees such as nuclear power plants, airplanes or mars 
robots.  At the same time it  is impractical for  generic 
enterprise computing. These less critical systems could 
significantly  benefit  from  empirical  modeling  ap-
proaches based on observing the system at runtime and 
extracting information about  its  behavior.  This is  the 
approach we will focus on in this paper.

3 Formal Description of Forecasting Task
The modeling and forecasting task in our  scenario is 
straightforward.  Given  a  set  of  labeled  observations 

{ }nffxx ,...,| 1==x  of  our  target  system we compute  a 
classifier  Cl  that  predicts  from the  observed  features 

11 ,..., −nff  the target class label nf  which is either “fail-
ure” or “no failure”. Each element x∈f  is a vector of 
features where we denote  11,..., −nff  as the input fea-
tures and nf  as the target class label. nf =1 denotes “no 
failure”,  nf =0 denotes “failure”. Given a new pattern 
or  a  previously unseen  observation  newx  with  an  un-
known class  label  we obtain  ( )newn Clf x= .  We say a 
prediction at time 1t  is correct if the target event occurs 
at least once within the prediction period pt∆ . The pre-
diction period occurs some time after the prediction is 
made, we call this the lead time lt∆ . This lead time is 
necessary for a prediction to be of any use.

t2 t3

prediction period Δtp

time
t1

lead time Δtlembedding dimension Δte

t0

Figure 1: Time segments for modeling and predic-
tion 

The prediction  period  defines  how far  the prediction 
extends into the future. The value of the lead time lt∆  
critically  depends  on  the  problem  domain,  e.g.  how 
long it takes to restart a component or to initiate a fail 
over sequence. The values are defined as follows:

lead time 12 ttt l −=∆ (1)

prediction period 23 ttt p −=∆ (2)

The embedding dimension et∆  which is denoted as

embedding dimension 01 ttte −=∆ (3)
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specifies how far the labeled observations x∈f  extend 
into the past. 

4 Nonlinear Empirical Modeling
In this paper we focus on the application of linear as 
well as nonlinear empirical modeling techniques to real 
measurements taken from a telecommunication system. 
Linear  regression  procedures  have  been  described  in 
great detail over the past decades. So in this section we 
revisit  the  nonlinear data  driven  modeling  technique 
Radial Basis Functions (RBF) and will then build on 
this framework to derive and introduce the novel and 
more  general  Universal  Basis  Function  (UBF)  ap-
proach.

Techniques for classification, function approx-
imation and nonlinear regression have proliferated over 
the past two decades. Radial Basis Function (RBF) net-
works  are  one  of  the  primary  tools  for  interpolating 
multidimensional  scattered data and are arguably one 
of the most popular methods for nonlinear regression. 
This lends basically to its proximity to linear modeling 
techniques which are widely used and well-understood 
and also to its ability to handle arbitrarily scattered data 
and to easily generalize  to several  space dimensions. 
RBF are also well motivated in the framework of regu-
larization  theory  [27].  They  have  been  applied  to  a 
number of seemingly disparate domains such as finan-
cial  data,  state  space  reconstruction  in  physics  and 
function approximation [38] as well as classification of 
medical and biological data sets [34]. 

However,  the  generalization  quality  of  RBF 
models strongly depends on issues in their architecture, 
learning algorithms, initialization heuristics and regu-
larization  techniques.  RBF are  typically  used  with  a 
priori  fixed  kernel  functions  and  little  attention  has 
been given to the effect of mixture kernels on model 
quality  and  efficiency  of  parameter  optimization.  In 
particular,  it has been shown that some data distribu-
tions, such as heavy tailed ones, cannot be well approx-
imated by Gaussian functions  [23] and that depending 
on the specific problem at hand, adapting the transfer 
functions according to the underlying data can improve 
model quality significantly [15]. 

In the next Sections we will introduce a novel 
concept  for  domain specific  mixture functions  in the 
RBF framework which overcomes some of these limi-
tations. We call this novel modeling technique Univer-
sal  Basis  Function  (UBF)  networks  to  reflect  their 
proximity to Radial Basis Function. 

4.1 Radial Basis Functions 

Suppose we obtain a set of data
( ){ }1, ℜ×ℜ∈= d

jj yxm  (4)

with [ ]Nj ,1∈  by random sampling from a function f 
(see Equation 5) in the presence of noise. Usually, we 
are interested in recovering f from our sampled data m. 
Note that our sampled data  m consists of observation 
vectors xj , in linear statistics also called regressors, and 
the corresponding target value yj. Where j is the index 
of the current observation, N the total number of obser-
vations and d is the dimension of the input vector. 

( )jj fy x= (5)

This problem of finding the function f is ill-posed since 
it has an infinite number of solutions  [16]. To recon-
struct any particular solution we clearly need some a 
priori  knowledge about  the function in question.  The 
most  common  assumption  in  these  cases  is  that  the 
function is smooth. Smoothness in this context can be 
thought of as two similar inputs giving rise to similar 
outputs, i.e. the principle of strong causality must hold 
which says that a small change in the inputs results in a 
small change in the output. The underlying principle is 
regularization theory [27]. In this approach a functional 
H[f] is formulated as in Equation (6). The objective is 
then to find a function f  which is close to our sampled 
data and is smooth according to a chosen smoothness 
criterion  [13].  Such a function  f would  minimize the 
following functional

[ ] ( )( ) ( )j

N

j
jj pyff xx +−= ∑

= 1

2H (6)

The first term  ( )( )∑
=

−
N

j
jj yf

1

2x  enforces closeness to 

our  data,  the second  polynomial  term  ( )jp x  smooth-
ness. The polynomial is typically taken to be just a lin-
ear or constant term [22], the solution for f is then giv-
en by [13] as

( ) ( )∑
=

−=
N

j
jjGcf

1

WxWxx (7)

where  c's are coefficients,  W is a  d × d (see Equation 
4)  weight  matrix  which  rotates  and resizes  the input 
space to reflect possible linear combinations of original 
input variables and G is some nonlinear transformation 
function  [27]. In this scheme we have the weight ma-
trix  W and the coefficients  c as free parameters. This 
can result in an approximation task where more param-
eters have to be estimated than there are data points. To 
escape from this dilemma [13] describe the scheme of 
Generalized Regularization Networks (GRN) in which 
centers  t coincide with the data points and the weight 
matrix W is fixed to be the identity I. This results in 

( ) ( )∑
=

−=
N

j
jjGcf

1

txx (8)

The one-to-one correspondence between the observa-
tions x and the transfer function G(x;xj) of this type of 
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network (see Equation 7) can make it prohibitively ex-
pensive to compute for large  N. Also the computation 
of the linear coefficients c in Equation (8) requires the 
inversion of an N-by-N matrix which grows roughly as 
O(N3).  This has lead to so called  Hyperbf  where  the 
centers  are considered to be free parameters  as well. 
The number of centers n (Equation 9) is then chosen so 
that it is much smaller than the number of available ob-
servations N such that n << N . The linear coefficients 
cj can straightforwardly be calculated for example by 
singular value decomposition. This scheme has the ad-
vantage of being computationally less expensive while 
retaining the form of the regularization solution depict-
ed in Equation (6). The solution to Equation (8) is giv-
en by [27] as

( ) ( )∑
=

−=
n

i
iiGcf

1
txx (9)

where •  denotes a geometric distance measure, such 
as the Euclidean. In fact this is the solution we will fo-
cus  on  when  deriving  generalized  Universal  Basis 
Functions. 

4.2 Generalized Universal Basis Functions
In this Section we introduce a more general concept of 
basis functions by replacing G with a flexible function 
(i.e. not necessarily Gaussian) to adapt to specifics of 
the data space. Let 

itxr −=
(10)

then  ( )iG tx −  can be rewritten as  G(r). We focus 
on mixtures of activation functions such as Gaussian, 
sigmoid  and  multiquadratics.  We  would  like  to 
crossover smoothly from one activation function to the 
other covering all states in the continuum between the 
two extremes.  For  convenience  we  define  ω  which 
regulates the dominance of one activation function  Φ1 

over the other Φ2. 
( ) ( ) ( ) ( )rωrωωr 21 1, Φ−+Φ=G (11)

Note that  ω can be any real value. Our desired value 
range is [0,1]. Thus, we introduce a standard nonlinear 
mapping 

( )( )1tanh
2
1 +=′ ωω (12)

The  value  of  ω′  now  controls  the  behavior  of  the 
transfer function in the fringe regions and maps it  to 
the unit  interval  [ ] [ ]1,0,-: →∞∞G .  This way we 
get a smooth transfer from one activation function to 
another. 

( ) ( ) ( ) ( )rωrωωr 21 1, Φ′−+Φ′=′G      (13)
with Ф being any of the following functions Ф':

22 2/
1

σre−=Φ ′ (14)
( )2

2 /tanh σr=Φ ′ (15)

time-between-failures [min]
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Figure 2: In (a) we report the target data which is the system's interval call availability (A). The dotted line indi-
cates a 99.99% availability limit. Any drop below that threshold is defined as a failure. Our objective is to model 
and predict the timely appearance of these failures. The system's interval call availability is reported in consecu-
tive five minute intervals and is calculated as the number of successful calls over the total number of calls in this 
interval. In (b) we report the distribution of time between failures (TBF). 
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22
3 σ+=Φ ′ r (16)

and  σ is a function specific constant which is set fol-
lowing  a  heuristic  which  will  be  detailed  in  Section 
4.3. We could try many more transfer functions, how-
ever,  as  detailed  in  the  previous  sections,  the  listed 
transfer  function  Equation(s)  (14),  (15)  and  (16)  are 
pervasively  used  in  literature  and  our  believe  is  we 
should start with some known transfer function before 
we apply more exotic ones. The degree of shape varia-
tion for Gaussian, respectively the steepness of the sig-
moid, can be adjusted by adapting the functions width 
σ . Inserting equation (10) into equation (13) and re-
placing G in equation (9) by equation (13) yields 

( ) ( )∑
=

−=
n

i
iiicf

1

'G ωtxx (17)

If we do have knowledge about the data distribution we 
should give a bias towards a specific activation func-
tion  by  initializing  the  slider  value  ω′  accordingly. 
However,  as  frequently  is  the  case  knowledge  about 
the data distribution is either difficult to obtain or not 
available at all. In this case we start with an educated 
guess. If no further information is available to justify a 
bias  towards  a particular  activation  function  we start 
with a Gaussian RBF approach and set 1=′ω . Subse-
quently  we  optimize  ω′  by  stepwise  decreasing  its 
value.

4.3 Parametrization
Assume we are given the centers ti in Equation (9) then 
we can find the coefficients ci. How do we choose the 
centers though? There are a number of ways such as 
random sampling from the data set, by least squares or 
by  clustering,  e.g.  by  k-means  [22].  When  applying 
random sampling the sample should reflect the distri-
bution of the data. There are only a few theoretical re-
sults available,  however,  [27] proved that a solutions 
exists using this technique. The main problems are a) 
the optimal number of the centers and b) the placement 
of these centers. There is no general answer known to 
these problems and cross validation techniques are con-
sidered  a  reasonable  choice  [10].  When  using  least 
squares or moving centers the problem becomes non-
convex and multiple local minima are to be expected 
[27]. This technique is in principle very powerful but 
can  become  computationally  expensive  for  large  N. 
Clustering is commonly used, even though no theoreti-
cal results exist that prove feasible solutions. However, 
sensibly applied it is a good starting point [22]. In fact 
clustering is the method we apply in this paper. The so-
lution of Equation (17) with respect to the vector of co-
efficients c yields ([27])

yGc += (18)
with 

[ ]T
Nyy ,...,1=y (19)

the vector of coefficients
[ ]T

ncc ,...,1=c (20)

and 
( ) ( )

( ) ( ) 
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where d is the dimension of the input vector as defined 
above, d

Nx  denotes the d-th component of the N-th ob-
servation, xN is the N-th observation vector and tn is the 
n-th kernel vector. The middle part of the matrix G in-
cluding  1

1x  to  d
Nx  denotes optional direct linear con-

nections between the input and the output layer, while 
the last column denotes the constant bias term. It is in-
teresting  to  note  that  if  we  leave  out  the  nonlinear 
transformation  G(x1;t1) to  G(xN;tn) but keep the direct 
linear  connections  between  the  input  and  the  output 
layer we obtain a classical linear equation system. To 
obtain all variables to solve Equation (15) we need G+ 

which  is  called  the  pseudo-inverse2 of  the  matrix  G 
[27], thus

( ) TT GIGGG 1λ −+ += (22)
where T in the exponent denotes the transposed matrix 
and  -1 in the exponent  denotes  the inverse.  However, 
inverting  GTG can be  subject  to  numerical  problems 
because of the likelihood in our high dimensional non-
linear  setting  of  the matrix  being ill-conditioned.  [7] 
propose a solution to this problem by preconditioning 
the G matrix thru the use of an iterated Laplacian oper-
ator. This also makes the diagonal of the square matrix 
GTG dominant by multiplying the identity I by λ > 0 
and thus  incorporates  a  smoothness  assumption  [27]. 
This is the solution we adopt. Note that real problems 
are usually over determined. This means we have more 
data points available than free parameters. The matrix 
G is therefore not square (N > n) and consequently no 
unique inverse exists. For this reason we use the pseu-
do inverse approach as shown in Equation (17) where 
G+ is the pseudo inverse matrix of G. GTG becomes a 
square matrix in its own right with a unique inverse of 
its  own.  Substituting  Equation(s)  (15)  and  (8)  into 
Equation (14) we get a vector of coefficients c which in 

2  A+=(ATA)-1AT is  called  the  pseudo  inverse  matrix  of  A.  Here, 
A+A=I holds, where I is an identity matrix.
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addition to the location of the centers t and the value of 
ω′  completes the specification of the UBF model. 

5 Experiment:  An  industrial  Tele-
communication System
The system we consider is an industrial telecommuni-
cation platform which handles mobile originated calls 
(MOC) and value adding services such as short mes-
sage  services  (SMS)  and  multimedia  messaging  ser-
vices (MMS). It operates with the Global System for 
Mobile  Communication  (GSM)  and  General  Packet 
Radio  Service  (GPRS).  The systems architecture  fol-
lows  strict  design  guidelines  considering  reliability, 
fault  tolerance,  performance,  efficiency  and  compati-
bility issues. We focus on one specific system which, at 
the time we took our measurements, consisted of some-
what more than 1.6 million lines of code, approximate-
ly 200 components3 and 2000 classes4. It is designed to 
be operated distributed over two to eight nodes for per-
formance and fault  tolerance reasons.  The system we 
model consists of two nodes operating in GPRS mode. 
Both nodes form one cluster. We call them node1 and 
node2. The system is designed to be operated nonstop. 
We  will  focus  on  modeling  and  predicting  system 
events  (i.e.  calls)  which  take  longer  time to  be  pro-
cessed than some guaranteed threshold value. We call 
these events failures or target events. 

To a) parameterize, b) validate and c) test the 
generalization capabilities of our models, we split the 
data into three equally large segments. We use the first 
and second segment to  parameterize and cross-validate 
the models as described in Section  4.3.  Parametriza-
tion, the third segment of data, which is not used in the 
model building process,  we use to derive the models 
generalization or  out-of-sample performance.  In  this 

3 a system element offering a predefined service and able to commu-
nicate with other components 

4 classes are used to group related variables and functions

paper we report the  out-of-sample performance of the 
models.

5.1 Data, Notation and Variable Selection
The data we use to build and verify our models consists 
of  a)  equidistant  time-triggered  continuous  variables 
and b) time stamped event-driven log file entries.  To 
record the numeric values of system variables we use 
the system activity reporter (SAR) utility running under 
the UNIX operating system. It samples cumulative ac-
tivity counters in the operating system at n intervals of 
t seconds. We gather numeric values of 46 system vari-
ables  once  per  minute  and  per  node. This  yields  92 
variables  in a time series  describing  the evolution  of 
the internal states of the system. In a 24-hour period we 
collect a total of 132.480 readings (92 variables times 
24 hours times 60 minutes per hour with one reading 
per variable  and minute).  In total  we collect  roughly 
1.3 million system variable observations. 

It is difficult if not impossible to evaluate the 
influence of each variable on the predictive quality of a 
model due to combinatorial  explosion and potentially 
nonlinear  correlations.  In  fact  including too few,  too 
many  or  unfavorable  variable  combinations  into  the 
model  building  process  can  degrade  model  perfor-
mance significantly ([12],[17]). This problem is known 
under a variety of names such as variable selection, di-
mension reduction or feature detection. The problem is 
finding the smallest subset of input variables which are 
necessary  or  suffice  to  perform  a  modeling  task.  In 
most cases ad hoc theories or gut feeling is employed 
to  derive  a  plausible  set  of  explaining  variables.  To 
eliminate the latent  ambiguity of this approach,  tech-
niques are needed to automatically find the most pre-
dictive and meaningful variables to observe. In [18] we 
have benchmarked four techniques for variable selec-
tion for the same data set we use in this experiment. 
We have benchmarked the well  documented  forward  
selection and backward elimination procedures as well 
as a probabilistic wrapper approach and a set of vari-

AUC out-of-sample
Confidence levels

Model Median Lower Upper
Random Walk (TBF) 0,5000000 0,5000000 0,5000000
ARMA(1,0) (TBF) 0,5000000 0,5000000 0,5000000
Multivariate linear 0,8070540 0,8017753 0,8123326
RBF nonlinear only 0,6230982 0,6226479 0,6235485
UBF nonlinear only 0,7375519 0,7264591 0,7486447
RBF 0,8257261 0,8122181 0,8392342
UBF 0,9024896 0,8881837 0,9167955

Table 1: In this table we present the median out-of-sample AUC performance for failure recognition. The ran-
dom walk and ARMA(1,0) models are based on time-between-failure (TBF) data. We also report the AUC per-
formance of multivariate linear, RBF and UBF models. For RBF and UBF models we also report AUC perfor-
mance for models built only with their respective nonlinear part.
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(a) (b)

Figure 3: Failure recognition results are shown in (a). The UBF model (AUC=0.9024) outperforms the RBF 
(AUC=0.8257) and ML (AUC=0.807) approach. AUC characteristics plotted over a number of lead times for each 
modeling technique are shown in (b). All values are t-tested against each other at a 95% confidence level. 
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Figure 4: Nonlinear UBF models outperform linear as well as nonlinear RBF benchmark methods. Statistical signifi-
cance we established using t-testing. In (a) we present box-whisker charts showing the median and the lower and up-
per error quartiles of out-of-sample performance across five modeling approaches for multivariate linear (ML), nonlin-
ear only RBF and RBF, as well as RBF and UBF with linear parts included. Figure (b) shows cost vs. unavailability. 
We display cost-unavailability ratios by single characters and connect the points for clarity. For cost formula and fur-
ther explanation see text. 
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ables hand-picked by system specialists. We identified 
two out of the 96 variables as being most predictive. 
These are 1)  sema/s (number of semaphore operations 
per second) and 2)  alloc  (amount of memory that the 
kernel memory allocator has allocated).  To avoid po-
tential  biasing  the  variables  were  identified  by  seg-
menting the data the same way as described earlier in 
this Section. The variable selection process only made 
use of the first two segments of the data, all results re-
ported  in  this  paper  are  then  calculated for  the third 
out-of-sample set which had been set aside for general-
ization purposes. It  is interesting to note that the spe-
cialist selected set of variables was outperformed by all 
other  algorithmic  procedures.  This  seems to  confirm 
our view that specialist based variable selection can be 
ad-hoc and sub-optimal.  

In this paper we first focus on observations of 
these two variables and will then include log file data 
in an attempt to improve our models. Log file data has 
been  identified  as  a  potential  source  with  predictive 
power  with  respect  to  impending  failures  ([3],  [32]). 
We gather log file entries in the same time period as we 
gather SAR data. The log file entries are written by the 
operating system and the application into text files. The 
entries are written event-driven and are partially non-
numeric.  The  number  of  entries  per  time  segment 
ranges  from several  hundred  entries  per  second  to  a 
few entries per minute. Each log file entry consists of a 
number  of  labels  which  contain  information  of  the 
source which has written the entry, date and time infor-
mation as well as the severity and nature of the entry. 
The log file entries are classified into 195 predefined 
classes  according  to  their  area  of  relevance  (e.g. 
database, network). Each log file event is labeled by its 
class name. Considering our two nodes we will have to 
handle 390 class variables (195 classes at each node). 
In total we gather roughly four million log file entries. 

5.2 Failure Definition
For our purposes we introduce interval call availability 
Ac(Δt), which is the probability that calls within a spe-
cific  time interval  Δt will  be  handled  by the  system 
within a given deadline. Interval call availability is cal-
culated as the number of calls completed ncompleted over 
the total number of calls ntotal in the interval Δt.  Ac(Δt) 
can also be written as one minus the number of failed 
calls nfailed over the total number of calls in this interval. 
In our scenario we derive Ac(Δt) as 

( )
total

failed
c n

n
tA −=∆ 1 (23)

The values of  nfailed and  ntotal  are given to us in time 
stamped log files. The interval Δt is given as five min-
utes. A failed call is defined as a call which is not han-
dled within a given amount of time. A  failure is de-

fined as 0.01% or more calls not being processed with-
in the given deadline. This corresponds to Ac(Δt) drop-
ping  below  99.99%.  In  this  paper  we  use  the  term 
availability  synonymously to  interval call availability. 
For simplicity we also write  A =  Ac(Δt).  See Figure  2 
(a) for a plot. 

5.3 Metric
When  making  predictions  about  the  system's  future 
state we must take into account true positive (TP), false 
positive  (FP),  true  negative  (TN)  and  false  negative 
(FN) classifications.  Focusing on TP alone may sub-
stantially bias a model. A metric which takes all four 
prediction outcomes into a account is true positive rate 
(Tprate) and false positive rate (FPrate).    

 FN TP 
TPTPrate
+

= (24)

 TN FP 
FPFPrate
+

= (25)

To express the interdependence of  FPrate and  TPrate  
frequently  the  Receiver  Operating  Characteristic  
(ROC) is calculated. The ROC curve is used for diag-
nosis by assessing the ability of our model to discrimi-
nate between failures and nonfailures. If the model dis-
criminates perfectly, the ROC curve passes through the 
coordinates (0,1) and the Area Under the Curve (AUC) 
is one. If  the model has no discriminating ability, we 
see a straight line from (0,0) to (1,1). Each point on the 
ROC curve  provides  the  false  positive  rate  (FPrate) 
and true positive rate (TPrate) associated with a thresh-
old in the probability scale which allows classification 
of each observation. See Figure  3 (a) for details.  The 
ROC curve  shows  the  trade-off  between  FPrate and 
TPrate.  Any increase in  TPrate will  be accompanied 
by an increase in FPrate. The closer the curve follows 
the  left-hand  border  and  then  the  top  border  of  the 
ROC space, the more accurate is our model. In fact we 
use AUC intensely to analyze and compare our models. 

5.4 Models and Benchmark Strategies
How  well  do  traditional  linear  modeling  techniques 
perform and can we improve the performance of these 
models  by adding  nonlinearities?  We investigate  this 
problem in two steps: 
1. time-driven approach: first we build bottom-of-the-

line random walk and linear autoregressive moving 
average (ARMA) models. Prediction in this case is 
dependent on time between failures (tbf) only.

2. State-dependent approach: We then extend our ap-
proach to multivariate linear models, subsequently 
introduce nonlinearities to our models and bench-
mark  them against  the  linear  models  and  against 
each other.
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Exemplary we report the UBF's parametrization. In the 
UBF model the number of centers  n is five. This pa-
rameter choice was made based on n-fold cross-valida-
tion. The system's availability based on our UBF model 
thus is defined as 

c
tx

A  
0.063245552

2










 −−
= iG (26)

The kernel vectors t which feed into G and the coeffi-
cient vector c are parameterized as follows:

[ ]
[ ]T

T

0.63509980.6298298,0.5658562,0.5622841,0.5536791,

4461004,0.204018,0.104280,0.062097,0.04101540.01416387
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=

=
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t
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=

70.05779375 1,0.00366804 4,0.09742798 7,0.09742345 ...
... 8,0.04773573 0,0.02079834 4,0.02225425 4,0.03545836

c

(28)
The transfer function ( )•G   is

( ) ( ) ( ) ( )•Φ′−+•Φ′=• 21 1 ωωG (29)
The UBF type is Gauss / sigmoid with 1Φ  and 2Φ  be-
ing  the  Gaussian  and  sigmoid  function  respectively. 
The UBF slider ( )ωω 5.0tanh=′  with 8.0−=ω . 

6 Results
In this section we will first give the failure recognition 
results at 0=∆ lt , we will then present results for lead 
times from five to 15 minutes.  We will continue with 
including log files into the model building process. Fi-
nally we will  propose and evaluate a cost  metric for 
cost-benefit analysis of our models.

6.1 Failure Recognition Results
In Table 1 we present out-of-sample AUC performance 
for  failure  recognition.  These  results  are  the  median 
out-of-sample values  of  20 models  we have built  on 
bootstrapped datasets  [10]. In Figure  3 (a) we present 
the  ROC  chart  for  out-of-sample failure  recognition 
data with 0=∆ lt . We compared the performance of the 
UBF modeling approach with that of traditional empiri-
cal modeling techniques such as ARMA, random walk, 
multivariate linear (ML) models and nonlinear Radial 
Basis Functions (RBF). The ARMA and random walk 
approach did not recognize any failure. This is an ex-
pected result because these univariate models are based 
on  time  between  failures  and  do  not  consider  other 
variables. The distribution of the time between failures 
is  heavy  tailed  with  irregular  spikes.  Also,  there  is 
practically no autocorrelation which could be exploited 
by ARMA models, see Figure 5. 
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Figure 5: Time-between-failures (TBF) autocorre-
lation function (ACF). Horizontal lines indicate ap-
proximate 95% confidence intervals.

In the next step we resort to multivariate approaches. 
We calculated error bounds and statistical significance 
of  all  models.  UBF clearly  and  significantly  outper-
formed ML and RBF (compare Table  1). We also in-
vestigated the effect of focusing on nonlinear modeling 
only.  For that purpose we cut all linear parts in UBF 
and RBF. The result  clearly indicates superior  model 
quality  of  UBF  over  RBF.  However,  the  quality  of 
nonlinear  only  models  does  not  reach  that  of  linear 
models or that of mixture models which include non-
linear  as  well  as  linear  parts.  We therefore  conclude 
that  the data of  our  telecommunication  system has  a 
high  fraction  of  linear  correlation.  However,  adding 
nonlinearities  to  the  models  significantly  improves 
overall failure recognition performance. 

The UBF model outperforms all other model-
ing techniques with an AUC of 0.9025 on the general-
ization data set (see Table 1). It is followed by the RBF 
approach with  an AUC value of  0.8257 and the ML 
model with an AUC of 0.8071 on the generalization 
data  set.  It  is  interesting  to  note  that  RBF and UBF 
models which we built using only their nonlinear part 
were worse than the ML model.  These modeling ap-
proaches yield an AUC of 0.6230 and 0.7376 respec-
tively. 

6.2 Failure Prediction Results
In the previous sections we have looked into the capa-
bility of our  models to recognize  failures at  the time 
they occur.  We now turn to models with a lead time 
greater  than  zero  for  failure  prediction.  We  use  the 
same input data as in the previous sections. Now, we 
present  our  target  value  with  a  time  lag  of 

{ }15,10,5∈∆ lt  minutes. In Figure 3 (b) we present AUC 
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characteristics plotted over a number of lead times for 
each modeling technique. The reported values are me-
dians of their respective distribution. UBF models out-
performed all other approaches significantly.  Interest-
ingly, the UBF advantage narrows for models predict-
ing further into the future, nonetheless the difference in 
prediction  quality  is  statistically  significant.  It  seems 
that  model  performance  of  UBF,  RBF and ML con-
verges to error bounds within a small interval for pre-
dicting  failures  15  or  more  minutes  ahead  (compare 
Figure 3 (b)), indicating that nonlinear data correlations 
play less a role the further we look ahead. The present-
ed  results  clearly  indicate  that  empirical  models  for 
failure prediction can successfully be constructed based 
on historic observations of the systems behavior.

6.3 Including Log File Data
We  built  predictive  models  using  additional  log  file 
data. We used the same target failure data as in the pre-
vious sections with  5=∆ lt  minutes. We report results 
in Figure  6 and Table  2. The models did poorly com-
pared  to  SAR-fed  models  with  corresponding  lead 
times,  compare  Table  1 and  Figure  4 (a).  The  UBF 
model yields a median AUC of 0.5958 on the general-
ization  data,  whereas  the  UBF model  fed  with  SAR 
data yields an AUC of 0.85. In Figure 6 we present me-
dian and quartiles of the respective models for out-of-
sample AUC in a box-whisker plot. In fact our standard 
t-test indicates no significant difference in distributions 
among all three models.  

Model
ML 0,61542 0,60126 0,62957
RBF 0,57167 0,53086 0,61247
UBF 0,59583 0,57717 0,61449

AUC out-of-sample performance
Median Lower Upper

Table 2: Median, lower and upper bounds of out-
of-sample  AUC  for  ML,  RBF  and  UBF  models 
based on log file data. 
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Figure 6: Box-Whisker plots for out-of-sample 
AUC values of linear (ML), RBF and UBF models. 
Models built based on log file data.

6.4 Cost-Benefit Analysis 
Cost-benefit analysis is the nontrivial part of deciding 
what level of involvement is sensible to reach a certain 
level of system availability. The methods described in 
this paper involve cost in terms of computational and 
human resources and on the other hand promise an im-
provement  in  availability.  In  some ultra-reliable  sys-
tems  the  cost  for  increasing  the  systems  availability 
may be taken to extremes. In our case we would like to 
develop  an  understanding  of  what  cost  is  associated 
with what level of availability improvement. We would 
like to compare the status quo situation, i.e. known cost 
and availability levels with options offered by our pre-
diction method. 

Benefit in our case can be defined as the in-
crease in system availability  A or decrease in unavail-
ability (1-A). Cost is more difficult to define because it 
depends on variables which we can only estimate up-
front. Matters are further complicated by the fact that 
we are  focused  on  modeling  and  predicting  failures, 
which can be used for preventive maintenance actions, 
which in turn may increase availability. However, the 
cost associated with these preventive measure covers a 
broad range we can hardly assess without empirically 
measuring  the  effects.  Thus,  we  approach  this  chal-
lenge by depicting cost as a function of the models per-
formance as we can assess it, namely by its contingen-
cy matrix. If, for example, missing a failure (FN) costs 
ten  times  the  value  of  making  a  false  positive  (FP) 
statement we can reflect this by introducing the respec-
tive ratio in our cost function. Thus for each preventive 
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maintenance method triggered by our prediction algo-
rithm we should be able to parameterize the cost func-
tion according to its specifics. Once we have clamped 
the parameters of the cost function we can find the op-
timal operating point of our model with respect to its 
cost/benefit ratio by riding along the AUC curve. One 
way of approaching this topic is to let the cost function 
be the sum of costs for each entry in the contingency 
matrix weighted by the number of its occurrences.

FNFNFPFPTNTNTPTP CnCnCnCncost +++= (30)

The number  ni with  i Є {TP,TN,FP,FN} for each cell 
of the contingency matrix we derive by counting. The 
proper  parametrization  of  C obviously  strongly  de-
pends on the strategy we employ to avoid a predicted 
failure. In Figure  4 (b) we present the cost curve for 
C={1,0,1,10}.  This cost  vector  implies  that  a  missed 
failure (FN) is ten times as cost intensive as a falsely 
predicted  failure  (FP).  This  is  arguably  an  arbitrary 
value and should be understood as an example only for 
demonstration purposes. We caution the reader to ap-
ply this metric blindly.  In  Figure  4 (b) we depict the 
cost / unavailability ratio for ML, RBF and UBF mod-
els  for  out-of-sample  generalization  data.  The  UBF 
model shows a more favorable cost / unavailability ra-
tio which is an expected result given that UBF predic-
tions  clearly  outperform  other  modeling  techniques. 
The  ML  model  yields  a  rather  inflexible  frame  for 
choosing a particular cost / unavailability point by only 
offering  few operational  points  (the circles in  Figure 
4). 

7 Conclusions and Future Work
In this paper, we have firstly applied linear as well as 
nonlinear  data  driven  techniques  to  model  and  then 
forecast  call  availability and  failures  of  an  industrial 
telecommunication system. This is in contrast to com-
monly used theory or first principle driven modeling. 
We predicted call availability up to 15 minutes ahead 
of time and recognized failures as they occurred. Sec-

ondly, we presented, applied and assessed a novel non-
linear empirical modeling technique we call Universal 
Basis  Functions  (UBF).  We have  cross-benchmarked 
five empirical modeling techniques,  these include the 
linear ARMA (autoregressive moving average), multi-
variate  and  random  walk  techniques,  as  well  as  the 
nonlinear Radial Basis Functions (RBF) and Universal 
Basis Functions (UBF). 

From the telecommunication system we have 
gathered  real  data  during  runtime from two different 
sources which are a) equidistant numerical data as time 
series and b) time stamped textual log file data. Overall 
results clearly show that empirical multivariate model-
ing  techniques  can  be  effectively  used  for  modeling 
and prediction  in  our  telecommunication  system.  We 
did find a fair amount of nonlinearity in the system's 
data.  In  fact  nonlinear  modeling  techniques  such  as 
UBF and RBF significantly outperformed linear tech-
niques in failure recognition and prediction. Statistical 
significance  was  established  based  on  t-testing.  The 
nonlinear  UBF  approach  significantly  outperformed 
RBF. 

Contrary  to  conventional  wisdom  including 
log file data did not improve model quality, on the con-
trary, model quality deteriorated when we included log 
file data. We attribute this effect to a particularly high 
degree of noise in the data and most probably limited 
information contained in the log files. Even though this 
result may not be generalized at this point it may be a 
promising starting point for future research to get in-
sights into better structuring log files and to evaluate 
what type of information should be included into log 
files. 

We also proposed a parameterizable cost func-
tion for cost-benefit analysis which can reflect the cost 
associated with a particular prevention step after a fail-
ure has been predicted. Future work will include an in-
depth analysis on closing the control loop, which is in-
tegrating prediction techniques with particular preven-
tive maintenance methods such as failover, checkpoint-
ing or rejuvenation to name a few. 
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