
25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

Call Availability Prediction in a Telecommunication System:
A Data Driven Empirical Approach

Guenther Hoffmann and Miroslaw Malek
Humboldt-Universität zu Berlin

Institut für Informatik
[gunho|malek@informatik.hu-berlin.de]

Abstract

Availability prediction in a telecommunication system
plays a crucial role in its management, either by alert-
ing the operator to potential failures or by proactively
initiating preventive measures. In this paper, we apply
linear (ARMA, multivariate, random walk) and nonlin-
ear (Radial and Universal Basis Functions) regression
techniques to recognize system failures and to predict
the system's call availability up to 15 minutes in ad-
vance. Secondly we introduce a novel nonlinear mod-
eling technique for call availability prediction. We
benchmark all five techniques against each other. The
applied modeling methods are data driven rather than
analytical and can handle large amounts of data. We
apply the modeling techniques to real data of a com-
mercial telecommunication platform. The data used
for modeling includes a) time stamped event-based log
files and b) continuously measured system states. Re-
sults are given in terms of a) receiver operator charac-
teristics (AUC) for classification into classes of failure
and non-failure states and b) as a cost-benefit analy-
sis. Our findings suggest a) high degree of nonlineari-
ty in the data, b) statistically significant improved fore-
casting performance and cost-benefit ratio of nonlin-
ear modeling techniques, and finally finding that c) log
file data does not contribute to improve model perfor-
mance with any modeling technique.

1 Introduction
Over the past decades software systems, including
telecommunication systems, have grown in complexity
up to a point where their behavior is in parts unpre-
dictable. Software related failures have now become
common. The increasing complexity of these systems
is seen as a major threat to the benefits these systems
aim to provide. Nonetheless, human lives and organiza-
tions with considerable economic impact are dependent
on the availability of exactly these software infrastruc-
tures. Industrial software systems inevitably exhibit
failures. Availability prediction during run time is one
prerequisite to decrease the system's failure rate and
thus increase its availability, e.g. by proactively trig-
gering preventive measures. We identify three steps in-
volved in building smart high availability systems:

1. Observe: develop methods that capture and select
essential data of software system, not all of the
many hundreds or even thousands of variables that
could be observed actually contribute to failure
forecasting.

2. Reason: develop methods that interpret that data,
recognize malicious system states and predict future
system states.

3. React: reaction schemes which build on these pre-
dictions and help self-manage the system.

In this paper, we focus on the second step in this pro-
cess. We present a modeling framework, a novel obser-
vation based modeling technique and cross-benchmark
the employed methods. Step 1 we have covered in [18]
and is briefly discussed in Section 5.1. Failure avoid-
ance schemes (Step 3) will need to be developed as
Steps 1 and 2 prove to be successful. We will assess
and benchmark the following nonlinear and linear
modeling techniques: a) univariate linear random walk
models, b) univariate linear ARMA models, c) multi-
variate linear regression models, d) nonlinear Radial
Basis Function models and e) nonlinear Universal Ba-
sis Function models.

The paper is organized as follows: In Section 2
we review related work on software availability and
empirical modeling approaches. In Section 3 we de-
scribe the modeling objectives and give a formal de-
scription of the forecasting task. In Section 4 we intro-
duce a novel nonlinear modeling approach we call Uni-
versal Basis Functions (UBF) which is an extension of
the widely discussed Radial Basis Function (RBF) ap-
proach. Before we present results in Section 6 we de-
scribe the data used, the metric and the benchmark
strategies in Section 5. In Section 7 we briefly summa-
rize our conclusions and discuss future work.

2 Related Work and Motivation

2.1 Availability of Software System
In the past a number of strategies have been developed
to increase the availability of software systems. First,
we can try to minimize the number of faults in a soft-
ware component during the development process. After
all there is a sense of that a piece of software or soft-

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

ware component is deterministic. The idea is: either it
is fault free, then it will not fail, or it contains faults,
thus circumstances that make it fail once will make it
fail all the time. In actuality the software failure pro-
cess arises in the context of executing successive inputs
to the system. Also, the environment in which the exe-
cution takes place might have an impact. Testing the
system is one way of finding malicious input patterns
or flaws in their execution. However, testing only al-
lows establishing the presence of errors. It cannot as-
sure their absence [9]. For large systems we cannot
predict with certainty all future inputs into the system
during system tests and we do not know the systems
faults. So of the inputs we have not investigated we do
not know which of them produce a failure if executed
[4]. If we knew, we could use this knowledge to fix
that bug before releasing the software. Another way of
testing a software system is by fault injection. This way
the system's behavior may be verified if stressed in un-
usual ways. Some of the inherent limitations of this ap-
proach are due to heavy human involvement. Test cas-
es have to be specified and test scenarios evaluated.
For large systems the complexity of these tests may
quickly become prohibitive. Also testing is strongly
product based. Test cases specified for one system may
not simply be transferred to another system.

Other approaches aiming to ensure specified
behavior include rigorous analysis. These methods im-
ply formal specification of the properties of a systems
intended behavior and verify that the system conforms
to that specification. Examples of rigorous methods in-
clude temporal logic [28] and process algebra [29].
However, formal approaches can quickly become im-
practical when confronted with the degree of complexi-
ty and degrees of freedom of complex computer sys-
tems. We believe that formal methods are too rigorous
to scale up to enterprise systems and the unpredictable
environment we find in industry does not allow the rig-
or we find in traditional approaches. This has been
leading to a change in the way software systems are
perceived and to changing concerns from bug centric -
whether a system will work to how well it will work.

A realistic line of thought is to accept the fact
that software systems or parts of them inevitably do fail
as discussed in [25] and [33]. In fact this is our opera-
tional framework in this paper. Arguably the most fol-
lowed path within this framework is to recover rapidly
into a failure free state after a failure has occurred. De-
creasing the reboot time has been a major research con-
cern ([14], [35]). However, rebooting the entire system
can cause nontrivial service disruption or downtime
even when clusters and failover mechanisms are em-
ployed. Thus the concept of rebooting has been further
refined to only restarting affected parts of the system.
This procedure recovers most of the same failures as
full reboots, but does so an order of magnitude faster.

Most of these concepts are employed in a reactive –
post mortem framework. Meaning after the fact that a
failure occurred, measures are taken to correct it.

We often reboot our computers preemptively
before mishap happens. We find the machine is behav-
ing strangely or because parts like printing or network
connections do subtly not work the way we expect
them to work. It can be small deviations from normal
behavior, but nonetheless we observe them and act ac-
cordingly. This can be seen as preventive maintenance,
triggered by our human observation. It is our belief that
by automating this process and by embedding it into a
proactive – preventive framework we can contribute to
enhanced software availability. A promising direction
is to think in terms of constant adaptation to changing
conditions rather than waiting for abnormal behavior to
happen and then to recover. To do so, we need systems
that anticipate the likely evolution of their availability
or other nonfunctional properties. Based on a predic-
tion of its future health status, the system would initiate
preventive measures itself to either totally avoid the
looming failure or at least to be prepared and recover
more rapidly. Within this line of thought [20], [11] and
[2] discuss the concept of software aging which has
subsequently been further refined by a number of au-
thors (e.g. [5], [37]). The authors argue that due to re-
source exhaustion, data corruption or numerical error
accumulation the status of the system may degrade
with time. They propose to gracefully terminate the af-
fected application or the system while it is still in a
manageable state. They call this process rejuvenation.
The problem then becomes determining the optimal
time for rejuvenating. The authors propose, among oth-
er techniques, stochastic measurement-based models.
This line of thought has been reflected in the specific
research area of systems which manage themselves and
anticipate the likely evolution of their dynamics. These
systems are also called self-* systems, where the star is
a place holder for repairing, configuration, healing, op-
timization and protection to name a few. Although
some self-* approaches like self-repairing date back to
the late 1960's [1] more recently autonomic computing
has been used synonymously [19] and self-* systems
have been investigated in a broader context (e.g. [8]).

2.2 Probabilistic Modeling Approaches
How can we build the anticipating part of self-* soft-
ware systems? It is our belief that the uncertainty about
a systems availability, mainly introduced by its com-
plexity, can be captured by probabilistic representation
of the system. To achieve this goal we propose to apply
a data-driven methodology based on a novel nonlinear
modeling technique

There is a well-established theory and a large
body of tools which let us characterize any given sys-
tem which can be described by a set of linear equa-

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

tions. It is being used in virtually every scientific disci-
pline. Where the assumption of linearity breaks down
there is a lack of a uniform theory. However, despite
this lack it is remarkable how much theoretical insight
we can gain on the dynamics of a nonlinear system. For
example, the reconstruction theorem [36], also known
as the embedding theorem, provides the theoretical
means to model highly nonlinear behavior of arbitrary
physical systems with hidden dynamics. It means that
for almost any scalar function, for example, observa-
tions we take from a software system, we can answer a
wide range of questions about the dynamics of the
original system by examining the dynamics in a space
defined by delayed values of this function. We can
compute dynamical invariants, and we can even make
predictions by interpolating in the so-called delay em-
bedding space1. Furthermore, the reconstruction theo-
rem detects low-dimensional structure in a high-dimen-
sional data space, modeling the effective degrees of
freedom of a system rather than all degrees of freedom.
This has important implications for our approach: in
the case of software systems it implies that it should be
sufficient to model the larger picture of effective inter-
nal states and output signals, rather than representing
every single module. However, the reconstruction theo-
rem has its drawbacks. Models can easily become un-
stable for large embedding dimensions. Also the avail-
ability of large amounts of highly precise data is as-
sumed [26]. This is difficult to achieve in the presence
of noise and limited data access in practically any real-
world system. The reconstruction theorem has influ-
enced a number of methods aiming at circumventing
these challenges. These methods automatically detect
the functional relationship of data in the presence of
noise, limited data accessibility and possibly nonlinear
dependencies among observations. Methods which
have been shown to be able to handle these scenarios
include Radial Basis Functions [24], Multi-Layer Per-
ceptrons [31], Projection Pursuit [21], Hidden Markov
Models [30] and Support Vector Machines [6]. These
methods are known under a variety of names such as
learning networks or nonlinear, stochastic and proba-
bilistic regression. In this paper, we will synonymously
use the latter terms as well as machine learning and
empirical models where applicable. One method which
has been extensively utilized and studied in conditional
density estimation and function approximation is Radi-
al Basis Functions (RBF). This method allows data-
driven, nonlinear modeling. RBF are computationally
less expensive than Multi-Layer Perceptrons, Projec-
tion Pursuit or Hidden Markov Models and can be
translated into Multi-Layer Perceptrons [13]. Also Ra-
dial Basis Functions are universal approximators,
1 Number of axes of a return map sufficient to describe the proper-

ties of the corresponding phase space. The return map is a plot of a
time series as a function of the current and of the previous values.

which means they can approximate any continuous
function given enough degrees of freedom [27]. Al-
though these methods were originally developed in dif-
ferent contexts for seemingly different purposes, they
can be viewed as probabilistic approaches to the prob-
lem of nonlinear regression.

Concluding we can say that rigorous analytical
study is imperative for systems needing absolute guar-
antees such as nuclear power plants, airplanes or mars
robots. At the same time it is impractical for generic
enterprise computing. These less critical systems could
significantly benefit from empirical modeling ap-
proaches based on observing the system at runtime and
extracting information about its behavior. This is the
approach we will focus on in this paper.

3 Formal Description of Forecasting Task
The modeling and forecasting task in our scenario is
straightforward. Given a set of labeled observations

{ }nffxx ,...,| 1==x of our target system we compute a
classifier Cl that predicts from the observed features

11 ,..., −nff the target class label nf which is either “fail-
ure” or “no failure”. Each element x∈f is a vector of
features where we denote 11,..., −nff as the input fea-
tures and nf as the target class label. nf =1 denotes “no
failure”, nf =0 denotes “failure”. Given a new pattern
or a previously unseen observation newx with an un-
known class label we obtain ()newn Clf x= . We say a
prediction at time 1t is correct if the target event occurs
at least once within the prediction period pt∆ . The pre-
diction period occurs some time after the prediction is
made, we call this the lead time lt∆ . This lead time is
necessary for a prediction to be of any use.

t2 t3

prediction period Δtp

time
t1

lead time Δtlembedding dimension Δte

t0

Figure 1: Time segments for modeling and predic-
tion

The prediction period defines how far the prediction
extends into the future. The value of the lead time lt∆
critically depends on the problem domain, e.g. how
long it takes to restart a component or to initiate a fail
over sequence. The values are defined as follows:

lead time 12 ttt l −=∆ (1)

prediction period 23 ttt p −=∆ (2)

The embedding dimension et∆ which is denoted as

embedding dimension 01 ttte −=∆ (3)

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

specifies how far the labeled observations x∈f extend
into the past.

4 Nonlinear Empirical Modeling
In this paper we focus on the application of linear as
well as nonlinear empirical modeling techniques to real
measurements taken from a telecommunication system.
Linear regression procedures have been described in
great detail over the past decades. So in this section we
revisit the nonlinear data driven modeling technique
Radial Basis Functions (RBF) and will then build on
this framework to derive and introduce the novel and
more general Universal Basis Function (UBF) ap-
proach.

Techniques for classification, function approx-
imation and nonlinear regression have proliferated over
the past two decades. Radial Basis Function (RBF) net-
works are one of the primary tools for interpolating
multidimensional scattered data and are arguably one
of the most popular methods for nonlinear regression.
This lends basically to its proximity to linear modeling
techniques which are widely used and well-understood
and also to its ability to handle arbitrarily scattered data
and to easily generalize to several space dimensions.
RBF are also well motivated in the framework of regu-
larization theory [27]. They have been applied to a
number of seemingly disparate domains such as finan-
cial data, state space reconstruction in physics and
function approximation [38] as well as classification of
medical and biological data sets [34].

However, the generalization quality of RBF
models strongly depends on issues in their architecture,
learning algorithms, initialization heuristics and regu-
larization techniques. RBF are typically used with a
priori fixed kernel functions and little attention has
been given to the effect of mixture kernels on model
quality and efficiency of parameter optimization. In
particular, it has been shown that some data distribu-
tions, such as heavy tailed ones, cannot be well approx-
imated by Gaussian functions [23] and that depending
on the specific problem at hand, adapting the transfer
functions according to the underlying data can improve
model quality significantly [15].

In the next Sections we will introduce a novel
concept for domain specific mixture functions in the
RBF framework which overcomes some of these limi-
tations. We call this novel modeling technique Univer-
sal Basis Function (UBF) networks to reflect their
proximity to Radial Basis Function.

4.1 Radial Basis Functions

Suppose we obtain a set of data
(){ }1, ℜ×ℜ∈= d

jj yxm (4)

with []Nj ,1∈ by random sampling from a function f
(see Equation 5) in the presence of noise. Usually, we
are interested in recovering f from our sampled data m.
Note that our sampled data m consists of observation
vectors xj , in linear statistics also called regressors, and
the corresponding target value yj. Where j is the index
of the current observation, N the total number of obser-
vations and d is the dimension of the input vector.

()jj fy x= (5)

This problem of finding the function f is ill-posed since
it has an infinite number of solutions [16]. To recon-
struct any particular solution we clearly need some a
priori knowledge about the function in question. The
most common assumption in these cases is that the
function is smooth. Smoothness in this context can be
thought of as two similar inputs giving rise to similar
outputs, i.e. the principle of strong causality must hold
which says that a small change in the inputs results in a
small change in the output. The underlying principle is
regularization theory [27]. In this approach a functional
H[f] is formulated as in Equation (6). The objective is
then to find a function f which is close to our sampled
data and is smooth according to a chosen smoothness
criterion [13]. Such a function f would minimize the
following functional

[] ()() ()j

N

j
jj pyff xx +−= ∑

= 1

2H (6)

The first term ()()∑
=

−
N

j
jj yf

1

2x enforces closeness to

our data, the second polynomial term ()jp x smooth-
ness. The polynomial is typically taken to be just a lin-
ear or constant term [22], the solution for f is then giv-
en by [13] as

() ()∑
=

−=
N

j
jjGcf

1

WxWxx (7)

where c's are coefficients, W is a d × d (see Equation
4) weight matrix which rotates and resizes the input
space to reflect possible linear combinations of original
input variables and G is some nonlinear transformation
function [27]. In this scheme we have the weight ma-
trix W and the coefficients c as free parameters. This
can result in an approximation task where more param-
eters have to be estimated than there are data points. To
escape from this dilemma [13] describe the scheme of
Generalized Regularization Networks (GRN) in which
centers t coincide with the data points and the weight
matrix W is fixed to be the identity I. This results in

() ()∑
=

−=
N

j
jjGcf

1

txx (8)

The one-to-one correspondence between the observa-
tions x and the transfer function G(x;xj) of this type of

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

network (see Equation 7) can make it prohibitively ex-
pensive to compute for large N. Also the computation
of the linear coefficients c in Equation (8) requires the
inversion of an N-by-N matrix which grows roughly as
O(N3). This has lead to so called Hyperbf where the
centers are considered to be free parameters as well.
The number of centers n (Equation 9) is then chosen so
that it is much smaller than the number of available ob-
servations N such that n << N . The linear coefficients
cj can straightforwardly be calculated for example by
singular value decomposition. This scheme has the ad-
vantage of being computationally less expensive while
retaining the form of the regularization solution depict-
ed in Equation (6). The solution to Equation (8) is giv-
en by [27] as

() ()∑
=

−=
n

i
iiGcf

1
txx (9)

where • denotes a geometric distance measure, such
as the Euclidean. In fact this is the solution we will fo-
cus on when deriving generalized Universal Basis
Functions.

4.2 Generalized Universal Basis Functions
In this Section we introduce a more general concept of
basis functions by replacing G with a flexible function
(i.e. not necessarily Gaussian) to adapt to specifics of
the data space. Let

itxr −=
(10)

then ()iG tx − can be rewritten as G(r). We focus
on mixtures of activation functions such as Gaussian,
sigmoid and multiquadratics. We would like to
crossover smoothly from one activation function to the
other covering all states in the continuum between the
two extremes. For convenience we define ω which
regulates the dominance of one activation function Φ1

over the other Φ2.
() () () ()rωrωωr 21 1, Φ−+Φ=G (11)

Note that ω can be any real value. Our desired value
range is [0,1]. Thus, we introduce a standard nonlinear
mapping

()()1tanh
2
1 +=′ ωω (12)

The value of ω′ now controls the behavior of the
transfer function in the fringe regions and maps it to
the unit interval [] []1,0,-: →∞∞G . This way we
get a smooth transfer from one activation function to
another.

() () () ()rωrωωr 21 1, Φ′−+Φ′=′G (13)
with Ф being any of the following functions Ф':

22 2/
1

σre−=Φ ′ (14)
()2

2 /tanh σr=Φ ′ (15)

time-between-failures [min]

Fr
eq

ue
nc

y

0 200 400 600 800

0
5

10
15

20
25

30
(a) (b)

Figure 2: In (a) we report the target data which is the system's interval call availability (A). The dotted line indi-
cates a 99.99% availability limit. Any drop below that threshold is defined as a failure. Our objective is to model
and predict the timely appearance of these failures. The system's interval call availability is reported in consecu-
tive five minute intervals and is calculated as the number of successful calls over the total number of calls in this
interval. In (b) we report the distribution of time between failures (TBF).

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

22
3 σ+=Φ ′ r (16)

and σ is a function specific constant which is set fol-
lowing a heuristic which will be detailed in Section
4.3. We could try many more transfer functions, how-
ever, as detailed in the previous sections, the listed
transfer function Equation(s) (14), (15) and (16) are
pervasively used in literature and our believe is we
should start with some known transfer function before
we apply more exotic ones. The degree of shape varia-
tion for Gaussian, respectively the steepness of the sig-
moid, can be adjusted by adapting the functions width
σ . Inserting equation (10) into equation (13) and re-
placing G in equation (9) by equation (13) yields

() ()∑
=

−=
n

i
iiicf

1

'G ωtxx (17)

If we do have knowledge about the data distribution we
should give a bias towards a specific activation func-
tion by initializing the slider value ω′ accordingly.
However, as frequently is the case knowledge about
the data distribution is either difficult to obtain or not
available at all. In this case we start with an educated
guess. If no further information is available to justify a
bias towards a particular activation function we start
with a Gaussian RBF approach and set 1=′ω . Subse-
quently we optimize ω′ by stepwise decreasing its
value.

4.3 Parametrization
Assume we are given the centers ti in Equation (9) then
we can find the coefficients ci. How do we choose the
centers though? There are a number of ways such as
random sampling from the data set, by least squares or
by clustering, e.g. by k-means [22]. When applying
random sampling the sample should reflect the distri-
bution of the data. There are only a few theoretical re-
sults available, however, [27] proved that a solutions
exists using this technique. The main problems are a)
the optimal number of the centers and b) the placement
of these centers. There is no general answer known to
these problems and cross validation techniques are con-
sidered a reasonable choice [10]. When using least
squares or moving centers the problem becomes non-
convex and multiple local minima are to be expected
[27]. This technique is in principle very powerful but
can become computationally expensive for large N.
Clustering is commonly used, even though no theoreti-
cal results exist that prove feasible solutions. However,
sensibly applied it is a good starting point [22]. In fact
clustering is the method we apply in this paper. The so-
lution of Equation (17) with respect to the vector of co-
efficients c yields ([27])

yGc += (18)
with

[]T
Nyy ,...,1=y (19)

the vector of coefficients
[]T

ncc ,...,1=c (20)

and
() ()

() () 





















=

1. . .
.
.
.

.

.

.
1. . .

;. . .;
.
.
.

.

.

.
;. . .;

1

1
1
1

1

111

d
NN

d

nNN

n

xx

xx

GG

GG

txtx

txtx

G

(21)
where d is the dimension of the input vector as defined
above, d

Nx denotes the d-th component of the N-th ob-
servation, xN is the N-th observation vector and tn is the
n-th kernel vector. The middle part of the matrix G in-
cluding 1

1x to d
Nx denotes optional direct linear con-

nections between the input and the output layer, while
the last column denotes the constant bias term. It is in-
teresting to note that if we leave out the nonlinear
transformation G(x1;t1) to G(xN;tn) but keep the direct
linear connections between the input and the output
layer we obtain a classical linear equation system. To
obtain all variables to solve Equation (15) we need G+

which is called the pseudo-inverse2 of the matrix G
[27], thus

() TT GIGGG 1λ −+ += (22)
where T in the exponent denotes the transposed matrix
and -1 in the exponent denotes the inverse. However,
inverting GTG can be subject to numerical problems
because of the likelihood in our high dimensional non-
linear setting of the matrix being ill-conditioned. [7]
propose a solution to this problem by preconditioning
the G matrix thru the use of an iterated Laplacian oper-
ator. This also makes the diagonal of the square matrix
GTG dominant by multiplying the identity I by λ > 0
and thus incorporates a smoothness assumption [27].
This is the solution we adopt. Note that real problems
are usually over determined. This means we have more
data points available than free parameters. The matrix
G is therefore not square (N > n) and consequently no
unique inverse exists. For this reason we use the pseu-
do inverse approach as shown in Equation (17) where
G+ is the pseudo inverse matrix of G. GTG becomes a
square matrix in its own right with a unique inverse of
its own. Substituting Equation(s) (15) and (8) into
Equation (14) we get a vector of coefficients c which in

2 A+=(ATA)-1AT is called the pseudo inverse matrix of A. Here,
A+A=I holds, where I is an identity matrix.

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

addition to the location of the centers t and the value of
ω′ completes the specification of the UBF model.

5 Experiment: An industrial Tele-
communication System
The system we consider is an industrial telecommuni-
cation platform which handles mobile originated calls
(MOC) and value adding services such as short mes-
sage services (SMS) and multimedia messaging ser-
vices (MMS). It operates with the Global System for
Mobile Communication (GSM) and General Packet
Radio Service (GPRS). The systems architecture fol-
lows strict design guidelines considering reliability,
fault tolerance, performance, efficiency and compati-
bility issues. We focus on one specific system which, at
the time we took our measurements, consisted of some-
what more than 1.6 million lines of code, approximate-
ly 200 components3 and 2000 classes4. It is designed to
be operated distributed over two to eight nodes for per-
formance and fault tolerance reasons. The system we
model consists of two nodes operating in GPRS mode.
Both nodes form one cluster. We call them node1 and
node2. The system is designed to be operated nonstop.
We will focus on modeling and predicting system
events (i.e. calls) which take longer time to be pro-
cessed than some guaranteed threshold value. We call
these events failures or target events.

To a) parameterize, b) validate and c) test the
generalization capabilities of our models, we split the
data into three equally large segments. We use the first
and second segment to parameterize and cross-validate
the models as described in Section 4.3. Parametriza-
tion, the third segment of data, which is not used in the
model building process, we use to derive the models
generalization or out-of-sample performance. In this

3 a system element offering a predefined service and able to commu-
nicate with other components

4 classes are used to group related variables and functions

paper we report the out-of-sample performance of the
models.

5.1 Data, Notation and Variable Selection
The data we use to build and verify our models consists
of a) equidistant time-triggered continuous variables
and b) time stamped event-driven log file entries. To
record the numeric values of system variables we use
the system activity reporter (SAR) utility running under
the UNIX operating system. It samples cumulative ac-
tivity counters in the operating system at n intervals of
t seconds. We gather numeric values of 46 system vari-
ables once per minute and per node. This yields 92
variables in a time series describing the evolution of
the internal states of the system. In a 24-hour period we
collect a total of 132.480 readings (92 variables times
24 hours times 60 minutes per hour with one reading
per variable and minute). In total we collect roughly
1.3 million system variable observations.

It is difficult if not impossible to evaluate the
influence of each variable on the predictive quality of a
model due to combinatorial explosion and potentially
nonlinear correlations. In fact including too few, too
many or unfavorable variable combinations into the
model building process can degrade model perfor-
mance significantly ([12],[17]). This problem is known
under a variety of names such as variable selection, di-
mension reduction or feature detection. The problem is
finding the smallest subset of input variables which are
necessary or suffice to perform a modeling task. In
most cases ad hoc theories or gut feeling is employed
to derive a plausible set of explaining variables. To
eliminate the latent ambiguity of this approach, tech-
niques are needed to automatically find the most pre-
dictive and meaningful variables to observe. In [18] we
have benchmarked four techniques for variable selec-
tion for the same data set we use in this experiment.
We have benchmarked the well documented forward
selection and backward elimination procedures as well
as a probabilistic wrapper approach and a set of vari-

AUC out-of-sample
Confidence levels

Model Median Lower Upper
Random Walk (TBF) 0,5000000 0,5000000 0,5000000
ARMA(1,0) (TBF) 0,5000000 0,5000000 0,5000000
Multivariate linear 0,8070540 0,8017753 0,8123326
RBF nonlinear only 0,6230982 0,6226479 0,6235485
UBF nonlinear only 0,7375519 0,7264591 0,7486447
RBF 0,8257261 0,8122181 0,8392342
UBF 0,9024896 0,8881837 0,9167955

Table 1: In this table we present the median out-of-sample AUC performance for failure recognition. The ran-
dom walk and ARMA(1,0) models are based on time-between-failure (TBF) data. We also report the AUC per-
formance of multivariate linear, RBF and UBF models. For RBF and UBF models we also report AUC perfor-
mance for models built only with their respective nonlinear part.

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

(a) (b)

Figure 3: Failure recognition results are shown in (a). The UBF model (AUC=0.9024) outperforms the RBF
(AUC=0.8257) and ML (AUC=0.807) approach. AUC characteristics plotted over a number of lead times for each
modeling technique are shown in (b). All values are t-tested against each other at a 95% confidence level.

ML RBF NL UBF NL RBF UBF

0.
6

0.
7

0.
8

0.
9

A
U

C

(a) (b)

Figure 4: Nonlinear UBF models outperform linear as well as nonlinear RBF benchmark methods. Statistical signifi-
cance we established using t-testing. In (a) we present box-whisker charts showing the median and the lower and up-
per error quartiles of out-of-sample performance across five modeling approaches for multivariate linear (ML), nonlin-
ear only RBF and RBF, as well as RBF and UBF with linear parts included. Figure (b) shows cost vs. unavailability.
We display cost-unavailability ratios by single characters and connect the points for clarity. For cost formula and fur-
ther explanation see text.

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

ables hand-picked by system specialists. We identified
two out of the 96 variables as being most predictive.
These are 1) sema/s (number of semaphore operations
per second) and 2) alloc (amount of memory that the
kernel memory allocator has allocated). To avoid po-
tential biasing the variables were identified by seg-
menting the data the same way as described earlier in
this Section. The variable selection process only made
use of the first two segments of the data, all results re-
ported in this paper are then calculated for the third
out-of-sample set which had been set aside for general-
ization purposes. It is interesting to note that the spe-
cialist selected set of variables was outperformed by all
other algorithmic procedures. This seems to confirm
our view that specialist based variable selection can be
ad-hoc and sub-optimal.

In this paper we first focus on observations of
these two variables and will then include log file data
in an attempt to improve our models. Log file data has
been identified as a potential source with predictive
power with respect to impending failures ([3], [32]).
We gather log file entries in the same time period as we
gather SAR data. The log file entries are written by the
operating system and the application into text files. The
entries are written event-driven and are partially non-
numeric. The number of entries per time segment
ranges from several hundred entries per second to a
few entries per minute. Each log file entry consists of a
number of labels which contain information of the
source which has written the entry, date and time infor-
mation as well as the severity and nature of the entry.
The log file entries are classified into 195 predefined
classes according to their area of relevance (e.g.
database, network). Each log file event is labeled by its
class name. Considering our two nodes we will have to
handle 390 class variables (195 classes at each node).
In total we gather roughly four million log file entries.

5.2 Failure Definition
For our purposes we introduce interval call availability
Ac(Δt), which is the probability that calls within a spe-
cific time interval Δt will be handled by the system
within a given deadline. Interval call availability is cal-
culated as the number of calls completed ncompleted over
the total number of calls ntotal in the interval Δt. Ac(Δt)
can also be written as one minus the number of failed
calls nfailed over the total number of calls in this interval.
In our scenario we derive Ac(Δt) as

()
total

failed
c n

n
tA −=∆ 1 (23)

The values of nfailed and ntotal are given to us in time
stamped log files. The interval Δt is given as five min-
utes. A failed call is defined as a call which is not han-
dled within a given amount of time. A failure is de-

fined as 0.01% or more calls not being processed with-
in the given deadline. This corresponds to Ac(Δt) drop-
ping below 99.99%. In this paper we use the term
availability synonymously to interval call availability.
For simplicity we also write A = Ac(Δt). See Figure 2
(a) for a plot.

5.3 Metric
When making predictions about the system's future
state we must take into account true positive (TP), false
positive (FP), true negative (TN) and false negative
(FN) classifications. Focusing on TP alone may sub-
stantially bias a model. A metric which takes all four
prediction outcomes into a account is true positive rate
(Tprate) and false positive rate (FPrate).

 FN TP
TPTPrate
+

= (24)

 TN FP
FPFPrate
+

= (25)

To express the interdependence of FPrate and TPrate
frequently the Receiver Operating Characteristic
(ROC) is calculated. The ROC curve is used for diag-
nosis by assessing the ability of our model to discrimi-
nate between failures and nonfailures. If the model dis-
criminates perfectly, the ROC curve passes through the
coordinates (0,1) and the Area Under the Curve (AUC)
is one. If the model has no discriminating ability, we
see a straight line from (0,0) to (1,1). Each point on the
ROC curve provides the false positive rate (FPrate)
and true positive rate (TPrate) associated with a thresh-
old in the probability scale which allows classification
of each observation. See Figure 3 (a) for details. The
ROC curve shows the trade-off between FPrate and
TPrate. Any increase in TPrate will be accompanied
by an increase in FPrate. The closer the curve follows
the left-hand border and then the top border of the
ROC space, the more accurate is our model. In fact we
use AUC intensely to analyze and compare our models.

5.4 Models and Benchmark Strategies
How well do traditional linear modeling techniques
perform and can we improve the performance of these
models by adding nonlinearities? We investigate this
problem in two steps:
1. time-driven approach: first we build bottom-of-the-

line random walk and linear autoregressive moving
average (ARMA) models. Prediction in this case is
dependent on time between failures (tbf) only.

2. State-dependent approach: We then extend our ap-
proach to multivariate linear models, subsequently
introduce nonlinearities to our models and bench-
mark them against the linear models and against
each other.

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

Exemplary we report the UBF's parametrization. In the
UBF model the number of centers n is five. This pa-
rameter choice was made based on n-fold cross-valida-
tion. The system's availability based on our UBF model
thus is defined as

c
tx

A
0.063245552

2










 −−
= iG (26)

The kernel vectors t which feed into G and the coeffi-
cient vector c are parameterized as follows:

[]
[]T

T

0.63509980.6298298,0.5658562,0.5622841,0.5536791,

4461004,0.204018,0.104280,0.062097,0.04101540.01416387

2

1

=

=

t

t

(27)









=

70.05779375 1,0.00366804 4,0.09742798 7,0.09742345 ...
... 8,0.04773573 0,0.02079834 4,0.02225425 4,0.03545836

c

(28)
The transfer function ()•G is

() () () ()•Φ′−+•Φ′=• 21 1 ωωG (29)
The UBF type is Gauss / sigmoid with 1Φ and 2Φ be-
ing the Gaussian and sigmoid function respectively.
The UBF slider ()ωω 5.0tanh=′ with 8.0−=ω .

6 Results
In this section we will first give the failure recognition
results at 0=∆ lt , we will then present results for lead
times from five to 15 minutes. We will continue with
including log files into the model building process. Fi-
nally we will propose and evaluate a cost metric for
cost-benefit analysis of our models.

6.1 Failure Recognition Results
In Table 1 we present out-of-sample AUC performance
for failure recognition. These results are the median
out-of-sample values of 20 models we have built on
bootstrapped datasets [10]. In Figure 3 (a) we present
the ROC chart for out-of-sample failure recognition
data with 0=∆ lt . We compared the performance of the
UBF modeling approach with that of traditional empiri-
cal modeling techniques such as ARMA, random walk,
multivariate linear (ML) models and nonlinear Radial
Basis Functions (RBF). The ARMA and random walk
approach did not recognize any failure. This is an ex-
pected result because these univariate models are based
on time between failures and do not consider other
variables. The distribution of the time between failures
is heavy tailed with irregular spikes. Also, there is
practically no autocorrelation which could be exploited
by ARMA models, see Figure 5.

0 5 10 15 20 25

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 5: Time-between-failures (TBF) autocorre-
lation function (ACF). Horizontal lines indicate ap-
proximate 95% confidence intervals.

In the next step we resort to multivariate approaches.
We calculated error bounds and statistical significance
of all models. UBF clearly and significantly outper-
formed ML and RBF (compare Table 1). We also in-
vestigated the effect of focusing on nonlinear modeling
only. For that purpose we cut all linear parts in UBF
and RBF. The result clearly indicates superior model
quality of UBF over RBF. However, the quality of
nonlinear only models does not reach that of linear
models or that of mixture models which include non-
linear as well as linear parts. We therefore conclude
that the data of our telecommunication system has a
high fraction of linear correlation. However, adding
nonlinearities to the models significantly improves
overall failure recognition performance.

The UBF model outperforms all other model-
ing techniques with an AUC of 0.9025 on the general-
ization data set (see Table 1). It is followed by the RBF
approach with an AUC value of 0.8257 and the ML
model with an AUC of 0.8071 on the generalization
data set. It is interesting to note that RBF and UBF
models which we built using only their nonlinear part
were worse than the ML model. These modeling ap-
proaches yield an AUC of 0.6230 and 0.7376 respec-
tively.

6.2 Failure Prediction Results
In the previous sections we have looked into the capa-
bility of our models to recognize failures at the time
they occur. We now turn to models with a lead time
greater than zero for failure prediction. We use the
same input data as in the previous sections. Now, we
present our target value with a time lag of

{ }15,10,5∈∆ lt minutes. In Figure 3 (b) we present AUC

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

characteristics plotted over a number of lead times for
each modeling technique. The reported values are me-
dians of their respective distribution. UBF models out-
performed all other approaches significantly. Interest-
ingly, the UBF advantage narrows for models predict-
ing further into the future, nonetheless the difference in
prediction quality is statistically significant. It seems
that model performance of UBF, RBF and ML con-
verges to error bounds within a small interval for pre-
dicting failures 15 or more minutes ahead (compare
Figure 3 (b)), indicating that nonlinear data correlations
play less a role the further we look ahead. The present-
ed results clearly indicate that empirical models for
failure prediction can successfully be constructed based
on historic observations of the systems behavior.

6.3 Including Log File Data
We built predictive models using additional log file
data. We used the same target failure data as in the pre-
vious sections with 5=∆ lt minutes. We report results
in Figure 6 and Table 2. The models did poorly com-
pared to SAR-fed models with corresponding lead
times, compare Table 1 and Figure 4 (a). The UBF
model yields a median AUC of 0.5958 on the general-
ization data, whereas the UBF model fed with SAR
data yields an AUC of 0.85. In Figure 6 we present me-
dian and quartiles of the respective models for out-of-
sample AUC in a box-whisker plot. In fact our standard
t-test indicates no significant difference in distributions
among all three models.

Model
ML 0,61542 0,60126 0,62957
RBF 0,57167 0,53086 0,61247
UBF 0,59583 0,57717 0,61449

AUC out-of-sample performance
Median Lower Upper

Table 2: Median, lower and upper bounds of out-
of-sample AUC for ML, RBF and UBF models
based on log file data.

ML RBF UBF

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

AU
C

Figure 6: Box-Whisker plots for out-of-sample
AUC values of linear (ML), RBF and UBF models.
Models built based on log file data.

6.4 Cost-Benefit Analysis
Cost-benefit analysis is the nontrivial part of deciding
what level of involvement is sensible to reach a certain
level of system availability. The methods described in
this paper involve cost in terms of computational and
human resources and on the other hand promise an im-
provement in availability. In some ultra-reliable sys-
tems the cost for increasing the systems availability
may be taken to extremes. In our case we would like to
develop an understanding of what cost is associated
with what level of availability improvement. We would
like to compare the status quo situation, i.e. known cost
and availability levels with options offered by our pre-
diction method.

Benefit in our case can be defined as the in-
crease in system availability A or decrease in unavail-
ability (1-A). Cost is more difficult to define because it
depends on variables which we can only estimate up-
front. Matters are further complicated by the fact that
we are focused on modeling and predicting failures,
which can be used for preventive maintenance actions,
which in turn may increase availability. However, the
cost associated with these preventive measure covers a
broad range we can hardly assess without empirically
measuring the effects. Thus, we approach this chal-
lenge by depicting cost as a function of the models per-
formance as we can assess it, namely by its contingen-
cy matrix. If, for example, missing a failure (FN) costs
ten times the value of making a false positive (FP)
statement we can reflect this by introducing the respec-
tive ratio in our cost function. Thus for each preventive

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

maintenance method triggered by our prediction algo-
rithm we should be able to parameterize the cost func-
tion according to its specifics. Once we have clamped
the parameters of the cost function we can find the op-
timal operating point of our model with respect to its
cost/benefit ratio by riding along the AUC curve. One
way of approaching this topic is to let the cost function
be the sum of costs for each entry in the contingency
matrix weighted by the number of its occurrences.

FNFNFPFPTNTNTPTP CnCnCnCncost +++= (30)

The number ni with i Є {TP,TN,FP,FN} for each cell
of the contingency matrix we derive by counting. The
proper parametrization of C obviously strongly de-
pends on the strategy we employ to avoid a predicted
failure. In Figure 4 (b) we present the cost curve for
C={1,0,1,10}. This cost vector implies that a missed
failure (FN) is ten times as cost intensive as a falsely
predicted failure (FP). This is arguably an arbitrary
value and should be understood as an example only for
demonstration purposes. We caution the reader to ap-
ply this metric blindly. In Figure 4 (b) we depict the
cost / unavailability ratio for ML, RBF and UBF mod-
els for out-of-sample generalization data. The UBF
model shows a more favorable cost / unavailability ra-
tio which is an expected result given that UBF predic-
tions clearly outperform other modeling techniques.
The ML model yields a rather inflexible frame for
choosing a particular cost / unavailability point by only
offering few operational points (the circles in Figure
4).

7 Conclusions and Future Work
In this paper, we have firstly applied linear as well as
nonlinear data driven techniques to model and then
forecast call availability and failures of an industrial
telecommunication system. This is in contrast to com-
monly used theory or first principle driven modeling.
We predicted call availability up to 15 minutes ahead
of time and recognized failures as they occurred. Sec-

ondly, we presented, applied and assessed a novel non-
linear empirical modeling technique we call Universal
Basis Functions (UBF). We have cross-benchmarked
five empirical modeling techniques, these include the
linear ARMA (autoregressive moving average), multi-
variate and random walk techniques, as well as the
nonlinear Radial Basis Functions (RBF) and Universal
Basis Functions (UBF).

From the telecommunication system we have
gathered real data during runtime from two different
sources which are a) equidistant numerical data as time
series and b) time stamped textual log file data. Overall
results clearly show that empirical multivariate model-
ing techniques can be effectively used for modeling
and prediction in our telecommunication system. We
did find a fair amount of nonlinearity in the system's
data. In fact nonlinear modeling techniques such as
UBF and RBF significantly outperformed linear tech-
niques in failure recognition and prediction. Statistical
significance was established based on t-testing. The
nonlinear UBF approach significantly outperformed
RBF.

Contrary to conventional wisdom including
log file data did not improve model quality, on the con-
trary, model quality deteriorated when we included log
file data. We attribute this effect to a particularly high
degree of noise in the data and most probably limited
information contained in the log files. Even though this
result may not be generalized at this point it may be a
promising starting point for future research to get in-
sights into better structuring log files and to evaluate
what type of information should be included into log
files.

We also proposed a parameterizable cost func-
tion for cost-benefit analysis which can reflect the cost
associated with a particular prevention step after a fail-
ure has been predicted. Future work will include an in-
depth analysis on closing the control loop, which is in-
tegrating prediction techniques with particular preven-
tive maintenance methods such as failover, checkpoint-
ing or rejuvenation to name a few.

References
[1]: Avizienis A. An Experimental Self-Repairing Computer.

NASA-TR-32-1356, Jet Propulsion Laboratory, Pasade-
na, CA , p. E30, 1968

[2]: Pfening A., Garg S., Puliafito A., Telek M., Trivedi K.
Optimal rejuvenation for tolerating soft failures. Perfor-
mance Evaluation, Vol. 27 & 28, pp. 491-506, 1996

[3]: Ascher, H.E. Lin, T.-T.Y. Siewiorek, D.P.. Modification
of: error log analysis: statistical modeling and heuristic
trend analysis. IEEE Transactions on Reliability, Vol.
41(4), 1992

[4]: Bev Littlewood , Lorenzo Strigini,. Software reliability
and dependability: a roadmap. Proceedings of the con-
ference on The future of Software engineering, p.175-
188, Limerick, Ireland, 2000

[5]: Bobbio, Garg, Gribaudo, Horvath, Sereno, Telek. Model-
ing Software Systems with rejuvenation, restoration and
checkpointing through fluid petri nets. Proc. 8th Int.
Workshop on Petri Net and Performance Models
(PNPM'99), Zaragoza, Spain, pp. 82-91, 1999

[6]: Cortes C. and V. N. Vapnik. Support vector networks.
Machine Learning, 20: 273-297, 1995

[7]: Dyn Nira, Levin David. Iterative Solutions of systems
originating from integral equations and surface interpo-
lation. Siam J. of Numer. Anal. 20(2), 1983

[8]: Ozalp Babaoglu, Mark Jelasity, Alberto Montresor,
Christof Fetzer, Maarten van Steen, Aad van Moorsel,
Stefano Leonardi (Eds.). Self-Star Properties in Complex
Information Systems. Proceedings of the International

25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), 2-4 October 2006 in Leeds, United Kingdom

Workshop on Self-Star Systems, Bertinoro (Forli), Italy,
May-June, 2004

[9]: Edsger Wybe Dijkstra. Notes On Structured Program-
ming. Technical Report 70-WSK-03, Technological Uni-
versity Eindhoven, Department of Mathematics
(http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD24
9.PDF), 1970

[10]: Efron B., Tibshirani R.. An Introduction to the Boot-
strap. Monographs on statistics and applied probability
57, Chapman & Hall, 1993

[11]: Garg S. , Y. Huang, C. Kintala and K. S. Trivedi.. Time
and Load Based Software Rejuvenation : Policy, Evalua-
tion and Optimality. First Fault Tolerance Symposium,
FTS-95, 1995

[12]: Geman, S., Bienenstock, E. and Doursat, R.. Neural
Networks and the Bias/Variance Dilemma. Neural Com-
putation, 4, pp. 1-58, 1992

[13]: Girosi Federico, Jones Michael, Poggio Tomaso. Regu-
larization Theory and Neural Networks. MIT Cam-
bridge, AI Memo 1430, 1993

[14]: Gray J.. A census of Tandem system availability be-
tween 1985 and 1990. IEEE Transactions on reliability
39(4), 1990

[15]: Hastie T., Tibshirani R.. Discriminant adaptive nearest
neighbor classification. IEEE PAMI 18, pp. 607-616,
1996

[16]: Hertz J., Krogh P., Palmer R.. Introduction to the Theo-
ry of Neural Computation. A Lecture Notes Volume in
the Santa Fe Institute Studies of Complexity, Vol. I, 1991

[17]: Hochreiter Sepp, Obermayer Klaus, Isabelle Guyon,
Steve Gunn, Masoud Nikrav. Nonlinear Feature Selec-
tion with the Potential Support Vector Machine. Feature
extraction, Foundations and Applications, Springer, 2004

[18]: Hoffmann G. A.. Failure Prediction in Complex Com-
puting Systems: A Probabilistic Approach. Dissertation at
Humboldt University Berlin, ROK Group, 2005

[19]: Horn, P.. Autonomic Computing: IBM's perspective on
the state of Information Technology. IBM Research Re-
port, 2001

[20]: Huang Y., C. Kintala, N. Kolettis and N. Fulton. Soft-
ware Rejuvenation: Analysis, Module and Applications.
In Proc. of the 25th IEEE Intl. Symp. on Fault Tolerant
Computing (FTCS-25), Pasadena, CA, 1995

[21]: Huber P. J.. Data Analysis and Projection Pursuit - A
Tutorial Introduction. Dept. of Mathematics, MIT
Boston, 1990

[22]: Hutchinson James M.. A Radial Basis Function Ap-
proach to Financial Time Series Analysis. Dissertation,
Massachusetts Institute of Technology, Dept. of Electri-
cal Engineering and Computer Science, 1994

[23]: Joao F. G. de Freitas. Bayesian Methods for Neural
Networks. Trinity College, University of Cambridge and

Cambridge University Engineering Department, PhD
Thesis, 1999

[24]: M. J. D. Powell. Radial basis functions for multivari-
able interpolation: A review.. J. C. Mason and M. G.
Cox, editors, Algorithms for Approximation of Functions
and Data, pp. 143-167, 1987

[25]: Miroslaw Malek, Felix Salfner, Günther Hoffmann.
Self-Rejuvenation - an Effective Way to High Availabili-
ty. SELF-STAR: International Workshop on Self-* Prop-
erties in Complex Information Systems, Bertinoro, Italy,
2004

[26]: Peitgen, H., Jurgens, H., Saupe, D. Lyapunov exponents
and chaotic attractors in Choas and fractals - new fron-
tiers of science. Springer, New York, 1992

[27]: Poggio T., Girosi F.. A Theory of Networks for Approx-
imation and Learning. Proc. of IEEE 78(9), 1990

[28]: Prior, A. N. Past, Present and Future. Oxford: Claren-
don Press, 1967

[29]: R. Milner. Communication and Concurrency. Prentice
Hall, 1989

[30]: Rabiner L. R.. A Tutorial on Hidden Markov Models.
Proc. of IEEE, Vol.77, No.2, 1989

[31]: Rumelhart, Hinton, Williams. Learning internal repre-
sentation by error propagation. In Rumelhart, McCleland
eds. Parallel Distributed Processing Volume I, MIT
Press, 1986

[32]: Salfner F., Tschirpke S., Malek M.. Comprehensive
Logfiles for Autonomic Systems. IEEE Proceedings of
IPDPS 2004 (International Parallel and Distributed Pro-
cessing Symposium), 2004

[33]: Salfner, F. and Hoffmann, G.A. and Malek, M.. Predic-
tion-based Software Availability Enhancement. Self-Star
Properties in Complex Information Systems; Editors: O.
Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S.
Leonardi, A. van Moorsel and M. van Steen, LNCS, vol.
3460, hot topics series; Springer-Verlag, 2005

[34]: Schoelkopf B., Smola A.. Learning with Kernels. MIT
Press, 2002

[35]: Siewiorek, Swarz. Reliable Computer Systems Design
and Evaluation. The Digital Press, 2nd edition, 1992

[36]: Takens Floris. Detecting strange attractors in turbu-
lence.. Eds.: D.A. Rand and L.S. Young, Dynamical Sys-
tems and Turbulence, volume 898 of Lecture Notes in
Mathematics, pages 366-381, New York, Springer, 1981

[37]: Trivedi Kishor S., Vaidyanathan Kalyanaraman and
Goseva-Popstojanova Kater. Modeling and Analysis of
Software Aging and Rejuvenation. Center for Advanced
Computing & Communication, Dept. of Electrical &
Computer Engineering, Duke University, Durham, NC
27708, USA, 2000

[38]: Weigend A. S., Gershenfeld N. A., eds.. Time Series
Prediction. Proceedings of the Santa Fe Institute, Vol.
XV, 1994

	1 	Introduction
	2 	Related Work and Motivation
	2.1 	Availability of Software System
	2.2 	Probabilistic Modeling Approaches

	3 	Formal Description of Forecasting Task
	4 	Nonlinear Empirical Modeling
	4.1 	Radial Basis Functions
	4.2 	Generalized Universal Basis Functions
	4.3 	Parametrization

	5 	Experiment: An industrial Tele-communication System
	5.1 	Data, Notation and Variable Selection
	5.2 	Failure Definition
	5.3 	Metric
	5.4 	Models and Benchmark Strategies

	6 	Results
	6.1 	Failure Recognition Results
	6.2 	Failure Prediction Results
	6.3 	Including Log File Data
	6.4 	Cost-Benefit Analysis

	7 Conclusions and Future Work

