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ABSTRACT
When a performance crisis occurs in a datacenter, rapid
recovery requires quickly recognizing whether a similar
incident occurred before, in which case a known rem-
edy may apply, or whether the problem is new, in which
case new troubleshooting is necessary. To address this
issue we propose a new and efficient representation of
the datacenter’s state, a fingerprint, that scales linearly
with the number of performance metrics considered and
it is not affected by the number of machines. These fin-
gerprints are generated online and then used as unique
identifiers of the different types of performance crises so
that we can effectively recognize previous occurrences
and retrieve repair actions. We evaluate our approach on
a production datacenter with hundreds of machines run-
ning a 24x7 enterprise-class user-facing application, ver-
ifying each identification result with the operators of the
datacenter and trouble-shooting tickets. Our approach
has 80% identification accuracy in the operations-online
setting with time to detection below 10 minutes (our op-
erators stated that even 30 minutes into the crises is de-
sirable), and offline identification on the order of high
90%. To the best of our knowledge this is the first time
such an approach has been applied to a large-scale pro-
duction installation with such rigorous verification. We
compare our approach and show it is superior to various
alternatives to the construction of a fingerprint including
an adaptation to the datacenter setting of the signatures
work in [6].

1. INTRODUCTION
Important user-facing applications are increasingly be-

ing run in large datacenters, from search and email to
e-commerce and enterprise applications. 24x7 availabil-
ity is key to the competitiveness of such applications,
but as others have pointed out [14], occasional hardware
and software failures are inevitable in such installations,
making it prudent to develop strategies for rapid recovery
when failures occur. One way to speed recovery from a
performance crisis is to quickly recognize whether a sim-
ilar crisis has occurred before, in which case a known

remedy may apply. Automating this recognition and re-
trieval avoids wasting time repeating previous manual
analysis, captures the knowledge of previous analysis for
future personnel, and avoids escalation of crises that can
subsequently be addressed by tier-0 and tier-1 operators.

We present a methodology for automating recognition
and identification of known crises, and indicating when
a crisis is new (previously unseen), for applications com-
prising hundreds of machines in a datacenter. Our method-
ology makes the following contributions:

1. Representation: A representation of the performance
state of the datacenter, the fingerprint, which a) can
be efficiently computed for an installation of thou-
sands of machines and whose size scales linearly
with the number of performance metrics being col-
lected per machine (and is independent of the num-
ber of machines), and b) captures the most relevant
metrics for identifying the different classes of per-
formance crises.

2. Recognition and retrieval: A method for comparing
fingerprints and effectively retrieving and identify-
ing known performance crises and instances of new
crises with high degree of accuracy.

3. Validation methodology: A rigorous methodology
for evaluating the approach itself, and validation
using labeled data from a production datacenter.

Specifically, during a four-month period, 19 perfor-
mance crises were diagnosed and labeled by datacenter
operators, ranging from configuration problems to un-
expected workloads to backups caused by a connection
to another datacenter. These problems required different
repair actions, hence the importance of rapid identifica-
tion. We show that for identifying and discriminating
different crises, fingerprints outperform not only simpler
“baseline” methods, but also specifically outperform the
method of “signatures” proposed by the authors of [6].

Our evaluation of the approach on real data covers var-
ious settings isolating the impact of the various parame-
ters and sensitivity to various threshold decisions. We
evaluated several alternatives to the fingerprint construc-
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tion and our implementation of an approach similar to
that of [6] assuming ideal conditions for the model man-
agement and model selection. In our experiments we re-
peatedly simulated permutations of the actual sequence
of crises in order to ensure that our results were not due
to one lucky series of events. We also use standard tech-
niques of cross-validation, ROC curves, and online anal-
ysis to estimate the different evaluation metrics. Our re-
sults clearly establish that:

1. Our approach discriminates almost optimally be-
tween crises and almost optimally labels the differ-
ent crises correctly if given perfect future knowl-
edge of the whole dataset we used;

2. Our approach achieves identification accuracy over
80% when used in an online manner, i.e. when the
crisis data is presented incrementally, one crisis at
a time, as would occur in a real setting;

3. The approach is superior to the most closely related
work [6], to approaches based on using all metrics
available as the fingerprint, and to approaches that
would rely on the key performance indicators used
by the human operators to detect the crisis;

4. The approach clearly quantifies the trade-offs among
false positives, accuracy of identification, and time
to identification (some crises take longer than an
hour, so having an identification even 30 minutes
into the crisis would be useful).

To the best of our knowledge, this is the first time such
an approach has been applied to a large-scale production
installation with rigorous verification using hand-labeled
data.

2. RELATED WORK
As early as 2003, the authors of [16] proposed the use

of compute-intensive modeling techniques to recognize
and diagnose operational problems. Since then, much
work has focused on detecting and recognizing opera-
tional problems using machine learning [5, 6, 21, 3, 20,
15, 8], identifying unusual or noteworthy sequences of
events that might be indicators of unexpected behavior [17,
4], and laying out general methodological challenges in
using computers to diagnose computer problems [9, 7].
Other methods rely on manually instrumenting the sys-
tem [2] or creating an extensive library of all possible
faults and their consequences [18].

By far the work closest in spirit to our own is the
“signatures” approach to identifying and retrieving the
essential system state corresponding to previously-seen
crises [6]. The authors propose a methodology for con-
structing “signatures” of server performance problems
by first using machine learning techniques to identify the
performance metrics most relevant to a particular crisis;
second, using the induced models for online identifica-

tion; and third, relying on similarity search to recognize
a previously recorded instance of a particular incident.
They showed their approach to be successful in a small
transactional system on a handful of performance prob-
lems.

We view our methodology as a direct descendant of
the “signatures” approach but with several important im-
provements. First, our fingerprint representation size scales
linearly, rather than exponentially, with the number of
metrics considered. Second, the signatures approach main-
tains multiple models, one for each crisis seen; when a
new crisis occurs, the signatures approach computes a
particular fitness score (the Brier score) to decide which
of the existing model(s) are likely to provide the best
identification of the current crisis, and then use those
model(s) to construct the signature of (and therefore iden-
tify) the crisis. In contrast, we only use our models to
determine which metrics are relevant for modeling the
crises; we do not use the models themselves to “match”
each crisis. This simplification allows our approach to
avoid two related sources of potential error and their cor-
responding free parameters. First, we need no policies to
maintain and ensure the validity of multiple models. Sec-
ond, since we don’t maintain multiple models, we need
no fitness score to determine which model(s) to apply to
a particular problem and no need for a method to com-
bine the output of multiple models.

The authors of [3] observe that the use of regularized
logistic regression [19] as a classifier results in a metric
selection process that is more robust to noise than other
techniques, and specifically more robust than the naïve
Bayes classifier used in the signatures approach. In par-
ticular, their technique avoids the wrap-around search for
the relevant features for each model as was done in the
signatures work. However, as the methodology of [3]
otherwise follows the signatures methodology closely,
it must deal with the problems of model management
and online selection. Also, their representation of per-
formance state relies on histograms of signatures, so the
size of the representation can grow exponentially with
the number of metrics being recorded. We first followed
their methodology, but concluded that the proposed sig-
natures have little discriminative power.

3. PROBLEM AND APPROACH
A typical datacenter-scale user-facing application runs

simultaneously on hundreds or thousands of machines
in a datacenter. In order to detect performance prob-
lems and perform postmortem analysis after such prob-
lems, several performance metrics are usually collected
on each machine and logged to online or nearline stor-
age. Since large collections of servers execute the same
code, under normal load balancing conditions the values
of these metrics should come from the same distribution;
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as we will show, we use this intuition to capture the state
of each metric and identify unusual behavior.

Usually each metric is sampled once per aggregation
epoch—typically a few minutes—and the sampled val-
ues may represent a simple aggregate over the aggrega-
tion epoch, e.g. the mean. Some metrics correspond
to low-level hardware measurements, others may cor-
respond to OS-level, application-level or runtime-level
metrics, such as the current size of the object heap or
number of threads waiting in the run queue. Wide vari-
ation exists in what can be collected and at what granu-
larity; packages such as HP OpenView [1], Ganglia [13],
and others provide off-the-shelf starting points.

A subset of the collected metrics may be key perfor-
mance indicators (KPI’s) whose values form part of the
definition of a contractual service-level agreement (SLA)
for the application. An SLA typically specifies a thresh-
old value for each KPI and the minimum fraction of ma-
chines that have to satisfy the requirement over a partic-
ular time interval. For example, an SLA might require
that the end-to-end interactive response time be below a
certain threshold value for 99.9% of all requests in any
15-minute interval.

A performance crisis is defined as a prolonged viola-
tion of one or more specified SLA’s. Recovery from the
crisis involves taking the necessary actions to return the
system to an SLA-compliant state. If the operators can
recognize that the crisis is of a previously-seen type, a
known remedy can be applied, reducing overall recovery
time. Conversely, if the operators can quickly determine
that the crisis does not correspond to any previously seen
incident, they can immediately focus on diagnosis and
resolution steps, and record the result in case this crisis
recurs in the future.

Our goal is to automate the crisis identification process
by concisely summarizing and capturing the subset of the
collected metrics that do the best job of discriminating
among different crises. We next describe our process for
doing this, called fingerprinting the datacenter, and how
we define a similarity metric between two fingerprints to
identify recurring problems.

3.1 Approach: Quantiles as Fingerprints
A fingerprint is a vector representing the performance

state of the system that will uniquely identify a perfor-
mance crisis. There are four steps to our fingerprint-
based recognition and identification technique.

1. We summarize the values of each performance met-
ric across the whole datacenter by computing the
quantiles of the measured values (such as the me-
dian of CPU utilization on all servers). Unlike statis-
tics such as the mean, quantiles are more robust
to outliers in the distribution of the metric values.
As we discuss in Section 3.2, this summarization

scales well with the size of the datacenter.

2. We track each metric quantile over time and iden-
tify its hot, cold, and normal regimes—values that
are abnormally high, abnormally low, and normal,
respectively. We discuss this step and the choice of
hot and cold thresholds in Section 3.3. This gives
us a summary vector vector containing one element
per quantile per tracked metric, indicating whether
the value of that quantile is cold, normal, or hot
during that epoch.

3. We identify the relevant metrics whose behavior
distinguishes normal performance from the perfor-
mance crises defined by the SLA’s. The metric se-
lection process is described in Section 3.4. This
subset of the summary vector for a given epoch is
the epoch fingerprint.

4. Since most crises span multiple epochs, we show
how to combine consecutive epoch fingerprints into
a crisis fingerprint. Finally, we define a similar-
ity metric that is used to compare fingerprints from
two crises and determine whether they correspond
to the same underlying problem. These two steps
are described in Section 3.5.

3.2 Tracking Metric Quantiles
It is customary to sample the values of hundreds of

performance metrics for each machine during each epoch.We
can view this as taking samples of random variables whose
distributions are unknown. Rather than trying to model
each metric’s behavior by fitting a parametric distribution
to the metric’s observed values over time, we model the
metric using quantiles of the observed empirical cumula-
tive distribution over an epoch. Recall that the p’th quan-
tile of a distribution is the value x such that if we sam-
ple the distribution and observe value x′, then Pr(x <
x′) = p; for example, the 50th quantile is also known
as the median. Empirically, we estimate the p’th quan-
tile by ordering the measured values of some metric and
selecting the dNp/100e’th value. Quantiles are consid-
ered robust statistics; it is well known, for example, that
the median is less susceptible to outliers than the mean.
There is considerable literature on algorithms for esti-
mating quantiles with bounded error using online sam-
pling and/or streams [10]. Thus, as the datacenter grows,
the quantiles can be computed efficiently, although in our
case study involving several hundred machines, we were
able to compute them exactly.

For our experiments and throughout the paper we tracked
three quantiles for each metric: 25%, 50% (i.e. the me-
dian), and 95%.1

1In Sections 5 and 6.1 we discuss our empirical choices for
free parameters such as the number of quantiles and quantile
thresholds, and we examine the sensitivity of our approach to
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3.3 Hot and Cold Quantile Thresholds
A fingerprint tells us which metrics’ quantiles were

abnormally high (hot) or abnormally low (cold) during
a particular epoch. (We reiterate that we are referring to
the values of the quantiles, not the raw metric values.)
We studied three methods for setting the thresholds used
to make the hot/cold determination. In this section we
describe the method we actually used, which yields fin-
gerprints that are less sensitive to spurious variations in
the quantiles and is also the simplest to compute. In the
Appendix we describe two other methods we tried and
rejected.

We consider a quantile to be normal if its value is be-
tween the 2nd and 98th percentile of the values observed
during some contiguous period of length T in which no
crisis was indicated. In other words, we expect that 4%
of the time, the quantiles of a metric will be outside this
normal range even though no crisis is in progress. Intu-
itively, we set 4% as the acceptable level of false posi-
tives. To compute hot and cold thresholds for metric m:

1. For a period T , select only the epochs where the
key performance indicators were normal (i.e., no
crisis condition is indicated).

2. For each of the three quantiles of m (25%, 50%,
95%):

(a) Compute the 98th percentile value and set this
as the hot threshold.

(b) Compute the 2nd percentile and set this as the
cold threshold.

It is easy to see how we can turn this into an online
procedure that for a window of size T updates the thresh-
olds. For the experiments in the paper we evaluated T at
{240, 120, 60, 30} days.

We can now build a summary vector for one epoch: it
is a vector of 3M elements (M is the number of metrics
being tracked). Each group of 3 elements corresponds to
the 25th, 50th and 95th quantiles for a particular metric
over that epoch. An element’s value is −1 if the quan-
tile’s value is below the cold threshold during the epoch,
+1 if the quantile’s value is above the hot threshold, and
0 otherwise (see Figure 1). We next show how to con-
vert this vector into a fingerprint by selecting only the
subset of relevant metrics for discriminating among and
identifying crises.

3.4 Relevant Metrics in Fingerprints
As we will show in our experiments (Sections 5.1.1

and 5.1.2), achieving robust discrimination and identifi-
cation accuracy requires selecting a subset of the metrics,
namely the relevant metrics for building the fingerprints.
We determine which metrics are relevant in two steps.

most of these free parameters.

We first select metrics that correlate well with the occur-
rence of each individual crisis by performing feature se-
lection and classification on data surrounding each crisis,
similar to [6]. Second, we use metrics most frequently
selected in the first step as the relevant metrics used for
building all fingerprints.

Feature selection and classification is a technique from
statistical machine learning that first induces a function
between a set of features (the metrics in our case) and a
class (crisis or no crisis) and concurrently tries to find a
small subset of the available features that yields an accu-
rate function. LetXm,t be the vector of metrics collected
on machine m at time t and Ym,t be 0 if the performance
of m was normal and 1 if it was anomalous, as speci-
fied by the performance SLA’s. A classifier is a function
that predicts the performance state of a machine Y given
the collected metrics X as input. The feature selection
component picks a subset of X that still renders this pre-
diction accurate. In our approach we use logistic regres-
sion with L1 regularization [19] as the statistical machine
learning method. The idea behind regularized logistic re-
gression is to augment the maximization in the statistical
fitting of the logistic regression with a constraint on the
parameters of the model. The constraint is that the sum
of the parameters be bounded. This in turn forces irrele-
vant parameters to go to zero, effectively performing fea-
ture selection. It has been (empirically) shown in various
settings that this method is effective even in cases where
the number of samples is comparable to the number of
parameters in the original model [11], as is the case in
our scenario in which the number of possible features
(over 100 per server for several hundred servers) exceeds
the number of classification samples.

We remark that while this approach is inspired by [6],
the use of logistic regression (vs. a Bayes classifier)
has been shown to result in more robust feature selec-
tion [3].2 This result is consistent with the general direc-
tion in the statistical community. Other important differ-
ences between our approach and that of [6] are detailed in
Section 8; part of our evaluation is a direct comparison to
that work, and we will show that these differences result
in significant improvement in identification accuracy.

For the second step, in which we select the most fre-
quent metrics from the first step, we use a population
of 20 crises which changes as time progresses and new
crises are detected. The initial 20 crises were not labeled
by the operators of the datacenter. Note that this is irrele-
vant for the method as it only needs to know that there is a
crisis and this is detected automatically through the SLA
violation. Even though we did experiment with the to-
tal number of metrics necessary for accurate crises iden-

2We confirmed this empirically, but we omit the results as
they provide no additional insights beyond the results reported
in [3].
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Figure 1: Counterclockwise from top left, fingerprints of crises B, B,
D and C from Table 1. Each row is an epoch and each column repre-
sents the state of a particular metric quantile, with white, gray, black
corresponding to cold, normal, hot (−1, 0, +1) respectively in the fin-
gerprint.

tification (see Section 6.1) we did not experiment with
changing the number of crises involved which was left
constant at 20.

The summary vector is converted into an epoch finger-
print by selecting only the relevant metrics.

3.5 Identifying Similar Crises
As most crises last for more than one epoch, compar-

ing crises requires comparing several consecutive epochs
of fingerprints. We obtained good results with the fol-
lowing simple method, but we note that this step is or-
thogonal to the rest of our approach and can be modified
without altering any of the other computations.

Given a set of epochs during a crisis, we create a cri-
sis fingerprint by averaging the fingerprint vectors across
these epochs. Figure 1 shows fingerprints of four crises;
each row represents an epoch, each column represents a
metric quantile, and white, gray, and black represent the
values −1, 0, and 1, respectively, in the corresponding
fingerprint. The three left-most columns of the top-right
crisis in the figure would be summarized as {−7

12 ,
−4
12 ,

6
12};

there are 12 epochs in the crisis and the column sums
are −7, −4, and 6. Notice that the quantiles often don’t
move in the same direction—for example, see the left-
most three columns in the top-right crisis—and this is
important for identification. If we tracked fewer than 3
quantiles, we wouldn’t capture this behavior.

To compute a similarity score between two crises, we
compute the L2 distance between the corresponding cri-
sis fingerprints. Two crises are considered identical if the
L2 distance between their fingerprint summaries is less
than a specified identification threshold. In our experi-
ments, we compare the efficacy of setting this threshold
based on perfect future knowledge (offline estimation)
vs. estimating the threshold online as crises are actually
observed.

4. EVALUATION

4.1 System Under Study
We validate our results on a commercial datacenter

running a 24×7 enterprise-class user-facing application.
It is one of four datacenters worldwide running this ap-
plication, each containing hundreds of machines, serving

front-end!

processing!

heavy!

processing!

post!

processing!

post!

processing!

post!

processing!

Figure 2: Request flow in each machine in the datacenter under study.

several thousand enterprise customers, and processing a
few billion transactions per day.3 Most machines execute
the same application, as depicted in Figure 2. The incom-
ing workload is processed on the machine in three stages:
light processing in the front-end, core of the execution in
the second stage, followed by some back-end process-
ing. The processed requests are then distributed either to
the clients or to another datacenter for archival and fur-
ther processing. We have no visibility to the clients or to
machines in the other datacenters.

For each server, we sample about 100 metrics each
averaged over a period of 15 minutes. The 15-minute
averaging window is established practice in this datacen-
ter, and we had no choice on this matter; similarly, we
have no access to any other performance counters or to
information allowing us to reconstruct the actual path of
each job through the server or processing time at each
stage. The metrics include counts of alerts set up by the
operators, queue lengths, latencies on intermediate pro-
cessing steps, summaries of CPU utilization, and various
application-specific metrics.

The operators of the site designate three key perfor-
mance indicators (KPI’s) corresponding to the average
processing time in the front end, the second stage, and
one of the post-processing stages. Each KPI has an as-
sociated service-level agreement (SLA) threshold deter-
mined as a matter of business policy. A performance cri-
sis is declared when 10% of the machines in the datacen-
ter violate any KPI SLA’s. This definition is set by the
operators and we did not tamper with it.

We use a set of 19 performance crises that occurred
during a four month period between January and April
2008. These crises were labeled by the application op-
erators according to the determined underlying cause.
Somewhat descriptive labels of the crises and their fre-
quency appear in Table 1. We also use additional col-
lected metrics and 20 unlabeled crises that occurred be-
tween September and December 2007. We don’t use the
unlabeled crises to evaluate the identification accuracy of
our fingerprints, but we do use the data from that period
when simulating online deployment of our method.

4.2 Evaluation Methodology
3The exact numbers are considered confidential by the com-
pany that operates the datacenter.
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ID # of instances label
A 2 overloaded front-end
B 9 overloaded back-end
C 1 database configuration error
D 1 configuration error 1
E 1 configuration error 2
F 1 performance issue
G 1 middle-tier issue
H 1 request routing error
I 1 whole DC turned off and on
J 1 workload spike

Table 1: List of identified performance crises.

We compare and contrast four different methods for
identification of performance crises:
• Fingerprints refers to our proposed method as de-

scribed in Section 3.1.

• Signatures refers to the method proposed in [6]. We
had to make some changes to the signatures method
to adapt it to the setting of a large-scale datacen-
ter and to remove several design choices for com-
parison, always making such choices favorable to
the performance of the signatures approach. These
changes are detailed in Appendix 8.

• Fingerprints (all metrics) refers to a version of our
proposed fingerprinting method that uses all the col-
lected metrics to create a fingerprint instead of a
smaller set of relevant metrics. The intention is to
quantify the level of noise introduced by having ir-
relevant metrics participate in the identification of
the problem.

• KPI refers to fingerprint method based just on the
three KPI’s being currently tracked in the datacen-
ter. For each KPI, the fingerprint contains the num-
ber of machines in the datacenter that are violating
the performance SLA specified for that KPI.

4.3 Evaluation Criteria
Discrimination. We first report on the discriminative

power of our fingerprints: their ability to determine, in-
dependently of applying a specific label to a crisis, whether
two crises are the same or distinct. Two crises are classi-
fied as identical if the distance between their fingerprints
is less than a specified identification threshold, otherwise
they are considered different. To quantify the discrimi-
nate power of each method, we check whether each pair
of the 19 labeled crises is correctly classified as “identi-
cal” or “different” and, as is customary, represent these
results in a form of a ROC curve [12]. This curve de-
picts the tradeoff between the rate of false positives (in-
correctly classifying two different crises as identical) and
the rate of detection (correctly classifying two identical

crises) for different values of the identification threshold.
We will use α, the false positive rate, as the single param-
eter to be adjusted in order to select the optimal thresh-
old (also standard practice). We compare ROC curves by
computing the area under the curve (AUC); higher AUC
implies better discriminative power.

The discriminative power essentially removes issues
regarding the determination of clustering boundaries for
the different performance problems and clearly estab-
lishes the basic capabilities of each of the representation
methods for capturing the differences between the differ-
ent crises.

Identification stability. Because all crises in our dataset
last longer than a single 15-minute epoch, we perform
identification during each epoch. During discussions with
the operators of this enterprise application we confirmed
that identification information is useful even up to one
hour into the crisis. We thus perform five identifications
per crisis; starting when the crisis is detected and con-
tinuing for the four subsequent epochs. In each epoch,
identification emits either the label of a known crisis, or
the label x for “don’t know.” An identification sequence
is considered stable if it consists of zero or more con-
secutive x’s followed by zero or more consecutive iden-
tical labels. For example, if A and B are labels of known
crises, the sequences xxAAA, BBBBB, and xxxxx are all
stable, whereas xxAxA. xxAAB, AAAAB are all unstable.

Identification accuracy. If an identification sequence
is stable, we can evaluate whether it is accurate (i.e. whether
the label emitted was correct), and also measure time to
identification as the time of the first epoch after the start
of the crisis during which the correct label was emit-
ted. We subdivide the definition of identification accu-
racy into two categories. When identifying a crisis that
had already been seen and diagnosed before, known ac-
curacy is the probability of correctly labeling the crisis
using a stable identification sequence. If a sequence is
unstable, the accuracy of each individual label is irrele-
vant and we do not count it as a successful identification.
When identifying a previously unseen crisis, unknown
accuracy is the probability if correctly labeling that cri-
sis as “unknown” in all five identification epochs.

We remark that when compared to the evaluation cri-
teria for identification used in [6], our criteria are much
more stringent and more realistic. In [6], an identification
was considered successful as long as the actual crisis was
among the k most similar crises according to a distance
metric. In contrast, in our definition of identification, we
differentiate between assigning a label of a particular cri-
sis and declaring the crisis unknown. We also count the
identification as accurate if it was stable and the assigned
label was exactly correct. The reason we can claim that
this is more realistic is that the operators will execute a
sequence of actions depending on the label assigned to a
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crisis. If the crisis is known, but our technique is unable
to identify it correctly, there is a cost related to the missed
opportunity of executing the repair actions, and possibly
re-doing the diagnosis. On the other hand, if an unknown
crisis is mislabeled, then the repair actions will be incor-
rect with possibly severe consequences. We demonstrate
in Section 5.3 that this tradeoff can be controlled using
the α parameter introduced above.

4.4 Setting
Performing online identification using fingerprints de-

pends on estimating the following three sets of parame-
ters based on past data:

1. Relevant metrics. We perform feature selection
to narrow down the metrics that are used for crisis
identification using fingerprints.

2. Hot and cold quantile thresholds. These thresh-
olds change over time due to changes in workload
and performance of the application and we period-
ically recompute them based on new data.

3. Identification threshold. A new crisis is labeled
as “unknown” if the distance of its fingerprint to
fingerprints of all the past crises is greater than a
specified identification threshold. Otherwise, the
new crisis is labeled as identical to the crisis that is
closest. The identification threshold is recomputed
after each new crisis.

In order to characterize the effects of these parameters
on accuracy and time of identification, we examine three
settings: offline, quasi-online, and online.

In the offline setting, we assume perfect future knowl-
edge and set the values of the parameters using data from
the whole period under study. We pick the relevant met-
rics using feature selection on the 19 crises, compute
the metric quantile thresholds using the four months of
data surrounding the 19 crises, and set the identification
threshold using the ROC curve based on pairwise dis-
tances of all the crises (see Section 5.3 for details). This
is essentially the best-case scenario for all the evaluated
techniques and errors are, by and large, the product of nu-
merical instability etc. inherent in the computations and
it therefore establishes in a precise sense an empirical
optimal performance for the method.

In the quasi-online setting, the relevant metrics and
metric quantile thresholds are computed in an online fash-
ion over a moving window of data, while the identifi-
cation threshold is still estimated assuming full knowl-
edge of all the labeled crises. The decrease of accu-
racy of approximately 15% is therefore the price we pay
for not having the luxury of looking at the whole period
for selecting the relevant metrics and setting the hot/cold
thresholds.

Finally, in the online setting we estimate all three pa-
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Figure 3: Distance ROC curves and the area under the curves (AUC)
for different types of fingerprints.

rameters in an online fashion and thus realistically sim-
ulate the actual deployment of our technique as a tool
for crisis identification. As reported in Section 5.3, the
decrease in accuracy is not significant, only about 3%.
This is encouraging as it establishes that the approach
is resilient to the online estimation of the identification
threshold and therefore the fingerprints are robust, and
that the loss in accuracy is mainly due to variations on
the conditions of operation (changes in relevant metrics
and hot/cold thresholds).

5. RESULTS
In the following sections, we describe the details of se-

lecting the relevant metrics, computing the hot and cold
quantile thresholds, and estimating the identification thresh-
old for each of the offline, quasi-online, and online set-
tings and summarize the results.

5.1 Offline setting

5.1.1 Discrimination results
Recall that by discrimination we mean how accurately

can each technique classify two crises as identical or dif-
ferent. We consider two crises identical if the distance
between their fingerprints is less than the identification
threshold T . As in information retrieval, for a given
choice of T , we can compute recall, the fraction of crisis
pairs of the same type that are actually identified as being
the same, and false alarm rate (or false positive rate), the
fraction of pairs in which the two crises are distinct but
the difference between their fingerprints is less than T .

For each evaluated fingerprint technique, we quantify
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the discriminative power using the area under the corre-
sponding distance ROC curve. The distance ROC shows
the tradeoff between recall and false positive rate as a
function of a threshold T . An optimal distance-ROC
curve would have a recall value of 1.0 for all values of the
false positive rate (i.e. zero false positives with perfect
recall) and would pass through the point (0, 1), indicat-
ing that there exists a distance threshold T that perfectly
separates pairs of identical crises from distinct ones. An
optimal ROC curve would have area under the curve (AUC)
of 1.0, and in general, larger values of AUC imply better
discrimination of a given set of fingerprints. To gener-
ate the ROC, we compute the false alarm rate and recall
for all feasible values of the threshold parameter T and
connect the resulting points.

The graph in Figure 3 shows the distance ROC curves
for the four fingerprinting techniques along with the cor-
responding AUC. Our fingerprinting method clearly dom-
inates the remaining three and achieves almost perfect
separation of the distinct crises.

5.1.2 Offline Identification Results
The goal of the identification experiments in the of-

fline setting is to quantify the identification accuracy of
the proposed techniques in the best-case scenario when
assuming the perfect future knowledge of the collected
metrics and labeled crises. To pick the relevant metrics,
we first use feature selection (as described in Section 3.4)
to select top ten metrics for each of the 19 labeled crises
and then select the 15 most frequent ones as the relevant
metrics.

In the offline setting, the hot and cold thresholds are
computed as the 2nd and the 98th quantile of each metric
across the four months for data.

The selection of the identification threshold T is based
on the distance ROC curve of all the labeled crises and is
parameterized by the false alarm rate α between 0 and 1,
which controls the trade-off between the known and the
unknown accuracy. In particular, T is set to the largest
threshold such that the corresponding false alarm rate,
the x-axis in the ROC plot, is less than α. In the offline
case, we compute the threshold based on a distance ROC
curve generated from all labeled crises.

In the identification experiments, we start with an ini-
tial set of five labeled crises, and perform identification
on the remaining 14 crises. The initial set of crises con-
tains two randomly selected crises of type “B”, one of
type “A”, and two other crises (see Table 1). If the new
crisis A that we want to identify is known (i.e., the initial
set of crises contains a crisis identical to A), the identifi-
cation is accurate if it’s stable and we assign the correct
crisis label. If the crisis A is unknown, the identifica-
tion is accurate if we don’t assign any label during the
five identification epochs. For each identification experi-

ment we compute the known accuracy, ratio of accurate
known identifications and total number of known identi-
fications, unknown accuracy, ratio of accurate unknown
identifications and total number of unknown identifica-
tions. We also compute the time of identification – the
average time when a known crisis was correctly identi-
fied relative to its start. For each of the evaluated tech-
niques we executed five runs with different initial set of
crises and report the average of all the evaluation metrics
in Figure 4. In the offline setting we do not update the
initial set of crises by adding the newly identified crises.

5.1.3 Summary of offline results
The offline identification results are important because

they establish the optimal performance of each technique
and serve as a baseline for comparison with results in the
online setting.

Based on the ROC curves in Figure 3 we conclude that
our fingerprint approach clearly dominates the other ap-
proaches and achieves almost perfect AUC score of 1.0.
It also achieves very high known accuracy of 97.5% and
unknown accuracy of 93.3%4 in the identification exper-
iments. This confirms, that the proposed fingerprints in-
deed capture the important state of the datacenter when
assuming perfect future knowledge about the metrics and
the crises when computing the relevant metrics and the
quantile and identification thresholds. This concise rep-
resentation is achieved by using quantiles to summarize
the metric values across the whole datacenter and by fur-
ther reducing the number of metrics using feature selec-
tion.

The fingerprints that use all the collected metrics achieve
identification accuracy of only approximately 50%. This
shows that the feature selection using regularized logistic
regression is a crucial step in generating the fingerprints.
On the other hand, using only the three KPI metrics does
not provide enough discrimination power as this method
also achieves identification accuracy of only about 55%.

Although signature approach performs worse than our
fingerprint method, it performs better than the baselines,
and it achieves accuracies of 75% and 80%. This pro-
vides evidence that a) there is value in selecting a subset
of metrics even though the final output is not exactly a
fingerprint, and b) our implementation of the signatures
is valid.

5.2 Quasi-Online Setting
In a real-world scenario, the identification of crises

would be performed on-line; the relevant metrics, the
quantile thresholds, and the identification threshold would
be determined from the past crises and the historic val-
ues of the metrics. To isolate the effects of the online

4We report accuracies for α where the two accuracy curves
cross or where their values are closest together.
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Figure 4: Known accuracy, unknown accuracy, and time of identification for different crisis signatures: offline fingerprints (top-left), the SOSP’05
signatures (top-right), KPIs (bottom-left), and offline fingerprint using all the available metrics (bottom-right).

computation of relevant metrics and quantile thresholds
on the identification accuracy, in the quasi-online setting
we perform these steps in an online fashion, while still
estimating the identification threshold offline. The iden-
tification of crises is performed as they are presented, i.e.
identification of the first crisis cannot exploit any infor-
mation about later crises.

When identifying a new crisis A at time t, we select
the relevant metrics based on the 20 crises that occurred
before crisis A. We first perform feature selection as
described in Section 3.4 to pick the top ten metrics for
each crisis and then use the more frequent 30 metrics as
the relevant metrics. Experiments using different num-
ber of total metrics are described in the discussion sec-
tion. The cold and hot metric thresholds are computed as
the 2nd and 98th percentiles of data over a moving win-
dow of 240 days that excludes all time intervals that were
anomalous according to the specified SLAs. For each
past crisis we keep track of the raw values of all col-
lected metric quantiles and we recompute fingerprints of
all the past crises based on the newly computed metrics
and thresholds.

For the quasi-online setting, we evaluate crisis identifi-
cation using the chronological order of the crises, as well
as using 20 random permutations. In each experiment,

we assume that we have already seen the first two crises
and start the identification process from the third crisis.
For each new crisis, we perform the following steps: a)
we compute the relevant metrics and metric thresholds,
b) recompute the fingerprints of past crises, c) compute
the value of the identification threshold assuming that we
have seen all 19 crises and thus use the full ROC curve,
and d) perform identification using the distances between
crises and the identification threshold. This scenario thus
differs from a real-world deployment of our method only
in the usage of the optimal identification threshold. In
the experiments with a random permutation of the crises,
we present the crises to the algorithm in a new order, but
for each crisis we use fingerprints that were computed in
the chronological order.

In Figure 5, we present identification results when us-
ing 30 relevant metrics and length of the moving window
of 240 days. Our fingerprint method achieves known and
unknown accuracy of 85%. Thus, the online selection
of relevant metrics and quantile thresholds caused a de-
crease of accuracy of approximately 15%. As we demon-
strate in the following section, switching to the fully on-
line setting will not significantly decrease the identifica-
tion accuracy.

5.3 Online setting
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Figure 6: Known accuracy, unknown accuracy, and time of identification results when using 30 metrics in fingerprints, 240 days of moving window,
and bootstrapping with 10 labeled crises and 2 labeled crises (top). Bottom shows the results for moving window of size 120 and 7 days.
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Figure 5: Identification results in the quasi-online setting.

In the fully online setting we update the relevant met-
rics and metric thresholds as described in the previous
section, but also update the identification threshold in an
online fashion. To compute the identification threshold
T , we employ a method very similar to the offline case.
We use the distance ROC curve computed based on the
past crises and the specified α to estimate T as described

in Section 5.1.2. However, if the number of past crises
is very small, or we observed crises of only the same
type or of only different types, we use the following set
of intuitive rules to set T . First, if we have observed
only crises of the same type, we set T = maxd(1 + α),
where maxd is the maximum distance between the crises
of the same type; α controls the extra buffer we add
to maxd. New crises of the same type should thus be
correctly classified. Second, if we have observed only
crises of different types, we set T = mind(1−α), where
mind is the minimum distance between crises of differ-
ent types. Finally, if we have observed crises of both the
same and different types, but the ROC curve is optimal
(maxd < mind), any value of T between maxd and mind

will result in no expected false alarms. In this case we
set T = maxd + α(mind −maxd).

In the online setting, the identification threshold is first
computed based on the ROC curve of the initial set of la-
beled crises and then recomputed after each new crisis.
As we observe more crises, the estimate of the thresh-
old should be more accurate, thus resulting in a more
accurate identification. To test this hypothesis, we per-
formed two sets of experiments; in the first one, we seed
the identification process with only two crises, just like in
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setting known acc. unknown acc.
offline 98% 93%
quasi online 83% 83%
online, bootstrap w/ 10 80% 80%
online, bootstrap w/ 2 78% 74%

Table 2: Summary of the results for different settings.

the quasi-online setting, while in the second one we seed
the identification with ten crises. Because when starting
with ten crises, we only identify the remaining nine, to
keep the total number of identifications similar, we per-
form 41 runs in this setup. The rest of the methodology
for the online identification experiments is identical to
the quasi-online setting.

The results for 30 relevant metrics and different lengths
of the moving window are presented in Figure 6. When
starting with two labeled crises, we achieve known and
unknown accuracy of 78% and 74%. Initializing the iden-
tification using ten crises increases both accuracies to
80%.

5.4 Summary of results
We summarize the main results with respect to the ac-

curacy in the identification of the crises by our meth-
ods and the “cost” of performing this identification in
an online manner in the real like scenario. Table 2 sum-
marizes these accuracies. As explained above the accu-
racy is a duplex containing the accuracy of identifying
known crises and unknown ones. The operating point
of the methods with respect to these measures will de-
pend on the cost of missing a known crises (and repeat-
ing the diagnosis again), and the cost of mislabeling a
known crises (and performing a possibly erroneous re-
pair action). In our summary we selected the operating
point where the measures are closer. In the offline case,
our methods achieve very high accuracy. These measures
reflect the inherent error in the method which for the ac-
curacy of known crises is just 2%. The online adjust-
ment of the quantile threshold plus the online selection
of the relevant metrics to be included in the fingerprint,
decreases the accuracy by over 15 points. This decrease
is to be expected as otherwise crises identification would
be a realitve easy problem. It is reasuring to find out that
the online selection of the optimal trheshold is not that
costly (only 3 points in accuracy) when the process is
bootstraped by the use of 10 labeled metrics. This pro-
vides with an 80% accuracy for our method. The last line
presents the accuracy when the whole process of identi-
fication starts with only 2 known crises.

6. DISCUSSION

6.1 Sensitivity to free parameters
As the results of Section 5.1 show, when we use all

available metrics rather than a subset of relevant met-
rics as the fingerprint, both the discriminative power and
the identification accuracy of the approach are reduced.
In the experiments in Section 5 we used 30 metrics for
the fingerprint; in additional experiments we observed a
steady decrease in the accuracy of the identification as
we tried fingerprints of 20, 10, and 5 metrics, holding
the period T constant (240 days). We also experimented
with the length of the moving window T that adjusts the
quantile thresholds, observing decreasing accuracy for
T = 120, T = 30, and T = 7 days, observing a steady
decrease in accuracy especially at operating points where
the tradeoff between the known and unknown accuracy is
minimal (i.e., both lines intersect – see Figure 6). When
both the number of metrics and window length were var-
ied at the same time, we observed that, in general, for
small window sizes, fingerprints with fewer metrics have
higher accuracy than fingerprints with more metrics. For
example, when the moving window was set at 7 days, fin-
gerprints with less than 30 metrics displayed better accu-
racy than those with 30. This is unsurprising: as the size
of the fingerprint decreases, the fingerprint adjusts more
nimbly to rapid changes in values, which comes as a con-
sequence of reducing T ; but as T increases and a greater
variety of crises is seen, additional information is needed
in the fingerprint to capture the differences among them.
We observe that overall the best accuracy was obtained
using 30 metrics and a window of 240 days.

When comparing two crises, we first compute the cri-
sis fingerprints by averaging the corresponding epoch fin-
gerprints. In all the experiments in Section 5, we av-
erage across epochs −30 minutes, . . . , 60 minutes, rel-
ative to the start of the crisis. Here we compare the
discriminative power of fingerprint summaries computed
over ranges 〈t0, t1〉, where t0 ∈ {−60, . . . , 0} and t1 ∈
{t0 + 15, . . . , 150}. Figure 7 shows that ranges that start
at least 30 minutes before the beginning of the crisis,
quickly achieve high levels of discrimination.

6.2 Hot/Cold threshold settings
In our experiments, we compute the hot and cold thresh-

olds using the 2nd and the 98th percentile over the past
values of each metric. The discriminative power (area
under the ROC curve) using these values was 0.99 (1.0
being the maximum). When we varied these values to
〈1nd, 99th〉, 〈5nd, 95th〉, and 〈10nd, 90th〉, the discrimina-
tive power decreased to 0.96 or less.

In addition to setting hot/cold quantile thresholds based
on the 〈2nd, 98th〉 percentiles of quantile values, we ex-
plored two other methods. The first was based on fitting
a non-parametric time series to the quantiles, estimating
the standard deviations of the prediction in the time se-
ries and then setting the hot and cold thresholds three
standard deviations from the mean. The second method
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Figure 8: Identification results when the fingerprint’s hot/cold thresh-
olds are not updated.

fits thresholds by separating various regions on the quan-
tile values, and then correlating to violations on the KPIs.
Both displayed discriminative power of 0.95 or below,
inferior to the 0.99 achieved by simply setting fixed per-
centiles, so we did not consider either alternative further.

6.3 Updating the fingerprints
Currently in our method we store the raw values of the

metric quantiles for all the collected metrics, and we up-
date the {0,−1, 1} values of the fingerprints according to
the updated hot and cold thresholds as they change over
time. Assuming total of 100 metrics, 3 quantiles per met-
ric, fingerprint summary range of 7 epochs, and 4 bytes
per value, we need to store 100×3×7×4 = 8400 bytes
per crisis (which is not terribly expensive). To find out
whether this bookkeeping is necessary we experimented
with a method where fingerprints for past crises are com-
puted using metric thresholds that were estimated when
those crises occurred. The result is a decrease in the ac-
curacy for identification. The operating point where the
know and unknown accuracies cross is 75% or 5 points
below our best result (see Figure 8).

6.4 Time to Identification
Our results make clear that, as is typical for informa-

tion retrieval problems, there is a tradeoff between the
accuracy of identifying known crises and the accuracy
of correctly labeling a new crisis as unknown. However,
there is also a third element in the tradeoff, namely the
time at which the method makes a decision regarding the
identity of the crisis. The dependency among these three
elements is made clear in Figures 4, 5, and 6: drawing a
vertical line through the three curves captures the trade-
off for any given value of the parameter α, which corre-
sponds to the false positive rate for discrimination (Sec-
tion 4.3). We expect that graphs such as these will be
crucial for setting the optimal “operating point” of our
method for a given datacenter, as the choice depends on
the priorities and associated costs of correct identifica-
tion of known as well as unknown crises vs. time to iden-
tification. We note that our method is able to make the
identification with 80% accuracy within 10 minutes of
crisis detection, even in a fully-online setting where the
parameters and thresholds have not been learned from all
data in advance.

7. FUTURE WORK
We are currently extending this work on four direc-

tions. The first one involves finding in the fingerprints
early signs of the crises so that they can be forecasted.
Our initial results were encouraging especially in regards
to forecasting crises of type “B” (see Table 1). The sec-
ond one is on modeling the complete evolution of the
crisis. As operators apply actions to resolve the problem,
they would like to be able to monitor progress and also
have knowledge on how long would it take for the crises
to be resolved. These models would enable optimal de-
cision making with regards to repair actions, and would
enable the road to full automation. The third direction fo-
cuses on using information about the crises labels in the
task of selecting the relevant metrics for building finger-
prints. We have started this investigation by posing this
as a classification problem in terms of discrimination and
using regularized logistic regression to select the met-
rics. We expect to have results about this methodology
in the near future. Finally, the fingerprints are agnostic
on whether the metrics collected belong to a single appli-
cation, to the hardware platform, etc. In this datacenter
we were dealing with one application and mostly with
metrics related to this application. We are currently col-
lecting data on different applications and different data-
centers and designing the appropriate extensions to the
fingerprints.

8. CONCLUSIONS
In this paper we propose a datacenter fingerprint that

compactly captures the important datacenter state by sum-
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marizing metrics across all the machines using quantiles,
discretizing the value of each quantile into just three states
(hot, cold, or normal), and selecting only metrics relevant
for discriminating between crises. As our offline results
indicate, in terms of both the discriminative power and
the accuracy of the identification, the basic construction
of the fingerprint is nearly optimal for the datacenter on
which we run our experiments. All the loss in accuracy
of identification is caused by the realistic need of making
decisions online after getting information about crises
one at a time. In this realistic setting our method achieves
80% accuracy and on average identifies an anomaly in
under ten minutes. Our evaluation is based on 19 real
performance crises ranging from configuration issues, to
performance problems due to high workload, to issues
with other datacenters that caused back-ups in the sys-
tem. Because of the excellent results of our fingerprints,
we are currently engaged with the owners of the service
in designing a pilot program to have this approach work
in advisory mode with live data.

We remark that fingerprints are interpretable by hu-
man operators and can be used as visualization aids for
diagnosis purposes (of new crises) and for monitoring the
datacenter after performing a recovery action. When we
showed a few of these fingerprints to the application op-
erators, they very quickly recognized most of the crises.

Finally, it is worth relating a piece of anecdotal evi-
dence reflecting the impact that this work has had. A
month after one of our briefings with the administrators
of the system, there was an accident that threatened the
physical security of the datacenter. An operator was dis-
patched with specific instructions putting priority on back-
ing up the collected performance metrics that we had
pointed out as being correlated with the crises.

Appendix: Comparison to Signatures
As mentioned in Section 4 we needed to modify the ap-
proach in [6] for our experiments. In this appendix we
detail the modifications. Two factors make “apples to
apples” comparison impossible. First, the signatures ap-
proach was applied to a black-box system comprising a
handful of servers. Since we consider an application run-
ning on hundreds of servers, to apply the signature ap-
proach we must either build a model for each server and
aggregate the models, or else aggregate the data from the
hundreds of servers and build the model from the aggre-
gates. The former approach was proposed in [3], but we
note that this would result in a representation whose size
is exponential in the number of metrics involved in the
signature. (That paper did not conduct any experiments
on a scale comparable to ours.) We therefore apply the
latter approach, which we believe to be more in the spirit
of the signatures work anyway, using quantiles as the
method of aggregating metrics across servers and then

building the models based on the quantiles.
The second difference is that the signatures approach

maintains multiple models, one for each crisis seen, and
computes a particular fitness score (the Brier score) to
decide which model(s) are best to use for constructing
the signature of (and therefore identifying) a particular
crisis in progress. To simulate this, we assume perfect
future knowledge and we generate an optimal model for
each particular crisis. This has the effect of assuming that
the model-selection machinery in the signatures work al-
ways and makes the optimal choice.

Lastly, the third difference is that, as explained in Sec-
tion 3.4 we use regularized logistic regression as a classi-
fier (for the metric selection part). To complete the build-
ing of the signature, once we have the log-linear model
generated by the classifier, we set up to generate a thresh-
old for each metric. To accomplish this we use the same
classifier on each metric in isolation. This is equivalent
in this context to the threshold taken from the Bayesian
classifier used in “attribution” for generating the signa-
tures in [6].

By assuming optimal model management and optimal
online model selection, and by using a more appropriate
classifier for the dataset at hand we claim we are using
an optimistic version of [6] in our comparison. Evidence
that indeed it is capturing signal about the state of the
datacenter is that it did perform better than the baseline
approaches consisting of using all the metrics in the fin-
gerprints, and the one relying only on the KPIs.
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