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Abstract—We design predictors of user dissatisfaction with
the performance of applications that use networking. Our ap-
proach combines user-level feedback with low level machine
and networking metrics. The main challenges of predicting user
dissatisfaction, that arises when networking conditions adversely
affect applications, comes from the scarcity of user feedback and
the fact that poor performance episodes are rare. We develop a
methodology to handle these challenges. Our method processes
low level data via quantization and feature selection steps. We
combine this with user labels and employ supervised learning
techniques to build predictors. Using data from 19 personal
machines, we show how to build training sets and demonstrate
that non-linear SVMs achieve higher true positive rates (around
0.9) than predictors based on linear models. Finally we quantify
the benefits of building per-application predictors as compared
to general predictors that use data from multiple applications
simultaneously to anticipate user dissatisfaction.

I. INTRODUCTION
Users today expect high quality performance of computers

that run demanding applications such as VoIP and video
streaming. If end-host tools could anticipate when a user might
be dissatisfied with the performance of an application, they
could proactively troubleshoot performance problems thereby
improving the user’s experience.
Previous research at tracking and improving the end-user

experience has followed two different directions. In the first,
network performance degradations are determined by using
heuristics over raw network performancemetrics such as delay,
available bandwidth, losses, reordering, and such [1], [2]. The
obvious shortcoming here is that the actual user response and
perception is not taken into account, and the heuristics may
not really track these well. To illustrate with an example, most
modern video streaming applications incorporate enough of
a buffer to tie over transient network outages. Tracking the
performance metrics would reflect the transient outages, even
though the end-user might be completely oblivious to them.
In the second category, the research explicitly engages the
end user but is focused on a few niche applications such
as VoIP [3], [4], online gaming [5], video streaming [6],
[7], and IPTV [8], [9]. While these are able to exploit
application level semantics to build richer models, the results
cannot be generalized to other applications. Building such
application specific models is time consuming and requires
a deep knowledge of the application (this information is often
not available publicly). Despite recent interest in explicitly
leveraging user feedback to achieve more general mappings
of QoS to QoE [10]–[12], our community still doesn’t have

techniques that remain application agnostic and can predict
user satisfaction given typical network-level metrics.
In this paper, we analyze passive measurements of system

and network performance, which are annotated with a limited
set of samples of end-user perception of network performance.
Our user labeled performance data was collected from a
deployment of 19 users who agreed to run our monitoring
software on their laptops for periods varying from two weeks
to six months. The basic problem we face is to design a
binary classifier (satisfied or not) based on a key set of features
that are culled from detailed low-level measurements. Having
labeled data (user feedback) allows us to consider supervised
learning techniques. However there are numerous challenges
in building a training set for such techniques, that are likely
to arise in many QoS to QoE mapping problems. First, users
don’t want to spend much time on giving feedback and thus
provide at most a few samples per day (e.g. less than 5).
Clearly the volume of user input is many orders of magnitude
less than the data volume produced by monitoring tools that
collect performance data on sub-second time scales. Second,
because poor performance episodes are rare, we typically end
up with far more samples labeled as satisfied than dissatisfied.
Our first contribution is a methodology for dealing with

these issues in order to enable supervised learning techniques
to be applied to this type of problem. Our second contribution
is to provide a solution for aggregating fine-grained machine
data into a few meaningful features that are correlated with
user perception. One of the key ideas in our solution is to
compute our selected features over two different windows of
time, and use those simultaneously as input to our predictor.
We propose LDA and SVM based predictors, and show that
non-linear SVM outperforms other simpler linear predictors.
Our third contribution focuses on the issue of whether one
should build one predictor for each application, or one predic-
tor for multiple applications. The advantage of the former case
is a better predictor, but the disadvantage is that it requires
building many predictors. We select specific applications as
use cases and quantify the performance of both specific and
general predictors.

II. HOSTVIEW MEASUREMENTS

The data used in this paper was collected using a tool we
built, called HostView, that runs directly on end-user laptops.
We conducted a user study with 19 users, mostly computer
scientists, who kindly agreed to run our tool for variable
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amounts of time ranging from 2 weeks to 6 months (starting in
November of 2011). For a more detailed description of the data
collection methodology, please refer to our earlier work [13].
Our study is based upon data from 19 users, a typical

number for user studies. We acknowledge that this is a small
set of users. However building models for these users raises
a number of issues that are likely to come up in a large
population, and thus we believe that the problems we face
in our task here are typical and require general solutions. We
also point out that because monitoring tools such as HostView
get so close to the user, it is hard to do large scale studies as
many users perceive the tool as a privacy threat.
Performance metrics. To capture the actual performance
that applications experience, HostView collects packet traces
with libpcap; the traces are then processed offline using
tcptrace [14] to extract detailed TCP connection metrics
(RTT, jitter, resets and retransmissions) and data rates for
TCP and UDP connections. Concurrently, we periodically poll
for CPU load and WiFi signal strength from the host OS.
Table I lists all the performance metrics extracted along with
the manner in which the metrics are obtained.
Application context. HostView also records the application
context for each connection, i.e., it identifies the process
executable associated with the connection, and the service
being used (for web traffic, this is the top level domain). The
process executable is obtained using the gt tool [15], and the
top level domain is extracted by parsing DNS replies in the
traces and associating them with the destination addresses.
Recording User (Dis)satisfaction. HostView collects user
feedback with two complementary mechanisms: a system-
triggered questionnaire based on the Experience Sampling
Methodology [16], and the “I’m annoyed!” button (which
is engaged by clicking an icon that is always present, but
unobtrusive, in a corner of the screen). In both mechanisms,
the user is presented with the same questionnaire: (i) rate
your internet speed from 1 (slow) - 5 (very fast), (ii) identify
any applications (from a list of those running) that they
are unhappy with, (iii) indicate the problem (from a set of
choices), and (iv) express any other additional information via
a freeform text box.
Based on the answers to these questions, we categorize

each user feedback sample into one of two classes: the
user is considered dissatisfied if she notes an application as
problematic, or if she explicitly selects a problem among the
pre-defined list of problems, or if she rates the Internet speed
below three. Otherwise, the user is considered satisfied at the
moment the feedback is given. All of the measurements from
the lower layers collected in a small time window (discussed
later) before the user supplies a completed questionnaire are
labeled as satisfied or dissatisfied according to the user’s input.
In the data from our user study, we received 1278 surveys

indicating a satisfied user, and 422 indicating a dissatisfied
user. About 55% of the times when users supplied feedback,
they did not explicitly indicate any particular application being
used. Table II enumerates all the feedback reports obtained

Applications Dissatisfied Satisfied Users
Firefox 51 384 8
Mail 23 332 4
Google Chrome 22 104 3
Safari 21 46 7
Skype 19 260 5
SSH 12 227 7
Adium 8 385 3
YouTube 7 18 3
Totem 6 10 1
tf1.fr 5 0 1
GTalk, iCal, iTerm, git 8 23 4
Thunderbird, Dropbox 2 317 2

Table II
SUMMARY OF USER LABELS PER APPLICATION

from users, along the the specific “applications” that were
identified as problematic by the end-users; the frequencies are
also reported. Note here that some of the user labels point to
online services (e.g. youtube, tf1.fr), while others refer
to application executables on the host machine.

III. OVERVIEW

A. Prediction problem formulation and evaluation metrics
Our end goal is to build a predictor that can anticipate

whether or not a user is satisfied with the performance of
their machine, as a function of the state of the machine at the
time. We take “state” to be captured by the metrics collected
(see Table I). Before realizing such a predictor, there are two
challenges to address. First, we need to “summarize” the raw
data and convert it to a form that can be used by a learning
algorithm, typically a vector of features. If we suppose that a
user feedback sample was obtained at time t, we denote Xt as
the feature vector that is generated by the raw data logged in
time interval [t− δ, t]. Second, we need to find the prediction
function f which has the following property.

f(Xt) =

{

1 if user is dissatisfied at t
0 if user is satisfied at t

Since we have data samples that are associated with labels,
and considering that the predictor function f returns a binary
value, we look at supervised machine learning methods to
build binary classifiers. For every data sample, the predictor
returns a binary value, and there are four possibilities to
consider and these are enumerated below, along with the
common notations for each.

Output of f(Xt)
0 1

User label Satisfied True Negative (TN) False Positive (FP)
at time t Dissatisfied False Negative (FN) True Positive (TP)

The performance of the predictors is characterized by True
and False Positive Rates which are defined as follows.

TPR =
TP

(TP + FN)
, FPR =

FP

(FP + TN)

A low TPR indicates that the predictor will miss poor
performance episodes and be ineffective, whereas a high
false positive rate indicates that the system will often, and
incorrectly, trigger troubleshooting mechanisms on the host
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Metrics Method Freq. Comments

Network
RTT pcap+tcptrace continuous average per second
Jitter pcap+tcptrace continuous Difference between two consecutive

RTTs of a connection, average per second
Resets pcap+tcptrace continuous Only resets that follow a SYN segment
Retransmissions pcap+tcptrace continuous -
Per-connection data rates (up and down) pcap+tcptrace continuous TCP and UDP
Host data rates (up and down) pcap+tcptrace continuous All TCP and UDP connections

Machine
CPU top 30 secs -
SNR airport (Mac OS) / 60 secs SNRdB = RSSIdB −NoisedB

iwconfig (Linux)

Table I
PERFORMANCE METRICS

and is thus inefficient and leads to very high overhead. Thus,
we are looking for predictors with high TPR and low FPR.

IV. HOW TO BUILD TRAINING DATA

We now describe how we process the raw traces to obtain
post processed data that can be input to a learning algorithm.
Extracting Feature Vectors. Processing data to train a clas-
sifier commonly involves three stages: (i) quantization, (ii)
feature selection, and (iii) labeling.

Quantization: The first step is to select a time window (or
bins) of interest around the time of the user feedback. Small
windows will localize the problem, but not track problems that
the user does not immediately perceive. Larger windows could
“smooth” out any transients that affect the user. We use δ to
denote the bin size, and consider sizes of 1, 2 and 5 minutes.
At the same time, it might be a good idea to incorporate history
since the particular problem that is frustrating the user at time
t might be the accumulation (or end result) of performance
anomalies that manifested in the past. To this end, we also
define a longer window of time (going back into the past)
denoted ∆. Our intuition is that by incorporating state from
both δ and ∆, it might be easier to find a portion of the feature
space where user dissatisfaction is apparent.
Feature selection: Having selected the right time granularity,
we need to summarize the raw data into features that represent
each bin. We select a number of features, based on our
previous knowledge, that are very likely to affect the network
performance of applications. We consider the metrics listed
in Table I and process as follows: for RTT, jitter, CPU load
and SNR, we compute four descriptors of the distribution
(computed with data observed only inside the window), which
are the mean, median, std. dev., and 95%-ile. For resets and
retransmissions, we simply report the total seen in the bin.
For metrics related to data rates, we compute both outgoing
and incoming and add it to the vector. Thus, in total, for each
bin [t− δ, t], we generate vector Xt containing 20+20 features
(corresponding to the small window and the history duration).
Another important step in feature extraction deals with the

granularity which is tracked (should we consider applications
individually, or aggregate them). One possibility is to compute
the RTT, jitter, throughput statistics using all connections from
all applications. Alternatively we could separate the traffic for
each application and generate these features at the granularity

of application. Since it is difficult to know which method is
best ahead of time, we do both and extract two different sets:
in the first, which we call, machine-level feature extraction,
we aggregate all the traffic and do not break out that of
any applications (here, each vector contains 40 features). In
the second, application-level feature extraction, we partition
the traffic by application and then extract features. Here, the
RTT and jitter measurements reflect only the performance of
the particular application. Note that we introduce two new
features in this case, corresponding to application throughput
(in each direction). Thus, the feature vectors we generate with
application level feature extraction have 44 features.

Labeling Feature Vectors: The final step is to assign a label
to each feature vector Xt by the label obtained from the end-
user when the feedback was collected. Thus, each vector Xt

is associated with a label that is either satisfied or dissatisfied.
Dealing with unbalanced data. Our data is severely unbal-
anced because we have an order of magnitude more "satisfied"
reports than "dissatisfied" reports. If not dealt with, the result-
ing predictors will be biased and more likely to predict the
windows when users are satisified (which corresponds to a
low TPR). In order to deal with this, we employ a trick that
is commonly used in the literature for situations like this [17].
In the training phase, we randomly repeat data samples for
the dissatisfied reports until the two classes are more or less
even. This rebalancing is only done in the training phase when
building the detector. When testing, the duplicated instances
are removed and only the original data is used.
Per-application case studies. To build per-application pre-
dictors, we select the five applications with the most user
feedback in Tab. II (excluding web browsers): Mail, Skype,
SSH, YouTube, and Adium. We exclude web browsers because
they are used to carry out very different tasks, and interact with
a diverse set of services. Hence, we only consider the user
reports for browsers when the user has explicitly indicated
an online service as problematic (for example, in the case
of YouTube). In these cases, we collect and associate the
browsers traffic to the service in question; however, we use
the online service as the name of the application.

V. MULTI-FEATURE PREDICTOR

In this section, we compare the performance of three fully
supervised machine learning techniques: Linear Discriminant



4

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

TP
R

FPR

LDA
Linear svm

Non-linear svm 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1

Zoom

Figure 1. ROC CURVE FOR THE GENERAL PREDICTOR (δ=5,∆=60)

Analysis (LDA) [18], Linear Support Vector Machines (l-
svm) [19] and Non-Linear Support Vector Machines (nl-
svm) [19]. We find that, among the three, nl-svm produces
optimal results with our data set. We construct three families of
predictors, one based on machine-level features, and two based
on application-level features and compare these while varying
the parameters (δ,∆). In the best case, (δ = 5,∆ = 60),
we find that the nl-svm based predictor that was built with
application-level features outperforms the other two families.

A. Comparison of predictors

We construct three families of predictors using LDA, l-svm,
and nl-svm. Machine predictors are constructed by training
on machine-level features across all machines, and the testing
is carried out for similar data. General predictors are built
by training on application-level features, but with data that
is the union of all the applications (and all the hosts). The
predictor is tested on data from particular applications. Finally,
application specific predictors are built by training on data
that is specific to that application (from all the hosts), and
performance is tested on data of that particular application.
Note that the first family of predictor works with vectors of
40 features; the other two use 44 features. Note from Sec. II
that traffic from browsers is excluded except in select cases.
We experimented with various settings for δ,∆ and selected

the optimal settings using leave-one-out cross validation. In
figure 1, we show a representative RoC curve where we hold
the window parameters fixed (δ = 5,∆ = 60). The best
performing predictor is found at the top-left of the graph (high
TPR and low FPR). Unsurprisingly the plot shows that the
nl-svm based predictor is consistently above and to the left
of the curves for l-svm and LDA, indicating that overall nl-
SVM outperforms the other two methods (the take-away was
identical when we generated curves varying δ and ∆). The
l-svm predictor achieves a respectable TPR of roughly 91%,
however it does so with a FPR approaching 30%. This RoC
illustrates that by using a non-linear SVM instead of a linear
one, we can significantly lower the false positive rate.

B. Optimal Predictor Parameters

In order to determine the ideal value for δ, we compare
three different settings δ = 1, 2, 5 using the nl-svm predictor

15 minutes 30 minutes 60 minutes
Predictor TPR FPR TPR FPR TPR FPR
Mail 0.89 0.04 0.95 0.03 1 0.03
Skype 1 0.09 1 0.06 1 0.06
SSH 1 0.01 1 0.01 1 0.01
YouTube 1 0 1 0 1 0
Adium 1 0 1 0 1 0
Machine 0.60 0.13 0.60 0.11 0.62 0.11

Table III
AFFECT OF VARYING∆, FOR NON-LINEAR SVM WITH HISTORY, AND

FIXED δ=5

(the most powerful one). We find that a window of 5 minutes
returns the best performance.
Subsequently, with the ideal window size, we then look at

the effect of varying history lengths (i.e, value of ∆) upon
performance. We select δ=5 and compare performance for
the three predictor families varying ∆=15, 30 or 60 minutes.
Table III reports these results and it is very clear incorporating
history improves both TPR and FPR across the board. We also
answer the "how much" question. In Table III ∆ = 60 brings
the greatest benefit. This is intuitive considering that when
δ = 5 minutes, ∆ = 60 implies adding 11 additional little
bins. In previous experiments, we also considered ∆ = 0 (no
history is used) and this performed quite poorly. Interestingly,
the machine predictor does not improve even as history is
taken into account. These results imply that distinguishing
applications is important in predicting user dissatisfaction.

C. Application predictor vs. general predictor
We now compare the general performance of three different

predictors built with application-level features. Here we are
trying to understand if the predictors that see more samples of
application behavior, albeit from many different heterogenous
applications have an edge over those that only see homogenous
data (from a single application). We build application specific
predictors for the five applications indicated in Table IV, and
compare them with the other two general predictors. In the first
of these, denoted "general", the training data mixes feature
vectors from all the applications; in the second, denoted
"general, no Mail" (the training data incorporates data from
all other apps save for Mail). In both cases, the testing is done
against the application-level feature vectors corresponding to
Mail. To read the table, consider that the training data for
the predictor is as denoted in the "predictor" column, and the
testing data is as denoted in the "tested app" column.
We see in the table that for 3 applications, namely Mail,

SSH and Adium, the per-application predictor outperforms
a general predictor. In these cases, the improvement of a
per-application predictor over a general one is significant in
terms of TPR. Interestingly, for YouTube and Skype, the per-
application and general predictors perform quite similarly.
They both achieve full true positive detection (TPR=1) and
only differ slightly in the FPR. In general, we would advocate
for building per application predictors, especially frequently
used ones, if there is enough data. Although the general ones
do very well in some cases, the per-application predictors are
more consistently good across multiple applications.
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Tested App Predictor TPR FPR

Mail
Mail 1 0.03
general 0.84 0.06
general, no Mail 0.05 0.03

Skype
Skype 1 0.06
general 1 0.03
general, no Skype 0.07 0.01

SSH
SSH 1 0.01
general 0.75 0.27
general, no SSH 0 0.05

YouTube
YouTube 1 0
general 1 0.06
general, no YouTube 0 0

Adium
Adium 1 0
general 0.5 0.005
general, no Adium 0 0.1

Table IV
APPLICATION PREDICTORS VS. GENERAL PREDICTOR

(NON-LINEAR SVM, δ= 5,∆=60)

VI. RELATED WORK
The general area of network performance monitoring and

QoS has been extremely prolific. Similarly, the area of user
quality and QoE is fairly mature (for example, ITU-T’s stan-
dards for voice quality measurement in the telephone system
are over a decade old [20]). QoS studies focus only on raw
performance metrics, whereas QoE studies mostly map user
experience to application metrics (e.g, channel zapping time
in IPTV). In this paper, we aim to bridge the gap between
these two fields and map QoS metrics to QoE.
A number of prior studies have built models of QoS

to QoE by using application-level metrics [3]–[5], [7]–[9].
These models, however, won’t apply for other applications.
We instead take an application-agnostic approach to better
capture the user online experience. Most related to our work
are a number of efforts to collect and characterize network
and system performance data annotated with user feedback
from laptops and desktops [10]–[13], [21] as well as smart-
phones [22]. HostView [13], which provided the dataset used
in this paper, is one example of these measurement efforts.
These efforts have led to interesting preliminary insights on
the relationship between QoS and QoE, but not to general
models or predictors of QoE based on QoS parameters as
we do in this paper. The only exception is OneClick [23],
which uses a Poisson regression model to correlate network
metrics of one application with the rate that users click on a
button to indicate dissatisfaction with this specific application.
The model is based on asking users to input feedback while
watching or listening pre-recorded traces with different loss
rates. In contrast, our solution can flag user dissatisfaction
under real network conditions.

VII. DISCUSSION AND FUTURE WORK

We discuss here some open issues that must be addressed for
our predictor to be integrated into an online diagnosis system.
Implementation of online prediction and diagnosis. This
paper relied on the traffic traces processed offline to extract
connection metrics and generate the feature vector Xt per
application. In an actual system implementation, we must

generate Xt online, predict user dissatisfaction at every time
bin, and launch a diagnostic tool when a time bin is labeled
as dissatisfied. The design and implementation of a system
that performs all these tasks in real-time without overloading
the user’s machine in terms of CPU or storage represents a
challenge that we plan to address in our future work.
Configuration of online predictor. The online predictor has
to be configured with the models we obtain during our training
phase. In the ideal scenario, we would train the predictor once
and apply the same model to all users. For that, we need to
conduct further research to better understand the generality of
our predictors. In our future work, we plan to explore other
related questions. Does a predictor learned from one user apply
to another? How often do we need to re-train predictors?
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