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Abstract — In large-scale IPTV systems, it is essential to main-
tain high service quality while providing a wider variety ofservice
features than typical traditional TV. Thus service qualityassess-
ment systems are of paramount importance as they monitor the
user-perceived service quality and alert when issues occurs. For
IPTV systems, however, there is no simple metric to represent user-
perceived service quality and Quality of Experience (QoE).More-
over, there is only limited user feedback, often in the form of noisy
and delayed customer calls. Therefore, we aim to approximate the
QoE through a selected set of performance indicators in a proac-
tive (i.e., detect issues before customers reports to call centers) and
scalable fashion.

In this paper, we present a service quality assessment framework,
Q-score, which accurately learns a small set of performanceindica-
tors most relevant to user-perceived service quality, and proactively
infers service quality in a single score. We evaluate Q-score using
network data collected from a commercial IPTV service provider
and show that Q-score is able to predict 60% of the service prob-
lems that are reported by customers with 0.1% false positives.
Through Q-score, we have (i) gained insight into various types of
service problems causing user dissatisfaction, includingwhy users
tend to react promptly to sound issues while late to video issues;
(ii) identified and quantified the opportunity to proactively detect
the service quality degradation of individual customers before se-
vere performance impact occurs; and (iii) observed possibility to
allocate customer care workforce to potentially troublingservice
areas before issues break out.

Categories and Subject Descriptors
C.4 [Computer-Performance of Systems]: Reliability, available-
ity, and serviceability

General Terms
Management, Reliability
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1. INTRODUCTION
IPTV technologies are transforming the global television indus-

try, enabling new operators to provide TV services whilst also en-
abling a wealth of innovative new IP-based services integrated with
more traditional TV. However, there is a pressing need to ensure
that the IPTV services being deployed deliver a Quality of Experi-
ence (QoE) that is equal to or better than traditional TV services.

The traditional approach to assessing quality of experience (QoE)
has been through subjective evaluation in controlled laboratory en-
vironments. Unfortunately, subjective evaluation is expensive, error-
prone and unreliable. A complementary approach is through user
feedback. It is, in general, collected by the call centers and it pro-
vides a direct measure of the service performance problems experi-
enced by the users. However, user feedback is not always complete
(not all users report service quality issues) and delayed (users have
already been negatively affected by the time they call customer care
center to report their service quality issues).

What operators lack today is a proactive approach to obtaining
comprehensive views of user’s quality of experience. Such views
are critical to proactively detecting service issues that matter to cus-
tomers, so that operators can rapidly respond to them to ensure a
high-quality customer experience. Without such visibility, opera-
tors risk being unaware of service degradations - instead they learn
about issues only when customers reach frustration points and re-
port to customer care call centers. Thus, proactive assessment of
quality of experience is crucial to providing operators with insights
into the ultimate metric - what customers are experiencing -so that
they can effectively manage their service offerings and detect and
ideally respond to issuesbefore customers report issues. Proactive
assessment of quality of experience can also help operatorsto ef-
fectively dimension the customer care workforce in anticipation of
the large volume of user calls and customer-impacting conditions
can be avoided.

Although there is extensive monitoring of network elementsin
place today and operators rapidly react to issues which are reported
by the network elements - there is no technology which can di-
rectly measurecustomer perception of TV service quality. Video
monitoring technologies exist, but it is still non-trivialto relate such
measurements to customer perception. Deploying video monitor-
ing to millions of customers is also prohibitively expensive, and
service providers are typically constrained by the technology avail-
able within the Set-Top Boxes.

In the absence of direct measurements, we instead focus on us-
ing network measurements to infer customer service experience.
However, such an approach is still challenging, due to (i) incom-
plete knowledge about the relationship between user-perceived is-
sues and network performance metrics, and (ii) user feedback about



quality of experience is biased towards the negative (i.e.,customer
calls on reporting issues) and is often delayed, noisy and limited.

In this paper, we propose a new framework, which we refer to
as Q-score, for proactive assessment of user perceived quality of
experience. Q-score constructs a single quality of experience score
using performance metrics collected from the network. Q-score
consists of two key components: (i) offline learning of the associa-
tion between the service quality of experience and the network per-
formance metrics collected from the servers, routers and in-home
equipment, and (ii) online computation of the score for individual
users or groups of users. Q-score captures the quality of experi-
ence by users in a timely fashion and can provide operators with
rapid notification of service issues, often giving them a lead time of
several hours before the user reports to the call center.

Q-score Design Challenges.Due to the interwoven server and net-
work system, as well as the sophisticated hardware and software
composition of home network devices, assessing service quality of
experience is a sophisticated task. The proposed Q-score approach
uses customer reports (e.g., tickets) to provide feedback regarding
issues that customers are concerned about. Designing Q-score re-
quired us to address the following key challenges:

1. Associating QoE with network performance. Because of
the inherent difference between network-level performance
indicators and user-perceived quality of service, associating
the two does not occur naturally. Even for domain experts,
since there is no objective video quality metric, it is not trivial
to identify key performance indicators that are closely related
to quality of experience. Even if the metric were available,
it would require more finely grained monitoring of network
indicators, which in turn might introduce scalability issues.

2. Lack of timely, high-quality user feedback.User feedback
is inherently noisy, incomplete and delayed. Depending on
situations such as the individual viewer’s living schedule, the
severity of the issue, there are large variances between thebe-
ginning of service quality issues and reporting times. Some
users issue a report immediately after they observe a ser-
vice quality degradation; others may wait hours before call-
ing customer service centers. Similarly, different users have
different tolerance levels to service quality issues - one user
may report incessantly regarding issues that another user may
barely notice. This all makes it inherently challenging to use
such feedback to associate service quality of experience with
network performance.

3. Large volume of diverse performance measurements.From
a network perspective, service providers typically collect fine-
grained measurements from the routers and servers (e.g., real-
time syslogs, and regular polls of SNMP performance coun-
ters such as CPU, memory, packet counts, and losses). Some
performance measurements inside the home may be fine-
grained (e.g., residential gateway events), whereas others may
be coarse-grained (e.g., hourly or daily summaries of Set-
Top Box events). Set-Top Box (STB) data collection is in-
tentionally not fine-grained to minimize the potential of ser-
vice disruption due to measurements and due to the massive
scale of the measurement infrastructure that would be re-
quired. The diversity in the granularity of performance mea-
surements poses interesting technical challenges in inferring
the quality of experience.

Our Contributions.

1. We design and implement a prototype Q-score system for
proactively assessing quality of experience for IPTV users.
Q-score uses a multi-scale spatio-temporal statistical mining
technique for computing a single score capturing the quality
of experience. By performing spatio-temporal aggregation
and multi-scale association of the user feedback with net-
work performance metrics, it identifies the right set of met-
rics useful for accurately quantifying the quality of experi-
ence.

2. We evaluate Q-score using data collected from a large com-
mercial IPTV service provider and show that Q-score is able
to predict 60% of customer service calls with 0.1% of false
positives.

3. We create three applications above Q-score. (i)Identifying
important Key Performance Indicators (KPIs) that are statis-
tically associated with the quality of experience , (ii)Predict-
ing bad quality of experience to users and generating alerts to
the Operations team, and (iii)Effective dimensioning of the
customer care workforce to dynamically allocate repair per-
sonnel to service regions as they experience issues for con-
ducting root-cause diagnosis and rapid repair.

Organization. The remainder of the paper is organized as follows.
In Section 2, we provide background information regarding the
IPTV network architecture and its data. We describe the design of
Q-score in Section 3, with details on its offline learning component
and online monitoring component. We present performance evalu-
ation results in Section 4. In Section 5, we explore three important
applications of Q-score. We review related work in Section 6and
offer conclusions in Section 7.

2. BACKGROUND
In this section, we give an overview of the IPTV service archi-

tecture followed by a detailed description of the data sets used in
the paper.

2.1 IPTV Service Architecture
Figure 1 provides a schematic overview of an IPTV system. The

service network exhibits a hierarchical structure where video con-
tent is delivered via IP multicast from servers in the provider’s core
network to millions of Set-Top Boxes (STBs) within home net-
works. Specifically, either the Super Head-end Office (SHO) which
serves as the primary source of national content or Video Head-end
Offices (VHOs) which governs local content at each metropolitan
area encodes, packetizes and sends the content towards end users.
Depending on the service provider, the video content goes through
several routers and switches in Intermediate Offices (IOs),Cen-
tral Offices (COs), a Digital Subscriber Line Access Multiplexer
(DSLAM), and a Residential Gateway (RG) before reaching STB
where the packetized content gets decoded and displayed on the
TV. All of the network entities comprising the IPTV service logs
Key Performance Indicators (KPIs) such as delivery status of data
and health diagnostics.

2.2 Data Sets
In the paper, we use data collected from a large commercial

IPTV service provider in the United States, which has customers
spread throughout four different time-zones. Our data set consists
of (i) network performance indicators, (ii) user behaviorsand activ-
ities, and (ii) user feedback in the form of customer troubletickets
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Figure 1: IPTV service architecture

as summarized in Table 1. We normalize timestamps in all datasets
to GMT to accurately and effectively associate the user feedback
with performance metrics and user behaviors. The data has been
collected for 45 days from August 1st to September 15th, 2010.
Note that all the information related to the users are anonymized to
preserve their previcy.

Network Performance Indicators. Network performance indica-
tors are categorized into two types: (i) provider network perfor-
mance indicators, which are collected from routers and switches
in SHO, VHO, IO, CO of the IPTV service provider as shown in
Figure 1 and (ii) home network performance indicators, which are
collected from components inside user’s homes (i.e., RG andSTB).
For the provider network performance data, we collected SNMP
MIBs from every router and switch in SHO, VHO, IO, and CO.
The SNMP MIBs report five minute average performance statistics
of CPU utilization and fifteen minute average summaries for packet
count, packet delivery errors and discards.

From the home network side, we first collected data relevant to
each STB and RG. Each STB records audio and video streaming-
related information including video throughput, receivertransport
stream errors, codec errors, DRM errors, and viewing duration of
TV channels. The video streaming-related information is reset when
the TV tuner clears its buffer by switching channels. While each
STB logs all the TV viewing information at all times, pollingservers
only take a subset of the STBs’ statistics at each polling interval
(due to the high volume of audio and video log and traffic over-
head during data delivery). As a result, only a sampled set ofSTBs
(i.e., 2% of all STBs) are used in our study. Secondly, we collected
STB syslog information that contains a wide variety of hardware
and software information, such as hard disk usage and memoryus-
age, data delivery status such as packet error rate and buffer usage.
The diagnostic information are collected in the same way as the

Data Set Type Spatial Level Description

STB

STB audio quality indicators
STB video quality indicators
STB syslog

Network STB resets
Performance STB crashes
Indicators RG RG Reboots

IO & CO SNMP MIBs of routers & switches
SHO & VHO SNMP MIBs of routers & switches

User
User

STB power on/off log
Activity STB Channel change log
Indicators STB Stream control log

User Feedback User Customer trouble tickets

Table 1: Summary of data sets

STB audio and video log,i.e., sampled data were polled by col-
lection server in round robin fashion. Thirdly, we collected crash
and reset events log from each STB. The crash events log refers
to unexpected rebooting of STBs due to software malfunctions and
the reset refers to intentional and scheduled reboots commanded
by network operators due to, for instance, software updates. The
crash and reset log are periodically collected from all STBswith
millisecond scale time stamps. Last performance indicatortaken
from home network is the reboot log of RGs that are commanded
by operators remotely. RG reboot logs are collected in the same
way as STB reboot logs. The crash and reboot logs are collected
from the entire seven million STBs.

User Activity Indicators. Because IPTV networks are highly user-
interactive systems, certain user activity patterns or habits can cre-
ate overload conditions on the STB and cause a service issue (e.g.,
a user changing channels too frequently may cause its upstream
device such as a DSLAM to be overwhelmed, leading to an in-
ability to handle all of the remaining STBs that it serves). Hence,
user activities are another important factor to be considered. Sim-
ilar to conventional TV users, IPTV users use a vendor/provider-
customized remote controller to control the STB. For this paper,
we collected logs from every STB that captures four types of user
activities performed: (i) power on/off: this is the result of the user
pressing the power button to turn on or off the STB; (ii) chan-
nel switch: this can be the result of one of the three actions:tar-
get switching by directly inputting the channel number, sequential
scanning by pressing the Up/Down button, or pre-configured fa-
vorite channel list; (iii) video stream control: this includes actions
such as fast forward, rewind, pause and play that are performed on
either live TV streams, VoD, or DVR; and (iv) on-screen menu in-
vocation: this log saves the user action of pulling up the STBmenu
displayed on TV screen that lets the users to access the features
provided by the IPTV system.

User Feedback.For user feedback, we used calls made to the cus-
tomer care center of an IPTV service. Customer care cases are
records of user interactions at call centers. A customer call can
be related to service provisioning, billing and accounting, or ser-
vice disruption. Since the focus of our paper is on quality ofex-
perience (QoE), we specifically examined users’ reports on service
disruptions that later involved technical support as our user feed-
back. Each customer call related to service disruption includes the
anonymized user ID, report date and time, brief descriptionof the
problem, and resolution of the issue.
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3. Q-SCORE DESIGN
In this section, we introduce our proposed scheme, Q-score.The

high level idea is to extract a useful association between the noisy,
incomplete, and indeterminately-delayed user feedback and the var-
ious network (including the servers, transport and in-homedevices)
performance indicators through an offline learning process, and
then transform the knowledge into an online monitoring system that
estimates/predicts user-perceived service quality basedon the avail-
able network KPIs. We start by giving an overview of the Q-score
system architecture and then dive into details of each component.

3.1 Overview
Figure 2 presents the system architecture of Q-score. As shown

in the figure, Q-score takes input from network (including servers,
transport and in-home devices) performance indicators, which we
refer to asfeatures, the user control activities, and the user feed-
back in the form of customer call service records. The outputis
a series of Q-scores, one for each user of the service, quantify-
ing the received service quality. At a high level, our systemis
composed of two components: (i) an offline learning component
and (ii) an online continuous monitoring component. The over-
all dataflow in Q-score system begins with the offline relationship
learning between user feedback on service quality and the mea-
surements from the network features and user activities. Ideally,
if there had been any accurate and fine-grained user-level service
quality measure, we would use it to train a model for network fea-
ture selection. However, as stated earlier, the best available method
for discovering user-level service quality issue is through the lossy,

noisy and indeterminately-delayed calls to customer care centers.
Consequently, we need to carefully design the appropriate tempo-
ral and spatial aggregations to remedy the inherent loss, noise and
delay with user feedback. Furthermore, by applying statistical re-
gression over a large quantity of historical data between various
network KPIs and the user feedback, we obtain a set of regression
coefficients which quantitatively capture their relationship. These
regression coefficients are fed into the online monitoring compo-
nent.

With the regression coefficients, we can turn the up-to-datenet-
work KPI measurements into a single numerical score for eachuser
or groups of them within a given spatial region. The numerical
score, which we refer to as theQ-score, captures the likelihood of
any on-going service quality problem. Tracking the Q-scoreover
time enables many service management applications, as willbe de-
scribed in Section 5.

3.2 Spatio-Temporal Feature Extraction
In order to discover possible correlation between user’s quality

of experience and IPTV system events, we apply a comprehensive
set of performance indicators ranging from provider network per-
formance indicators to home network component status logs,and
to user interaction logs with IPTV. On each of the network perfor-
mance indicators and user interaction indicators described in Sec-
tion 2.2, we apply the following series of transformations to obtain
a measurement matrix.

3.2.1 Transformations of Measurement Readings

Conversion to Fixed-Interval Time Bins. Network measurement
data collected from different sources and devices are boundto dif-
ferent time periods, posing challenge in correlating them.Some
data sets, such as CPU level of routers in SNMP MIBs, contain pe-
riodically collected measurement data, and the value represents the
average or total over the measurement interval. Some other data
sets, such as user activities to STB and STB crash logs, contain
events that take place at a single point of time, hence are intermit-
tent and have zero duration. Data sets such as STB audio and video
quality indicators contain data polled either on demand or at irreg-
ular intervals and represent the cumulative counters over avariable
time interval (e.g., due to channel switches clearing the diagnostic
counter entries).

To unify the data representation, we define a data point
d(m, l, s, e) = v as composed in a four dimensional specification:
(i) metric m ∈ M whereM is a set of metrics such as CPU level
of routers and count of video decoding errors at STBs. (ii) location
l ∈ L whereL is a set of spatial location identifiers such as a set of
users, DSLAMs, or COs. (iii) beginning time for the data binding
interval s ∈ T , whereT is the total time window, and (iv) end-
ing time of the data binding intervale ∈ T . v is the measurement
value thatd contains. Note that for measurement data pertaining to
a single time point,s = e.

The above representation is comprehensive in capturing various
cases of periodic/intermittent or fixed/variable durationmeasure-
ments. However, it requires a moderate amount of computation to
determine the overlaps among the time intervals, which becomes
prohibitively expensive for a large data set as in our case. To re-
duce the complexity, we convert alld(m, l, s, e) into a fixed-size
time interval data representationb(m, l, s, δ) as follows:

b(m, l, s, δ) = {v | v = d(m, l̄, s̄, ē), wherel = l̄

and[s̄, ē] overlaps with[s, s + δ]} (1)



whereδ is length of the feature time interval. Note that if there
exist two or moreds with matching measurement time to[s, s+ δ],
there could also be multiple identical values forb – makingb not
well defined. We need to introduce the aggregation functionsas
below.

Conversion to Derived Features.To deal with multipleds collid-
ing into the sameb (either due to time bin or spatial aggregation),
we define three types of aggregate data points, which we referto as
thederived features. They contain (i) the minimum, (ii) the maxi-
mum, and (iii) the average of all the values forb respectively. For-
mally,

fm(m, l, s, δ) = min
l∈child(l̄)

(∪(b(m, l̄, s, δ))).

fM (m, l, s, δ) = max
l∈child(l̄)

(∪(b(m, l̄, s, δ))). (2)

fa(m, l, s, δ) = avg
l∈child(l̄)

(∪(b(m, l̄, s, δ))). (3)

In this way we can limit the number of derived features to be three
regardless of the number of actual readings inb. Unless specified
otherwise, all features referred in the rest of the paper arethe de-
rived features.

Feature Normalization. To identify a small set of network features
most relevant to customer feedback, we need to fairly compare each
network feature to others. However, the network features wecon-
sider typically take numerical values, potentially havingdifferent
signs and across large range of scales. This makes it difficult to
assess the significance of their associated coefficient under regres-
sion.

To deal with the diverse data values, we further normalize fea-
tures to be binary-valued by comparing to a threshold, whichis
determined depending on the metric and location.

Consider a vector of features of the same metric and location
over different time and interval combinations:

~fa(m, l) = 〈fa(m̄, l̄, s, δ) wherem = m̄, l = l̄〉 (4)

We need to identify a threshold valueτ for ~fa. To do so, we
bring in the user feedback in the form of user call logs. We consider
the conditional distribution function of the metric value of interest
when (1) there is one or more entries of the user call log beingas-
sociated with the locationl and when (2) there is no such entry.
Ideally, a thresholdτ can separate the instances between cases 1
and 2. When thresholdτ is low, the chance of having instances in
case 1 passing the threshold increases, and when the threshold is
high, the chance of having instances in case 2 failing the threshold
increases. So, we set the thresholdτ such that the two factors bal-
ance out. Using empirical CDFs of the case 1 (F1) and case 2 (F2),
we can defineτ to be the intersecting point ofF1 and1 − F2 such
that

F1(τ ) = 1 − F2(τ ). (5)

Onceτ is determined, we can normalize offa as follows.

fa(m, l, s, δ) =



1 if fa(m, l, s, δ) >= τ
0 otherwise.

(6)

Featuresfm andfM can be normalized in the same way.

3.2.2 Constructing Measurement Matrix
In order to support multi-scale analysis that accounts for the in-

determinate delay in user feedback, we construct the regression
input matrixX over all measurement metrics, location, and time
parameters as below.

X =
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The columns ofX represent different metrics of derived features.

Thus, each column hasf with a uniquemi, wherei is an instance
of time bins. The rows ofX represent all feature values during a
specific time (si, δ) at a specific locationlj . Assuming there are
n locations,t different time bins, andk different KPI metrics and
feature aggregations, the number of rows inX is n × t and the
number of columns isk.

3.2.3 Multi-scale Temporal Level Aggregations
The time window parameterδ plays an important role in cap-

turing the extend of cause-effect delays. Largeδ would include
cause-effect relationship with long delay. However, largeδ would
make it insensitive to dense measurements with short cause-effect
delay, as the aggregation weakens the significance of correlation.
Since differentδ values have advantages over others, we adopt a
multi-scale analysis approach by including multiple time window
parameters into our consideration. Our matrix representation in Eq
(7) is flexible enough to enable this – we append in columns the
X(δi)s with different time-intervals (δi).

XTemp.Comb. = [X(δ1) · · · X(δv)] (8)

wherev is the number of different values of the time window pa-
rameter.

3.2.4 Multi-scale Spatial Level Aggregation
Similarly to the temporal aggregation captured by the time win-

dow parameter, there can be multiple spatial aggregation levels
with an IPTV system architecture. Based on the hierarchicalstruc-
ture in Figure 1, we consider three different spatial aggregation lev-
els in Q-score, namely user, DSLAM, and CO levels.

Single-Scale Spatial Level Aggregation.We set the baseline spa-
tial aggregation level to per-user aggregation. This is because the
customer service report logs are associated with a household, which
we loosely refer to as a user. Matching the network features to the
household/user level, one of the following process is necessary: (i)
for features at finer grained spatial level than user (such asSTB re-
lated features since one household may have multiple STBs),we
take the maximum among different feature values for the more
specific locations as the representation forfM , the minimum for
fm, and the average forfa, at the user level; (ii) for features with
coarser grained spatial level than user (such as DSLAM and CO),
we replicate the coarser grained feature values for each associated
user within the hierarchy. In this way, we preserve the number of
samples to ben × t in each row ofXuser. The same spatial level
aggregation is applied for the DSLAM level and the CO level to
obtainXDSLAM andXCO respectively.



Multi-Scale Spatial Level Aggregation.In parallel with the multi-
scale analysis with respect to time window parameter, different spa-
tial aggregation levels can be fed into regression altogether. The
idea is that the most prominent feature would be at a suitablespatial
aggregation level and would dominate the same features aggregated
at other spatial levels. We append in column the feature matrices
for different spatial levels to get theXSpat.Comb.:

XSpat.Comb. = [XuserID XDSLAM XCO]. (9)

3.3 Feedback Aggregation
As outlined in Section 2.2, we use the customer service call logs

as the user feedback regarding service quality. This feedback is
inherently unreliable. It is incomplete as not all service quality
problems (e.g., video glitches) would be noticed and reported by
users. And there is an indeterminate delay ranging from minutes
to hours to even days between the service problem and the trouble
ticket log entry (i.e., entries of customer reporting issues to call
centers). All of these require some denoise processing for such
user feedback to be useful even in statistical sense.

We adopt the same principle applied in the spatio-temporal ag-
gregation with respect to network features. Letc be the predicate
of the presence of a matching entry in the feedback log (B):

c(l, u, γ) =



1 if ∃ b ∈ B during[u, u + γ];
0 otherwise.

(10)

whereu is the beginning time for a feedback binding interval and
γ is the length of feedback time interval. Oncec(l, u, γ) is defined,
we can use the same spatio-temporal aggregation method for the
network features onc.

A network event or user activity is always a cause of user feed-
back but cannot be an effect. Thus we setu = s + δ so that when
we correlateci to bi, we take account of the causal sequence be-
tween network (or user activity) events and user feedback. Lety be
a vector of feedback for different users over time

y = [c(l1, u1, γ), ..., c(l1, ut, γ), c(l2, u1, γ), ..., c(l2, ut, γ), ...]T .

The length of the vectory is determined by the number of locations
n and the number of time binst, making it to ben× t which is the
same as the row count ofX.

3.4 Regression
Given the measurements of network indicatorsX and user feed-

backy, we now aim to find a coefficient vectorβ that provides
a compressed representation of the relationship betweenX and
y. Note that, in the event of measurement or data collection error
which results in parts ofX or y to have no values, we remove the
affected rows ofX andy from consideration to eliminate possible
false correlation.

Such an optimization can be performed usingregression. A base-
line regression model of linear regression [9], however, cannot pro-
vide the optimal solution as our system of equationXβ = y is
over-constrained (i.e., the equation has far smaller number of un-
knowns than the number of equations (k ≪ (m ∗ n))). To prevent
β from over-fitting due to high variance, we apply Ridge regres-
sion [11] that imposes a penaltyλ on the complexity of model by
minimizing a penalized residual sum of squaresRSS as follows

min
β

RSS(D, β) s.t.

n
X

i=1

β
2 ≤ s. (11)

whereD is the set of observed data pointsD = xn, yn.
We can state this optimization problem in Ridge regression as

β̂ = arg min
β

X

i

(yi − β0 −

p
X

j=1

xijβj)
2 + λ

p
X

j=1

β
2
j . (12)

The Ridge coefficient̂β becomes

β̂ = (XT
X + λI)−1

X
T
y. (13)

whereI is the identity matrix.
There are other regression methods we have explored including

l1-norm minimization and logistic regression. However, as our sys-
tem of equation has tens of thousands of equations and thousands
of unknowns,l1-norm minimization and logistic regression either
took excessive amounts of time in computation or failed to con-
verge to an answer. The complexity and scale of our system make
these other techniques infeasible.

Finding Significant KPI Weights. From theβ coefficients, we can
identify key performance indicators (KPIs) that are more closely
related to user feedback. This involves sorting the regression co-
efficients by their absolute value and identifying the topN KPIs
associated with them. Furthermore, by analyzing the commonal-
ity and difference of the same metric across different temporal and
spatial aggregation configuration, we can gain insight on how each
of these KPIs impact the users’ quality of experience specific to the
most significant spatio-temporal aggregation. The analytical results
on the most significant KPIs in IPTV are presented in Section 5.1.

3.5 Compute Q-score in Runtime
Once the offline learning ofβ completes, we can compute from

the available key performance indicators the Q-scores either for in-
dividual users or groups of users aggregated spatially depending on
the feedback aggregation scheme used.

Detecting Significant Q-score Changes.We applyβ from the
offline learning to the current network measurement dataX and ob-
tain Q-score that estimates per-user level service quality. Running
continuously as network KPI data streaming into Q-score, wetrack
the series of Q-scores over time. Since Q-scores are real-valued
numbers, we need to identify the thresholds for alarming on the
Q-scores to the operations. The alarms can be proactively used to
predict customer calls. We apply simple threshold-based change
detection on the time-series of Q-scores to generate the alarms.

False alarm rate of Q-score.As a prediction mechanism of pos-
sible outbreaks, it is very important to have a low false alarm rate
in a service quality assessment. In Q-score, a multitude of com-
ponents prevent a single user, one end-user device, or a network
device from raising false alarms for a large population of users.
The feature normalization described in Section 3.2.1 regulates fea-
ture values, an exceptional feature value for an individualcannot
affect much to the entire population. The multi-scale aggregations
(Section 3.2.3, 3.2.4) further reduces the possibility of falsely em-
phasizing rare events. In the case of spatial aggregation, because
Q-score considers both individual users and spatial groupsof users,
the score is stable even when an individual’s feature value is high.
Similarly, temporal aggregation prevents the chance of false alarms
due to highly transient feature value changes. Additionally, in prac-
tice, we carefully set the threshold of Q-scores to focus on minimiz-
ing false positives, even with slight sacrifice to coverage (recall).



4. EVALUATION
In this section, we present the performance evaluation results of

Q-score and show that the regression results are accurate and ro-
bust, and the multi-scale aggregation of spatio-temporal features
has benefit over single scale, non aggregated cases.

4.1 Evaluation Methodology
Metrics. We compare the number of predicted customer trouble
tickets and that of received customer trouble tickets and measure
the accuracy of prediction of service quality issues by false negative
rate (FNR) and false positive rate (FPR). The FNR and FPR are
computed per user basis.

FNR =
#of time bins that Q-score fails to predicts a trouble ticket

#of time bins that have received trouble tickets

FPR =
#of time bins that Q-score incorrectly predicts a ticket

#of time bins that do not have any trouble tickets

Note that due to the sparsity in the occurrence of user feedback
(i.e., trouble tickets), the number of time bins without anyuser
feedback is orders of magnitude higher than the number of time
bins with user feedback.

Training and Testing Sets. In our evaluation of the Q-score sys-
tem, we use data sets collected from a commercial IPTV network
provider in US over two months time period from August 1st, 2010
to September 30th, 2010. Unless otherwise mentioned, we use15
days of data collected from August 15th, 2010 to August 29th,2010
as the training data set forβ and the subsequent 15 days of data
collected from September 1st, 2010 to September 15th, 2010 as
the testing data set. In addition, we use multi-scale temporal ag-
gregation ofXTemp.Comb. combiningδ of 3-24 hours and multi-
scale spatial aggregation ofXSpat.Comb. combining spatial levels
of user, DSLAM, CO, and VHO as the default setting. Lastly, we
set the default feedback time binγ to beγ = 24 hours.

We assignλ a small positive value within(0, 0.05]. While dif-
ferentλ exhibit small differences in accuracy, the optimalλ varied
from data set to data set. Since the selection ofλ is specific to data
set in each test, we present the results with the bestλ while omitting
to show its actual value.

4.2 Results

4.2.1 Accuracy Analysis
We begin our evaluation by assessing how well Q-score follows

the ground truth of user-perceived service quality. In our evalu-
ation, we use user feedback as an approximation of the ground
truth of user-perceived service quality issues in trainingand test-
ing Q-score system. Recall that the user feedback is incomplete
in reflecting user perceived service quality. In fact, the user feed-
back captures a subset of user perceived service quality issues and
thus underestimates the actual occurrences of service performance
degradations. Fortunately, major and/or long lasting service per-
formance degradations are likely to be captured by the user feed-
back [24]. Hence, it is likely that the computed Q-score underes-
timates the actual user perceived performance issues, but expected
to capture major outages and performance degradations.

While Q-score does not perfectly match with the user perceived
service quality at the individual user level, the changes ortrends in
the distribution of Q-score are expected to follow closely with that
of the actual service quality degradation at certain spatial aggrega-
tion levels. In our evaluation, we choose CO as the aggregation

Aggregation methodP value in F-testCorrelation coefficientR
CO 0.00 0.6826
Random 2.21e-31 0.7165

Table 2: Accuracy analysis results of Q-score

level1. By summing up individual users’ feedback within each CO
into a single value, we obtain an aggregation vectorSactual of user
feedback. SinceSactual is a spatio-temporal aggregation of user
feedback, its element now signifies the level of user-perceived ser-
vice quality issues. Similarly, by summing up the individual users’
Q-score inside each CO into a single value, we can obtain an aggre-
gation vector of Q-scoresSestim that signifies our estimated level
of user-perceived service quality.

To evaluate the significance of the relation between the actual
(Sactual) and estimated (Sestim) user perceived service quality
level, we run an F-test between them. Let the null hypothesis
H0 : r = 0 whereSactual = r ∗ Sestim. We find that for the
significance level of 0.1, the hypothesis test is rejected, implying
that the relation between the two vectors does exist. A Pearson’s
correlation test also shows relatively high correlation coefficientR
betweenSactual andSestim, proving that the relationship between
the two is linear. In other words, Q-score does follow the user-
perceived service quality.

Because CO level aggregation represents spatial proximityof
user geographical locations, user feedback rates can be different
across COs. To evaluate if CO aggregation introduce any biason
the results, we also conduct the same evaluation using a random
grouping with the same number of groups as the number of COs
and compute aggregation vectors. Table 2 summarizes the F-test
and Pearson’s correlation tests results for both CO level aggregation
and random grouping based aggregation. The random grouping
based aggregation generally shows the same results as the COlevel
aggregation, supporting that Q-score indeed follows user feedback
regardless of how we aggregate users in Q-score computation.

4.2.2 Multi-scale Temporal Aggregation
In this section, we evaluate the impact of different time-bin size

(δ) on network indicators (single-scale temporal level aggregation).
Then we show the performance benefits by using multi-scale tem-
poral aggregation on network performance indicators (multi-scale
temporal level aggregation).

Figure 3 shows the Q-score on FPR-FNR trade-off curves using
variousδs ranging from 3 hours to 24 hours (i.e., each curve corre-
sponds to anX with a givenδ). Note that FPR shown on thex-axis
is in log-scale and FNR shown on they-axis is in normal scale.
The figure shows that the prediction accuracy gets generallybetter
as we shortenδ (i.e., the curve gets closer to the lower left corner of
the plot). However, comparingδ = 3hours andδ = 6hours, their
FNR overlaps over different range of FPR, indicating that there is
no single optimalδ to be chosen.

Figure 4 shows the results ofXTemp.Comb. by applying multi-
scale temporal aggregation on network performance indicators.
There are three curves obtained by combining (i) shorter time bins
of 3-12 hours, (ii) longer time bins of 15-24 hours, and (iii)the
entire range of 3-24 hours. We observe that (iii) provides the best
performance among them. At the same time, (iii) is also strictly

1We considered various levels of spatial granularity in the IPTV
hierarchy including DSLAM, CO, and VHO levels. Among them,
CO level aggregation is most adequate for the accuracy analysis
because it yields a statistically sound number of user IDs ineach
CO and enough number of COs to make meaningful comparisons
between aggregation vectorSes.
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Figure 3: Comparison of various δs on features (performance
indicators)
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Figure 4: Comparison of multi-scale temporal aggregationson
features (performance indicators)

better than any curves in Figure 3, proving that multi-scaletempo-
ral aggregation on network performance indicators does improve
the accuracy of Q-score prediction on service quality issues.

4.2.3 Multi-scale Spatial Aggregation
We now evaluate the impact of various levels of spacial aggre-

gation on network performance indicators and the benefit of using
multi-scale spatial aggregation in Q-score.

Figure 5 shows the trade-off curves ofX with various single-
scale spatial aggregation ranging from user ID (XuserID),
to DSLAM (XDSLAM), to CO (XCO), and to VHO (XVHO)
level. As the spatial aggregation level changes from user IDto
DSLAM (i.e., smaller-sized region to larger-sized region), we ob-
serve that the FNR increases from 35% to 100% when FPR is at
0.1%. A possible explanation to this is that if the service quality is-
sues reported by users are more related to a home network problem
rather than a provider network problem, spatial aggregation of net-
work performance indicators can attenuate signals relevant to the
individual users at home network side. As we will show in Sec-
tion 5.1, by analyzing significant KPIs, we are able to confirmthat
the significant KPIs are mostly related to STB and RG (i.e., home
network devices) while backbone network appeared to be wellpro-
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Figure 5: Comparison of various spatial aggregation levelson
features (performance indicators)
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Figure 6: Comparison of various time bin sizeγ on user feed-
back

visioned. In addition to the single-scale spatial aggregation, the
first plot of Figure 5 (denoted as ‘USER + DSLAM + CO + VHO’)
shows multi-scale spatial aggregation (with measurement matrix
XSpat.Comb.). We observe that the multi-scale spatial aggrega-
tion outperforms any single-scale aggregation in terms of overall
prediction accuracy, proving that the regression algorithm makes
the most accurate selection of spatial level of features.

4.2.4 Feedback Aggregation
To show the effect of user feedback duration being aggregated

together, Figure 6 compares various lengths ofγ. We observe that
asγ gets longer, the regression performance gets better. An expla-
nation for this is, as mentioned in Section 3.3, there is a significant
delay between the occurrence of a problem and the filing of user
feedback. Due to the elongated delay, time-bins with shortγs may
fail to contain feedback correlated with significant network indica-
tor values.

4.2.5 Sensitivity to Training Duration
Finally, we evaluate the sensitivity of testing accuracy onthe

duration of training. In this experiment, we fix the testing duration
and assess how accuracy changes by varying the training duration.
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Figure 7: Comparison of accuracy with various training dura-
tions

Table 3 shows the dates of training and testing periods used in our
evaluation. Figure 7 shows the accuracy trade-off curves ofusing
different training durations. We observe that in general, the testing
accuracy improves as we increase the training duration. However,
the gain becomes marginal once the training duration is longer than
15 days. This result suggests that using 15 days as training period
is a good choice.

A closer examination of the curves corresponding to the use of
15 and 20 days of training duration reveals that the accuracyof
using 15 days training duration is marginally better. A possible
reason for this is that in the month of August, there was a network-
wide STB firmware upgrade. The upgrade that took place between
08/10/2010 and 08/14/2010 could have obstructed measurement of
STB logs (i.e., STB audio and video quality measurement logs,
syslog, reset and crash logs) and caused learning ofβ to be affected.
Since this kind of glitches occurs in real data, we take smallamount
of noise as granted. In all, we observe that 15 days of training is
enough to learnβ.

Summary. In this section, we evaluate the accuracy and robustness
of Q-score. The Q-score, combined with multi-scale temporal ag-
gregation and multi-scale spatial aggregation, successfully predicts
60% of service problems reported by customers with only 0.1%
misclassification (i.e., false positive rate). While an in-depth anal-
ysis is in order, our preliminary test shows that a portion ofthe
remaining 40% of unpredicted issues are either (i) not captured by
any of the network KPIs we measure (e.g., remote controller mal-
function, wiring issues between STB and TV inside home) or (ii)
fallacies that our regression does not capture (e.g., gradual and long
term changes in network KPIs). For (i), we are unable to com-
pletely ignore such issues as feedback is logged by human oper-
ators in plain text. For (ii), we address with our previous works
Giza [18] and Mercury [19] as they are specifically designed to
detect and mitigate recurring and persistent events in application
service networks. In a future work, we plan to conduct an exten-
sive analysis on the false negatives to determine the proportions of
the issues in each of the categories and further improve the success
rate.

Duration Dates
Testing duration 15 days 09/01/2010 - 09/15/2010

Training durations

5 days 08/25/2010 - 08/29/2010
10 days 08/20/2010 - 08/29/2010
15 days 08/15/2010 - 08/29/2010
20 days 08/10/2010 - 08/29/2010
30 days 08/01/2010 - 08/30/2010

Table 3: Training and testing durations

KPI Type KPI Label β Coef.

Network deliveryRTP payload error 0.68
Tuner fill 0.63
Hole Too Large 0.61
Decoder stall 0.42
Bytes processed per sec -0.32

Audio Audio decoder errors 0.84
Video Video DRM errors 0.73

Video decoder errors 0.53
Video frames decoded -0.49
Video data throughput -0.49

Table 4: Significant KPIs for large δ (15-24 hrs)

KPI Type KPI Label β Coef.

Network deliveryHole without session packets 0.60
Tuner fill 0.57
Bytes processed per sec -0.34
ECM parse errors 0.32

Audio Audio decoder errors 1.03
Audio samples dropped 0.84
Audio crypto error 0.64
Audio data dropped 0.55
Audio DRM errors 0.34

Video Video DRM errors 0.63

Table 5: Significant KPIs for small δ (3-9 hrs)

5. APPLICATION
In this section, we demonstrate the utility of Q-score by present-

ing three applications on it. First, we present a set of network KPIs
that are closely related to user-perceived service quality. Second,
we illustrate how much Q-score can predict user calls. Third, we
show the possibility of intelligently dimensioning the call center
workforce. In all applications, we successfully identify interesting
results through online analysis of Q-score.

5.1 Identification of Significant KPIs
Today’s commercial IPTV services support up to millions of user

devices. If for every single device, few KPIs are monitored contin-
uously, the measurement space can easily reach to the order of bil-
lions. In addition, time-lapse analysis in the diagnosis (as many di-
agnosis schemes employs) is required to be conducted on multiple
data snapshots in short periods of time. Thus, in service assurance
of a large-scale IPTV system, it is infeasible to blindly measure,
collect, and analyze such large volume of diverse KPIs from the
entire network. In this application, we discuss our experience on
identification of a small number of significant KPIs with respect to
user-perceived quality of experience.

Significant KPIs. In the generation of Q-score, we relate the net-
work KPIs and user feedback by means of the factorβ. β measures
the relevance of significant KPIs by its magnitude. The analysis of
the magnitude ofβ for different temporal aggregation levels indi-
cates how KPIs correlate with user feedback. Tables 4 and 5 list top
ten significant KPIs for relatively long history hours (15-24 hours)
and short history hours (3-9 hours), respectively. Being regressed



KPI Type KPI Label β Coef.

Network deliveryTuner fill 0.67
Src unavailable received 0.5
Hole without session packets 0.52
ECM parse errors 0.35
Bytes processed per sec -0.33

Audio Audio decoder errors 0.74
Audio data dropped 0.57
Audio crypto error 0.44

Video Video DRM errors 0.68
Video frames dropped 0.65

Table 6: Significant KPIs for multi-scale temporal aggregation
(0-24 hrs)

with individual users’ feedback, the significant KPIs exhibit some
commonality (shown in bold) as well as differences.

From the KPIs relevant to network delivery statistics, we observe
that “tuner fill”, “hole without session packets”, “hole toolarge”,
“bytes processed per sec” are particularly interesting KPIs. “Tuner
fill” logs the number of packets lost by STBs before they are re-
quested for TCP retransmission. The lost packets are supposed to
be retransmitted by content distribution servers. Tuner fill counts
can be related with video quality in that they indicate the condition
of the delivery network and gives a sense of the average packet loss
that would occur without any packet recovery scheme. A ’hole’
represents a time interval greater than a given threshold (assumed
to affect video quality) in which no video packets have been re-
ceived. ’Hole without session packets’ counts the number ofsuch
holes occurred during a STB’s viewing session (since the user’s last
channel change). And ’hole too large’ error is triggered when the
hole size is larger than the maximum end-to-end delay of150ms

recommended by [2].
On the audio and video related KPIs, “decoder error” logs are

general types of errors that occurred during the decoding ofaudio
data. Decoder errors can occur due to various situations including,
but not limited to, out-of-order data packet reception, audio buffer
underrun or overrun, and packet loss. ‘DRM errors’ and ‘crypto
error’ indicates errors caused by the video DRM decoder . This
error can occur when encoder packets containing DRM keys are
lost. In IPTV, every video program is encoded with DRM, and
inability of decoding DRM blocks viewing of the programs. Thus,
the occurrence of this error blocks TV viewing until new encoder
keys are received regardless of receipt of the data packets.Lastly,
the ‘video frames dropped’ error represents the number of video
frames drops (below the normal frame rate of 29.97 frames per
second) due to packet loss or decoder errors. When large frame
drop occurs, viewers can notice choppy or skippy motions.

Observations. We observe an interesting finding by comparing
significant KPIs of long-term event durations (i.e., large δ) and
short-term event durations (i.e., small δ). The finding is that the
former tend to have more video related KPIs as the most significant
ones, whereas the latter has more KPIs related to audio. Thisre-
lates with the relevance that audio has with respect to videoin the
user experience. Audio data is more susceptible to losses and errors
than the video data. The reason is because the total volume ofthe
data in audio is much less than that of the video, thus the impact
of lost or delayed audio data is relatively greater than thatof video
data. Naturally, the viewers of the programs have less tolerance
to audio issues than to video issues, and report about audio issues
much earlier than video issues. The contrasting finding between
long and short history hours has uncovered that, depending on the
characteristics of the issues (i.e., whether the issue is about audio
or video), there are differences in urgency.
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Figure 8: Growth pattern of Q-score

Another finding from the KPI analysis is drawn from multi-scale
temporal aggregation. As shown in Table 6, by combining long-
term and short-term event durationδ in regression, we observe both
video and audio related issues appear as the most significantKPIs.
This further confirms the effectiveness of letting the regression al-
gorithm to choose important KPIs among multiple temporal aggre-
gations.

Noticing that different KPIs have different degrees of relevancy
to user feedback, we aim to guide monitoring of network KPIs by
enlisting a small number of significant KPIs to user-perceived ser-
vice quality. This way, forthcoming fine-grained network diagnosis
can focus on the significant KPIs rather than analyzing excessive
amount of KPIs.

5.2 Predicting Bad Quality of Experience
In order for Q-score to be useful for alerting services, it should

have the capability to provide triggers well before users start to call.
Thus, there is a need to study how much into the future we can infer
customer calls using Q-score. To understand the feasible level of
proactiveness in Q-score, we evaluated two characteristics: (i) the
growth pattern of Q-score over time and (ii) stability of Q-score
with a time gap between network events and user feedback.

Growth of Q-score Over Time. Figure 8 shows the growth pattern
of Q-score for individual user IDs who filed trouble tickets.In the
figure, we align the time by the trouble ticket filing time (time = 0)
and observe how Q-score grows. The solid line represents theav-
erage value of the scores and the upper and lower tips of errorbars
represent one standard deviation plus and minus the average. From
the graph, we observe that the increase of average Q-score isclose
to linear when it is greater than0.05. The monotonic and grad-
ual increase of Q-score suggests a possibility of using Q-score as a
proactive trigger for alerting because (i) it keeps increasing once it
becomes non-negligible level and (ii) its growth is not too abrupt.
However, due to great variance among different users’ Q-scores,
we cannot use Q-score of0.05 as the significant value triggering
forthcoming actions. Instead, we seek a more realistic leadtime by
conducting a further study on the stability of Q-score.

Feasible Level of Proactiveness.As aforementioned in Section 3.3,
user feedback has indeterminate delay from the occurrencesof net-
work events. Here, we test the amount of lead time Q-score can
provide before customer calls by measuring the accuracy loss as
we increase the time gap between the occurrence times of network
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Figure 9: Comparison of accuracy of Q-scores with different
skip intervals ∆

eventsbi and user feedbackci. The default time gap (or skipping
interval) betweensi+δ andui is 0 hour because we setui = si+δ

in Section 3.3. In this test, we add the skipping time gap∆ to the
equationui = si + δ + ∆. By increasing∆ in the online moni-
toring step of Q-score generation, we test the regression for larger
delays betweenbi andci, in other words, we test for the stability of
Q-score in proactive, early warning.

With various∆ ranging from 0 hours to 36 hours, Figure 9 ex-
hibits FPR-FNR of learnedβ with different skipping times. As
we increase∆, the regression gets to rely on the user feedback of
longer time after the occurrences of network events. And we ob-
serve that the FPR-FNR trade off gets worse as results. Whilethe
choice of lead time should mainly be left to the discretion ofnet-
work administrators, we find 9 hours of lead time is at the feasible
level, as observing 9 hours of skip interval preserves 0.1% of FPR
only sacrificing 10% of FNR (i.e., FNR is 30% when skip interval
is 0 hours and 40% when skip interval is 9 hours).

5.3 Dimensioning Customer Care Workforce
If network problems occur locally to regional service areasrather

than globally, an efficient management of field operators (e.g., cus-
tomer care representatives and repair men at customer premises)
and servicing resources (e.g., devices for fine-grained monitoring
of network) would be to dynamically allocate them to challenging
service regions than assigning static work areas. Thus, predicting
the volume of forecoming issues to a service region at a giventime
is beneficial in adaptively allocating workforce across service re-
gions. In this application, we assess the possibility of pre-allocating
a customer care workforce to potentially troubling serviceareas us-
ing Q-score. To begin, we first assess the volume of service quality
issues per different spatial regions and see if the issues are con-
tained locally or spread out globally.

Spatial Distribution of User Feedback.Figure 10 shows the spa-
tial distribution of user feedback across different COs. The x-axis
shows indexes of different COs, thez-axis shows temporal trend.
They-axis shows the amount of customer calls normalized by the
peak value (e.g., a value of 1 represents that the corresponding CO
and time has the highest amount of calls shown in the figure)1 . At
a given time, we observe that high user feedback is local to each

1To protect proprietary information, we normalize some informa-
tion in the results to the extent that the normalization doesnot ob-
struct interpretation of results
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Figure 10: Normalized amount of users with customer reports
over different spatial locations (COs) and times.

CO. And over time, the areas of high user feedback changes from
one CO to another. From the fact that high feedback values gen-
erally being uncorrelated across time and CO (or space), we can
affirm that the issues are temporal rather than permanent andlocal
to an area rather than being global.

Leveraging Q-score for Dimensioning Workforce.Now that we
have seen the possibility of dynamic resource allocation over dif-
ferent COs, we evaluate how closely Q-score follows user feedback
in its magnitude when aggregated across individuals withineach
COs. Note that, to focus on its similarity to user feedback rate, we
ignored the lead time of Q-score in this test. Figure 11 showsthe
trend of Q-score and user feedback aggregated per-CO. In doing so,
Q-scores of individual user ID are first computed, and the scores
corresponding to individuals within each CO are aggregatedto-
gether to form per-CO Q-score. To compare three subfigures under
the same scale factor, the plots are normalized by the peak customer
call rate appearing in Figure 11(a), 22 hour time. Figure 11(a)
shows the trend of per-CO Q-score and user feedback for a CO
with relatively high customer feedback (i.e., customer report rates).
Over the course of 24 days, the percentage of users call the support
center on they-axis gets as high as 11%. Despite that there are
some overestimations, the general trend of per-CO Q-score closely
follows that of user feedback with Pearson’s correlation coefficient
R = 0.8797. Figure 11(b) shows per-CO Q-score and user feed-
back for COs with moderately high customer feedback. We again
see that the Q-score follows feedback whenever feedback increases
over 2%. Here,R = 0.7478 Figure 11(c) shows the same for a CO
with few customer calls. Because there are only a small increase
(2% of users calling) in the user feedback, Q-score remains at low
level of 0.17% on average withR = 0.5011. From the observa-
tions from three different COs with high, medium, and low level of
feedback, we confirmed that Q-score, when aggregated acrossin-
dividuals within each CO, closely follows the trend of per-CO user
feedback. Since Q-score is confirmed to have several hours oflead
time before users begin to report, we can leverage Q-score indi-
mensioning the workforce and prioritizing resources to areas with
more upcoming issues ahead of time.

6. RELATED WORK
In this section, we introduce related works on the two important

components of networked service assurance: quality of experience
assessment and network diagnosis.
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Figure 11: Trend of customer trouble tickets and Q-score perCO.

6.1 Quality of Experience Assessment

Controlled Performance Assessment.A traditional approach in
the performance assessment of network devices is to use controlled
lab environments. The code analysis, protocol analysis, testbed
tests, and debugging done in such controlled environments serve
to localize faults to each individual component of the system. [5,6]
apply principles of automated software fault diagnosis andmodel-
based approaches. [21] outlines the methods of software andhard-
ware verification using formal logic theorem provers. Whilethe-
orem prover-based service assessment can be extensive and cor-
rect, the process of converting system operation to mathematical
logic and inventing theorems thereafter restrict its application to a
few specialized software and hardware systems such as that of the
CPU and its microcodes. For validating network protocols, there
have been several proposals [8,12] based on simulation and system
modeling using finite state machine, traffic modeling, and queuing
theory.

Controlled testing has been extremely successful in detecting
and preventing critical software bugs and hardware failures. De-
spite their best efforts, however, they are simply unable toreplicate
the immense scale and complexity of large operational systems and
networks. Thus, there is always the risk of issues creeping into
operational settings when they are missed in controlled environ-
ments. In this paper, we focus on a data-oriented mining approach
that analyzes the data collected from an operational network. We
believe a combination of data mining, lab reproduction, andsoft-
ware/hardware analysis is required to correctly identify anomalous
service quality.

Video Quality Assessment.Subjective evaluation is the most reli-
able way of assessing the quality of an image or video, as humans
are the final judges of the video quality in great part of the video
related applications. The mean opinion score (MOS) [1] is a sub-
jective quality measurement used in subjective tests whichhas been
regarded as the most reliable assessment for video. However, sub-
jective video assessment method is very inconvenient, expensive
and slow. Thus there is a field of research dedicated to the de-
sign and development of objective quality metrics. Ongoingstud-
ies are both on standardizing the subjective measurement ofvideo
quality [23] and on developing objective video quality metrics that
model and approximate the quality [3].

There are also video quality measurement studies in the context
of networked systems [4]. The work includes discussions on the
metrics of video quality measurable from various parts of a net-
work. [17] studies the viewers’ perception of video qualityunder
packet loss-induced video impairments. [27, 28] proposes aloss-

distortion model based PSNR metric applied to video qualitymon-
itoring. Recently, ITU and other standardizing organizations began
to roll out video quality measures such as [22]. Besides the lack
of consensus in arriving at a single formula, video quality metrics
may not be readily usable in the context of network service quality
assessment as they require fine-grained measurements of perflow
network traffic which current services dismiss due to the costs of
measurement and data collection. While our method uses the cus-
tomer trouble ticket as a proxy for user feedback, the concept of
our methodology is open to employing a variety of video quality
metrics as the measure of user experience.

6.2 Reactive Performance Diagnosis
Bayesian network and graph analysis are among the most widely

used techniques in the diagnosis of network performance issues and
troubleshooting [7, 10, 14, 16, 26, 29]. Kompellaet al. [16] model
the fault diagnosis problem using a bipartite graph and usesrisk
modeling to map high-level failure notifications into lower-layer
root causes. WISE [29] presents a what-if analysis tool to estimate
the effects of network configuration changes on service response
times. Recent systems [15, 25] have used information available
to the OS to identify service quality issues using the dependency
structure between components.

[18–20] have shown the importance of focusing on recurring
and persistent events and enabling the detection and troubleshoot-
ing of network behavior modes that have been previously flown
under the operations radar. NICE [20] focuses on detecting and
troubleshooting undesirable chronic network conditions using sta-
tistical correlations. Giza [18] applies multi-resolution techniques
to localize regions in IPTV network with significant problems and
l1-norm minimization to discover causality between event-series.
Mercury [19] focuses on detecting the long-term, persistent im-
pact of network upgrades on key performance metrics via statis-
tical mining. A work on proactive prediction of service issues on
access network [13] focuses on capturing changes over long-term
(e.g., weeks and months) and conduct prediction. The main differ-
ence between the above methods and ours is in the proactiveness of
assessing service quality of experience (QoE). The reactive perfor-
mance diagnosis works mostly focus on network problems but not
on service quality of experience. We believe, Q-score is thefirst
work in using the network performance indicators to proactively
construct the quality of experience scores for large services. By
capturing the quality of experience for users in a timely andscal-
able fashion, Q-score offers the operators with rapid notification of
user-perceived issues and a lead time of several hours before cus-
tomer reports.



7. CONCLUSION
In this paper, we develop Q-score, a novel framework for proac-

tive assessment of user perceived service quality in a largeopera-
tional IPTV network. By associating coarse-grained network KPIs
with imperfect user feedback, Q-score generates a single score that
represents user-perceived quality of experience (QoE). Accuracy
analysis of Q-score reveals that it is able to predict 60% of service
problems reported by customers with only 0.1% of false positive
rate. Applying Q-score to various application scenarios, we have:
(i) identified a set of KPIs most relevant to user-perceived quality of
experience; (ii) quantified how early it can alert bad quality of ex-
perience; (iii) observed the possibility to pre-allocate the customer
care workforce to potentially affected service areas.

As an improvement of our work, we consider the following two
methods aimed at increasing the successful prediction rate. First,
to filter out more noise from user feedback, we plan to investigate
the trouble tickets that fell into false negatives. Collaborating with
video experts, we will conduct simulation based controlledtest-bed
experiments in conjunction with our current operational data-driven
approach. Second, to make Q-score to be more resilient to incom-
pleteness of user feedback, we will further improve user group-
ing methods. In doing so, we plan on applying end-user clustering
techniques in relation to user-perceived QoE.

There are many other network services that are sensitive to ser-
vice quality that lack objective measures of user-perceived quality
of experience. Our future work includes applying the proactive ser-
vice quality assessment beyond the specific context of IPTV net-
works. For example, we plan to apply Q-score to VoIP and mobile
networks so that operation teams can predict call drops and voice
quality degradation without having to wait for customers toreport
them.
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