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ABSTRACT
Sequence classification has a broad range of applications
such as genomic analysis, information retrieval, health in-
formatics, finance, and abnormal detection. Different from
the classification task on feature vectors, sequences do not
have explicit features. Even with sophisticated feature se-
lection techniques, the dimensionality of potential features
may still be very high and the sequential nature of features
is difficult to capture. This makes sequence classification
a more challenging task than classification on feature vec-
tors. In this paper, we present a brief review of the existing
work on sequence classification. We summarize the sequence
classification in terms of methodologies and application do-
mains. We also provide a review on several extensions of the
sequence classification problem, such as early classification
on sequences and semi-supervised learning on sequences.

1. INTRODUCTION
Sequence classification has a broad range of real-world appli-
cations. In genomic research, classifying protein sequences
into existing categories is used to learn the functions of a new
protein [13]. In health-informatics, classifying ECG time se-
ries (the time series of heart rates) tells if the data comes
from a healthy person or comes from a patient with heart
disease [59]. In anomaly detection/intrusion detection, the
sequence of a user’s system access activities on Unix is mon-
itored to detect abnormal behaviors [33]. In information re-
trieval, classifying documents into different topic categories
has attracted a lot of attentions [51]. Other interesting ex-
amples include classifying query log sequences to distinguish
web-robots from human users [58; 18] and classifying trans-
action sequence data in a bank for the purpose of combating
money laundering [42].

Generally, a sequence is an ordered list of events. An event
can be represented as a symbolic value, a numerical real
value, a vector of real values or a complex data type. In this
paper, we consider sequence data into the following sub-
types.

• Given an alphabet of symbols {E1, E2, E3, ..., En}, a
simple symbolic sequence is an ordered list of the sym-
bols from the alphabet. For example, a DNA sequence
is composed of four animo acid A, C, G, T and a DNA
segment, such as ACCCCCGT , is a simple symbolic
sequence.

• A complex symbolic sequence is an ordered list of vec-
tors. Each vector is a subset of the alphabet [34]. For
example, for a sequence of items bought by a cus-
tomer over one year, treating each transaction as a
vector, a sequence can be 〈(milk, bread)(milk, egg) · · ·
(potatos, cheese, coke)〉.

• A simple time series is a sequence of real values or-
dered in timestamp ascending order. For example,

〈(t1, 0.1)(t2, 0.3) · · · (tn, 0.3)〉
is a simple time series recording the data from time
stamp t1 to tn.

• A multivariate time series is a sequence of numerical
vectors. For example,

〈(t1, 〈0.1, 0.3, 05〉)(t2, 〈0.3, 0.9, 0.8〉)···(tn, 〈0.3, 0.9, 0.4〉)〉
is a multivariate time series.

• In the above, the data types of the events are simple.
In some applications, the data type of events can be ar-
bitrarily complicated. For example, in a patient record
data set (http://www.informsdmcontest2009.org/),
each patient is represented by a longitudinal sequence
of hospital visits. Each visit is an event and is de-
scribed by multiple numerical measurements, categor-
ical fields and text descriptions. A complex event se-
quence refers to the general form of sequences.

A sequence may carry a class label. For example, a time
series of ECG data may come from a healthy or ill person.
A DNA sequence may belong to a gene coding area or a
non-coding area. Given L as a set class labels, the task of
(conventional) sequence classification is to learn a sequence
classifier C, which is a function mapping a sequence s to a
class label l ∈ L, written as, C : s → l, l ∈ L.

In (conventional) sequence classification, each sequence is
associated with only one class label and the whole sequence
is available to a classifier before the classification. There are
also other application scenarios for sequence classification.
For example, for a sequence of symptoms of a patient over a
long period of time, the health condition of the patient may
change. For a streaming sequence, which can be regarded
as a virtually unlimited sequence, instead of predicting one
class label, it is more desirable to predict a sequence of la-
bels. This problem is considered in [24; 23] as the strong
sequence classification task. In this paper, we will discuss
several extensions of (conventional) sequence classification
in Section 3.
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There are three major challenges in sequence classification.
First, most of the classifiers, such as decision trees and neu-
ral networks, can only take input data as a vector of features.
However, there are no explicit features in sequence data.
Second, even with various feature selection methods, we can
transform a sequence into a set of features, the feature se-
lection is far from trivial. The dimensionality of the feature
space for the sequence data can be very high and the compu-
tation can be costly. Third, besides accurate classification
results, in some applications, we may also want to get an
interpretable classifier. Building an interpretable sequence
classifier is difficult since there are no explicit features.

In this paper, we give a brief survey of the existing sequence
classification methods. Since most of the existing works fo-
cus on the task of conventional sequence classification, Sec-
tion 2 is devoted to summarizing the major methods for
this task. In Section 3, we discuss some extensions of the
conventional sequence classification tasks, such as streaming
sequence classification and early classification on sequences.
In Section 4, we summarize sequence classification from the
perspective of application domains, such as time series data,
text data and genomic data. Section 5 concludes the paper.

2. SEQUENCE CLASSIFICATION METH-
ODS

The sequence classification methods can be divided into
three large categories.

• The first category is feature based classification, which
transforms a sequence into a feature vector and then
apply conventional classification methods. Feature se-
lection plays an important role in this kind of methods.

• The second category is sequence distance based clas-
sification. The distance function which measures the
similarity between sequences determines the quality of
the classification significantly.

• The third category is model based classification, such
as using hidden markov model (HMM) and other sta-
tistical models to classify sequences.

In the rest of this section, we will present some represen-
tative methods in the three categories. Some methods may
ride on multiple categories. For example, we can use SVM
by either extracting features (Category 1) or defining a dis-
tance measure (Category 2). Sequence classification using
SVM will be summarized in Section 2.3. All methods dis-
cussed in this section are for conventional sequence classifi-
cation.

2.1 Feature Based Classification
Conventional classification methods, such as decision trees
and neural networks, are designed for classifying feature vec-
tors. One way to solve the problem of sequence classification
is to transform a sequence into a vector of features through
feature selections.

For a symbolic sequence, the simplest way is to treat each
element as a feature. For example, a sequence CACG can be
transformed as a vector 〈A, C, C, G〉. However, the sequen-
tial nature of sequences cannot be captured by this trans-
formation. To keep the order of the elements in a sequence,
a short sequence segment of k consecutive symbols, called

a k-gram, is usually selected as a feature. Given a set of
k-grams, a sequence can be represented as a vector of the
presence and the absence of the k-grams or as a vector of
the frequencies of the k-grams. Sometimes, we also allow
inexact matchings with gapped k-grams. By using k-grams
as features, sequences can be classified by a conventional
classification method, such as SVM [35; 36] and decision
trees [12]. A summary of k-gram based feature selection
methods for sequence classifications can be found in [16].

The size of candidate features which are all k-grams where
1 ≤ k ≤ l is 2l − 1. If k is a large number, the size of the
feature set can be huge. Since not all features are equally
useful for classification, Chuzhanova et al. [12] use Gamma
test to select a small informative subset of features from
the k-grams. A genetic algorithm is used to find the local
optimal subset of features.

In contrast to k-gram based feature selections, Lesh et al. [30;
34] propose a pattern-based feature selection method. The
features are short sequence segments which satisfy the fol-
lowing criteria (1) frequent in at least one class (2) distinc-
tive in at least one class and (3) not redundant. Criterion
(2) means a feature should be significantly correlated with
at least one class. The redundancy in Criterion (3) can be
defined in the way of feature specification and feature gener-
alization. An efficient feature mining algorithm is proposed
to mine features according to the criteria. After selecting the
features, Winnow [41] and naive bayes classifiers are used.
The experimental results in [30] show that comparing to the
method of considering each element as a feature, pattern-
based feature selection can improve the accuracy by 10% to
15%.

The challenge of applying pattern-based feature selection on
symbolic sequences is how to efficiently search for the fea-
tures satisfying the criteria. Ji et al. [22] propose an algo-
rithm to mine distinctive subsequences with a maximal gap
constraint. The algorithm, which uses bisect and boolean
operations and a prefix growth framework, is efficient even
with a low frequency threshold.

Time series data is numeric. The feature selection tech-
niques for symbolic sequences cannot be easily applied to
time series data without discretization. Discretization may
cause information lost. Ye et al. [65] propose a feature selec-
tion method which can be applied directly on numeric time
series. Time series shapelets, the time series subsequences
which can maximally represent a class, is proposed as the
features for time series classification. For a two-class clas-
sification task, given a distance threshold, a shapelet is a
segment of time series which can be used to separate the
training data into two parts according to the distance to
the shapelet, and maximizes the information gain. The dis-
tance threshold and the shapelet are learned from the train-
ing data to optimize the information gain. To construct a
classifier, the shapelet selection process is integrated with
the construction of the decision tree.

Although subsequences are informative features, they can
only describe the local properties of a long sequence. Ag-
garwal et al. [5] develop a method to capture both the global
and local properties of sequences for the purpose of classifi-
cation. Aggarwal et al. [5] modify wavelet decomposition to
describe a symbolic sequence on multiple resolutions. With
different decomposition coefficients, the wavelet represents
the trends in different range of intervals, from global to lo-
cal. Using wavelet decomposition and a rule based classi-
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fier, the wavelet decomposition method outperforms the k-
nearest neighbor classifier on a web accessing sequence data
set and on a genomic sequence data set.

In summary, the existing methods differ from each other on
the following aspects.

• Which criteria should be used for selecting features,
such are distinctiveness, frequency, and length?

• In which scope does feature selection reflect the se-
quential nature of a sequence, local or global?

• Should matchings be exact or inexact with gaps?

• Should feature selection be integrated within the pro-
cess of constructing the classifier or a separate pre-
processing step?

2.2 Sequence Distance Based Classification
Sequence distance based methods define a distance func-
tion to measure the similarity between a pair of sequences.
Once such a distance function is obtained, we can use some
existing classification methods, such as K nearest neighbor
classifier (KNN) and SVM with local alignment kernel (to
be discussed in Section 2.3 [49], for sequence classification.

KNN is a lazy learning method and does not pre-compute
a classification model. Given a labeled sequence data set T ,
a positive integer k, and a new sequence s to be classified,
the KNN classifier finds the k nearest neighbors of s in T ,
kNN(s), and returns the dominating class label in kNN(s)
as the label of s.

The choice of distance measures is critical to the perfor-
mance of KNN classifiers. In the rest of this section, we
focus on summarizing different distance measures proposed
for sequence data.

For simple time series classification, Euclidean distance is a
widely adopted option [26; 59]. For two time series s and s′,
Euclidean distance is

dist(s, s′) =

√√√√
L∑

i=1

(s[i]− s′[i])2.

The Euclidean distance usually requires two time series to
have the same length. Keogh et al. [26] show when applying
1NN classifier on time series, Euclidean distance is surpris-
ingly competitive in terms of accuracy, compared to other
more complex similarity measures.

Euclidean distance is sensitive to distortions in time dimen-
sion. Dynamic time warping distance (DTW) [28] is pro-
posed to overcome this problem and does not require two
time series to be of the same length. The idea of DTW is
to align two time series and get the best distance by align-
ing. One example of DTW is shown in Figure 1. Xi et
al. [61] show that on small data sets, elastic measures such
as dynamic time warping (DTW) can be more accurate than
Euclidean distance. However, recent empirical results [15]
strongly suggest that on large data sets, the accuracy of
elastic measures converges with Euclidean distance.

Dynamic time warping is usually computed by dynamic pro-
gramming and has the quadratic time complexity. There-
fore, it is costly on a large data set. Ratanamahatana et
al. [48] propose a method to dramatically speed up the
DTW similarity search process by using tight lower bounds

Figure 1: Dynamic Time Warping

to prune may calculations. Xi et al. [61] use numerical re-
duction to speed up DTW computation. The idea is to
reduce the number of the training examples used by a 1NN
classifier and, at the same time, adjust the warping window
dynamically.

For symbolic sequences, such as protein sequences and DNA
sequences, alignment based distances are popular adopted [25].
Given a similarity matrix and a gap penalty, the Needleman-
Wunsch algorithm [44] computes an optimum global align-
ment score between two sequences through dynamic pro-
gramming. In contrast to global alignment algorithms, lo-
cal alignment algorithms, such as the Smith-Waterman al-
gorithm [53] and BLAST [6], measure the similarity between
two sequences by considering the most similar regions but
not enforcing the alignments on full length.

2.3 Support Vector Machine
SVM has been proved to be an effective method for sequence
classification [43; 39; 35; 54; 55; 52; 13]. The basic idea of
applying SVM on sequence data is to map a sequence into a
feature space and find the maximum-margin hyperplane to
separate two classes. Sometimes, we do not need to explic-
itly conduct feature selection. A kernel function corresponds
to a high dimension feature space. Given two sequences,
x, y, some kernel functions, K(x, y), can be viewed as the
similarity between two sequences [54]. The challenges of ap-
plying SVM to sequence classification include how to define
feature spaces or kernel functions, and how to speed up the
computation of kernel matrixes.

One of the widely used kernels for sequence classification
is k-spectrum kernel or string kernel, which transforms a
sequence into a feature vector. Leslie et al. [35] propose a k-
spectrum kernel for protein classification. Given the protein
animo acid alphabet of 20 elements 〈A, R, N, D · ··〉, the k-
spectrum is all the possible sequences of length k that are
composed by the elements in the alphabet. For example, if
k = 3, the k-spectrum contains ARN, AND, DCN, and so
on. Given the alphabet A, a sequence x is transformed into
a feature space by a transformation function

Φk(x) = (φa(x))a∈Ak

where φa(x) is the number of times a occurs in x. The kernel
function is the dot product of the feature vectors,

K(x, y) = Φk(x) · Φk(y)

By using a suffix tree algorithm [35], K(x, y) can be com-
puted in O(kn) time.

Lodhi et al. [43] propose a string kernel for text classifica-
tion. Similar to the k-spectrum kernel in [35], the string
kernel also uses a k-length sub-sequences but allows gaps.
By using an exponentially decaying factor of the length of
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span of the subsequences occurring in the text, the gap is
penalized. The kernel function is the dot product of the
feature vectors and can be efficiently computed by dynamic
programming. Leslie et al. [36] extends the k-spectrum ker-
nel to handle mismatching. Sonnenburg et al. [55] propose
a fast k-spectrum kernel with mismatching .

One disadvantage of kernel based methods is that it is hard
to be interpreted and hard for users to gain knowledge be-
sides a classification result. Sonnenburg et al. propose a
method to learn interpretable SVMs using a set of a string
kernels [54]. The ideas is to use a weighted linear combi-
nation of base kernels. Each base kernel uses a distinctive
set of features. The weights represent the importance of the
features. After learning the SVM, users can have an insight
into the importance of different features.

String kernels or k-spectrum kernel can be viewed as a fea-
ture based method. Saigo et al. [49] propose a local align-
ment kernel for protein sequence classification which can be
viewed as a distance based method. Although local align-
ment distance can effectively describe the similarity between
two sequences, it cannot be directly used as a kernel function
because it lacks the positive definiteness property. Saigo et
al. [49] modify the local alignment distance and form a valid
kernel called local alignment kernel, which mimics the be-
havior of the local alignment. The theoretical connection
between the local alignment kernel and the local alignment
distance is proved. Given two sequences x, y, the local align-
ment kernel K(x, y) can be computed by dynamic program-
ming.

Other kernels used for sequence classification include polynomial-
like kernels [52], kernels derived from probabilistic model
(Fisher’s kernel) [52], and diffusion kernels [50].

2.4 Model Based Classification
One category of sequence classification methods is based on
generative models, which assume sequences in a class are
generated by an underlying model M . Given a class of se-
quences, M models the probability distribution of the se-
quences in the class. Usually, a model is defined based on
some assumptions, and the probability distributions are de-
scribed by a set of parameters. In the training step, the
parameters of M are learned. In the classification step, a
new sequence is assigned to the class with the highest like-
lihood.

The simplest generative model is the Naive Bayes sequence
classifier [37]. It makes the assumption that, given a class,
the features in the sequences are independent of each other.
The conditional probabilities of the features in a class are
learned in the training step. Due to its simplicity, Naive
Bayes has been widely used from text classification [29] and
genomic sequences classification [11].

However, the independence assumption required by Naive
Bayes is often violated in practice. Markov Model and Hid-
den Markov Model can model the dependence among ele-
ments in sequences [17].

Yakhnenko et al. [64] apply a k-order Markov model to clas-
sify protein and text sequence data. In the training process,
the model is trained in a discriminative setting instead of the
conventional generative setting to increase the classification
power of the generative model based methods.

Different from Markov Model, Hidden Markov Model as-
sumes that the system being modeled is a Markov process
with unobserved states. Srivastava et al. [56] use a profile

HMM to classify biological sequences. A profile HMM usu-
ally has three types of states, inserting, matching and delet-
ing. Aligned training examples are used to learn the tran-
sition probabilities between the states and emission prob-
abilities. The learned HMM represents the profile of the
training dataset. A profile HMM may also be learned from
the unaligned sequences by gradually aligning each example
with the existing profile. For each class, a profile HMM is
learned. In the classification step, an unknown sequence is
aligned with the profile HMM in each class by dynamic pro-
gramming. An unknown sequence will be classified into the
class which has the highest alignment score.

3. EXTENSIONS OF SEQUENCE CLASSI-
FICATION

In this section, we review some closely related or extended
problems of conventional sequence classification. Those ex-
tensions are proposed to address the challenges when apply-
ing sequence classification to different real world application
scenarios, such as classifying a sequence using its prefixes to
achieve early classification, classifying sequences by using
both labeled and unlabeled data, and predicting a sequence
of labels instead of a single label for streaming sequences.

3.1 Early Classification
For temproal symbolic sequences and time series, the values
of a sequence are received in time stamp ascending order.
Sometimes, monitoring and classifying sequences as early as
possible is desired. For example, in a retrospective study of
the infants admitted to a neonatal intensive care unit, it is
found that the infants had abnormal heart beating time se-
ries pattern 24 hour before the doctor finally diagnosed them
with sepsis [21]. As another example, Bernaille et al. [9]
show that by only observing the first five packages of a TCP
connection, the application associated with the traffic flow
can be classified. The applications of online traffic can be
identified without waiting for the TCP flow to end. Gener-
ally, early classification of sequences may have applications
in anomaly detection, intrusion detection, health informat-
ics, and process control.

To the best of our knowledge, Diez et al. [14] first mentioned
the concept of early classification of time series. They de-
scribe a time series by some relative literals, such as “in-
crease” and “stay”, and some region literals, such as “al-
ways” and “sometimes” over some intervals. Each literal
and its associated position are viewed as a base classifier.
Ada boost [19] is used to ensemble the base classifiers. The
ensemble classifier is capable of making predictions on in-
complete data by viewing unavailable suffixes of sequences
as missing features.

Anibal et al. [8] apply a case based reasoning method to
classify time series to monitor the system failure in a simu-
lated dynamic system. The KNN classifier is used to clas-
sify incomplete time series using various distances, such as
Euclidean distance and Dynamic time warping (DTW) dis-
tance. The simulation studies show that, by using case based
reasoning, the most important increase of classification ac-
curacy occurs on the prefixes through thirty to fifty percent
of the full length.

Although in [14; 8], the importance of early classification
on time series is identified and some encouraging results are
shown, the study only treat early classification as a problem
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of classifying prefixes of sequences. Xing et al. [62] point out
the challenge of early classification is to study the tradeoff
between the earliness and the accuracy of classification. The
methods proposed in [14; 8] only focus on making predic-
tions based on partial information but do not address how
to select the shortest prefix to provide a reliable prediction.
This makes the result of early classification cannot be easily
used by users for further actions

Xing et al. [62] formulate the early classification problem as
classifying sequences as early as possible while maintaining
an expected accuracy. A feature based method is proposed
for early classification on temporal symbolic sequences. The
major idea is to first select a set of features that are fre-
quent, distinctive and early, and then build an association
rule classifier or a decision tree classifier using those features.
In the classification step, an oncoming sequence is matched
with all rules or branches simultaneously until on a prefix, a
matching is found and the sequence is classified. In this way,
a sequence is classified immediately once the user expected
accuracy is achieved. The methods proposed in [62] show
some successes in handling symbolic sequences by achieving
competitive accuracies using only less than half of the length
of the full sequences.

One disadvantage of the methods in [62] is that it cannot
handle numeric time series well. Since numeric time series
need to be discretized online, the information loss makes
some distinctive features not easy to capture. Xing et al. [63]
propose an early classifier for numeric time series by utiliz-
ing instance based learning. The method learns a minimal
prediction length (MPL) for each time series in the training
dataset through clustering and uses MPLs to guide early
classification. As shown in Section 2, 1NN classifier with
Euclidean distance is a highly accurate classifier for time se-
ries classification. One interesting property of the method
in [63] is that without requiring a user expected accuracy,
the classifier can achieve early classification while maintain
roughly the same accuracy as a 1NN classifier using full
length time series.

3.2 Semi-Supervised Sequence Classification
There are usually more unlabeled data than labeled data.
Some unlabeled data shares common features with labeled
data and also contains extra features which may provide a
more comprehensive description of a class. Therefore, by
incorporating unlabeled data, sometimes, a more accurate
classifier may be built.

For text classification, there is a large amount of unlabeled
data. Nigam et al. [46] propose a semi-supervised classifi-
cation method to label documents. Initially, a Naive Bayes
classifier is used to classify unlabeled examples in the first
round. Then, an Expectation-Maximization (EM) process
is utilized to adjust the parameters of the Naive Bayes clas-
sifier and re-classify the unlabeled data in an iteration. The
process terminates when the classification result is stable.
One document may belong to several categories and have
multiple labels.

Besides text classification, Zhong et al. [66] propose a HMM
based semi-supervised classification for time series data. The
method uses labeled data to train the initial parameters of a
first order HMM, and then uses unlabeled data to adjust the
model in an EM process. Wei et al. [59] adopt one nearest
neighbor classifier for semi-supervised time series classifica-
tion. The method is designed to handle the situation where

only a small amount of labeled data in the positive class is
available. In the training step, at the beginning, all the un-
labeled data is regarded as negative. Then, a 1NN classifier
is applied to classify unlabeled data in iteration until the the
stopping criteria is met. Wei et al. [59] propose a heuristic
stopping criteria. In the iteration of labeling more time se-
ries as positive, they observe that the minimum distance in
the positive class will first decrease and then experience a
plateau, and at last decrease again. The iteration will stop
when the minimum distance in the positive class starting to
decrease after the plateau.

Weston et al. [60] propose a semi-supervised protein classi-
fication method by using SVM with a cluster kernel. The
kernel function between two sequences is defined as the dis-
tance between two clusters of sequences. The two clusters
are the neighborhoods of the two sequences, and the distance
of the two clusters is the average pair-wise inter-cluster dis-
tance. The neighborhood of a sequence may contain labeled
and unlabeled sequences. By using the cluster kernel, the
information of the unlabeled data can be utilized. The re-
sults show that by adding unlabeled data, the cluster kernel
works better than only using labeled data.

3.3 Sequence Classification with A Sequence
of Labels

As discussed in Section 1, for streaming sequence classifica-
tion, instead of predicting one class label, it is more desirable
to predict a sequence of labels. Kadous [24; 23] identifies this
problem as strong sequence classification task but does not
provide a solution for this problem.

A closely related problem considered in natural language
processing is called labeling sequences [31; 7; 20]. The task
is to label each element in a sequence. For example, given
a sentence, where each word is treated as an element, se-
quence labeling is to assign each word to a category, such as
name identity, noun phrase, verb phrase etc. The straight-
forward solution is to label each element independently. An
advanced solution is to consider the labels of the elements
in a sequence related to each other. Sequence labeling prob-
lem has been solved by using conditional random fields [31].
The problem has also been tackled by other methods, such
as using a combined model of HMM and SVM [7] and using
a recurrent neural network [20].

4. APPLICATIONS OF SEQUENCE CLAS-
SIFICATION

Sequence classification has a broad range of applications.
For different application domains, the classification task has
different characteristics. In this section, we summarize and
compare major methods applied in several application do-
mains.

4.1 Genomic Data
In recent years, a large amount of DNA and protein se-
quences are available in public databases, such as GenBank [3],
EMBL Nucleotide Sequence Database [1] and the Entrez
protein database [2]. To understand the functions of differ-
ent genes and proteins, sequence classification has attracted
a lot of attention in genomic research.

Feature based methods are widely used for genomic sequence
classification [35; 12; 13; 52]. k-grams [35; 36; 12] and pat-
tern based feature selection [52] have been used on genomic
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sequences. After obtaining features, conventional classifiers,
such as SVM [35; 36; 52], rule based classifier [5] and neural
networks [10] can be applied to classify genomic sequences.

To measure the distance between two genomic sequences,
global alignment and local alignment are widely used meth-
ods [32; 45]. After obtaining the distance function, KNN
classifier can be used for genomic sequence classification [13].
By using a local alignment kernel [49], SVM can also be used
to classify protein sequences without feature selection.

Model based methods, such as profile HMM [56], are also
important methods for genomic sequence classification.

Deshpande et al. [13] compare the performance of SVM,
HMM, and KNN methods for classifying genomic sequence
data. They find that SVM outperforms in most cases and
feature selection plays an important role in determining ac-
curacies of SVM classifiers. She et al. [52] also conclude that
SVM is the most effective method for protein classification.
Besides accuracy, other challenges in genomic sequence clas-
sification are to speed up classification in order to handling
a large amount of data [55] and to train an interpretable
classifier to gain knowledge about characteristics of genomic
sequences [54].

4.2 Time Series Data
Time series data is an important type of sequence data. In
Time Series Data Library [4], time series data across 22 do-
mains, such as agriculture, chemistry, health, finance,industry,
are collected. UCR time series data archive [27] provides a
set of time series datasets as a benchmark for evaluating
time series classification methods.

For simple time series data, to apply feature based methods,
the feature selection is a challenging task since we cannot do
feature enumeration on numeric data. Therefore, distance
based methods are widely adopted to classify time series [61;
26; 59; 48]. It is shown that comparing to a wide range
of classifiers, such as neural networks, SVM and HMM, 1-
nearest neighbor classifier with dynamic time warping dis-
tance is usually superior in classification accuracy [61].

To apply feature based methods on simple time series, usu-
ally, before feature selection, time series data needs to be
transformed into symbolic sequences through discretization
or symbolic transformation [40]. Without discretization, Ye
et al. [65] propose a method to find time series shapelets
and use a decision tree to classify time series. Comparing to
distance based methods, feature based methods may speed
up the classification process and be able to generate some
interpretable results.

Model based methods are also applied to classify simple time
series, such as HMM which is widely used in speech recog-
nition [47].

Multivariate time series classification has been used for ges-
ture recognition [24] and motion recognition [38]. The multi-
variate data is generated by a set of sensors which measure
the movements of objects in different locations and direc-
tions. For multivariate time series classification, Kadous et
al. [24] propose a feature based classifier. A set of user-
defined meta-features are constructed and a multivariate
time series is transformed into a feature vector. Some uni-
versal meta-features include the features to describe the
trends of increases and decreases and local max or min val-
ues. By using those features, multivariate time series with
additional non-temporal attributes can be classified by a de-
cision tree. One multivairate time series can be viewed as

a matrix. Li et al. [31] propose a method to transform a
multivariate time series into a vector through singular value
decomposition and other transformations. SVM is then used
to classify the vectors.

4.3 Text Data
Sequence classification is also widely used in information re-
trieval to categorize text and documents. The widely used
methods for document classification include Naive Bayes [29]
and SVM [43]. Text classification has various extensions
such as multi-label text classification [67], hierarchical text
classification [57] and semi-supervised text classification [46].
Sebastiani et al. [51] provide a more detailed survey on text
classification .

5. CONCLUSION
In this paper, we provide a brief survey on sequence clas-
sification. We categorize sequence data into five subtypes.
We group sequence classification methods in feature based
methods, sequence distance based methods and model based
methods. We also present several extensions of the conven-
tional sequence classification. At last, we compare sequence
classification methods applied in different application do-
mains.

We notice that most of the works focus on the classification
task on simple symbolic sequences and simple time series
data. Although there are a few works on multiple variate
time series and complex symbolic sequences, the problem
of classifying complex sequence data is still open at large.
Furthermore, most of the methods are devoted to the con-
ventional sequence classification task. Streaming sequence
classification, early classification, semi-supervised classifica-
tion on sequence data and the combinations of those prob-
lems on complex sequence data which have practical appli-
cations, present challenges for future studies.

6. REFERENCES

[1] Embl nucleotide sequence database homepage: http:

//www.ebi.ac.uk/embl/.

[2] Entrez protein database homepage: http://www.ncbi.
nlm.nih.gov/sites/entrez?db=protein.

[3] Genbank homepage: http://www.ncbi.nlm.nih.gov/

Genbank/.

[4] Time series data library webpage: http:

//www-personal.buseco.monash.edu.au/~hyndman/

TSDL/.

[5] C. C. Aggarwal. On effective classification of strings
with wavelets. In KDD ’02: Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 163–172, 2002.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipmanl. Basic local alignment search tool.
J.Mol.Biol., 215:403–410, 1990.

[7] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden
markov support vector machines. In ICML ’03: The
Twentieth International Conference on Machine Learn-
ing, pages 3–10, 2003.

SIGKDD Explorations Volume 12, Issue 1 Page 45



[8] B. Anibal, S. M. Aranzazu, and R. J. Jose. Early fault
classification in dynamic systems using case-based rea-
soning. Lecture notes in computer science, 4177:211–
220, 2005.

[9] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian. Traffic classification on the fly. Com-
puter Communication Review, 36(2):23–26, 2006.

[10] K. Blekas, D. I. Fotiadis, and A. Likas. Motif-based
protein sequence classification using neural networks.
Journal of Computational Biology, 12(1):64–82, 2005.

[11] B. Cheng, J. Carbonell, and J.Klein-Seetharaman. Pro-
tein classification based on text document classification
techniques. Proteins, 1(58):855–970, 2005.

[12] N. A. Chuzhanova, A. J. Jones, and S. Margetts. Fea-
ture selection for genetic sequence classification. Bioin-
formatics, 14(2):139–143, 1998.

[13] M. Deshpande and G. Karypis. Evaluation of tech-
niques for classifying biological sequences. In PAKDD
’02: Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining,
pages 417–431, 2002.

[14] J. J. R. Diez, C. A. González, and H. Boström. Boosting
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